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Preface

We are delighted to present this book which contains the Proceedings of the Fifth 
International Conference on Computational Fluid Dynamics (ICCFD5), held in 
Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established 
itself as the leading international conference series for scientists, mathematicians, 
and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited 
Lectures and 3 Keynote Lectures were delivered by renowned researchers in the 
areas of innovative modeling of flow physics, innovative algorithm development 
for flow simulation, optimization and control, and advanced multidisciplinary ap-
plications. 

There were a total of 198 contributed abstracts submitted from 25 countries. 
The executive committee consisting of C. H. Bruneau (France), J. J. Chattot 
(USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for 
selection of papers. Each of the members had a separate subcommittee to carry out 
the evaluation. As a result of this careful peer review process, 138 papers were 
accepted for oral presentation and 28 for poster presentation. Among them, 5 (3 
oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster 
presentation) papers were not presented. The conference was attended by 201 
delegates from 23 countries. The technical aspects of the conference were highly 
beneficial and informative, while the non-technical aspects were fully enjoyable 
and memorable.  

In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 con-
tributed papers are grouped under 21 subject titles which are in alphabetical order. 
Lastly, 12 poster presentation papers appear as Technical Notes.   

Thanks are due to our sponsors, NASA Ames Research Center, Seoul National 
University (SNU), The Korean Society of Mechanical Engineers, and a number of 
other domestic and international organizations. In particular, the continued support 
of NASA is essential for the success of this conference series. I would also like to 
express my deepest gratitude to my fellow Local Organizing Committee members, 
in particular, to Prof. Haecheon Choi, the Secretary General, who displayed his 
utmost intelligence and resourceful dedication throughout the entire process of 
ICCFD5. Further, I would like to thank my staffs in the Institute of Advanced Ma-
chinery and Design, and the graduate students in the School of Mechanical and 
Aerospace Engineering, SNU, for their tremendous efforts in making this confer-
ence a success.  

Seoul, Korea                                  Jung Yul Yoo 
January 2009                                                                                               Chairman  
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Abstract. Lattice Boltzmann methods (LBMs) for viscous fluid flows and
for two-phase fluid flows are presented. First, the LBMs for incompressible
viscous fluid flows and for temperature fields are described. Then, a numer-
ical example of unsteady flows in a three-dimensional porous structure is
illustrated. Second, the LBM for two-phase fluid flows is presented. The
method can simulate flows with the density ratio up to 1000. Numerical
examples of binary droplet collision and two-phase flows in a branch channel
are illustrated. Finally, the method for simulating solid-fluid mixture flows
by the LBM for multicomponent immiscible fluids with the same density is
explained, and a numerical example of the behavior of a biconcave discoid
particle in a square pipe flow is illustrated.

1 Introduction

Recently, the lattice Boltzmann method (LBM) has been developed into an
alternative and promising numerical scheme for simulating viscous fluid flows
and multi-phase fluid flows (e.g., see [1, 2, 3, 4, 5]). The LBM is based on
a discrete particle kinetics, where the kinetic-type equation for the particle
velocity distribution function is solved. Macroscopic quantities such as mass
density and momentum density are obtained by evaluating the hydrodynamic
moments of the distribution function. The advantages of the LBM are the
simplicity of the algorithm, the accuracy of the mass and momentum conser-
vations, and the suitability for parallel computing.

On the other hand, the kinetic-equation approaches of fluid-dynamic equa-
tions called the kinetic schemes have been proposed for obtaining numerical
solutions of the Euler or Navier–Stokes equations (e.g., see [6, 7]). Junk and
Rao [8] have proposed a new discrete velocity method for Navier–Stokes equa-
tions based on kinetic schemes and have investigated the relation between
the lattice Boltzmann method and the kinetic scheme. Also, Sone [9] has
presented a simple way to construct a kinetic system of equations and initial
conditions from a set of partial differential equations in a conservative form
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(e.g., the Euler and Navier–Stokes sets) in such a way that some moments of
the solution of the kinetic system satisfy a set of partial differential equations
exactly.

From the above-mentioned point of view, the LBM is considered as one
of the kinetic schemes for incompressible viscous fluid flows. Namely, both
the LBMs and the kinetic schemes originate from the kinetic-type equations
with the simple linear form of the differential term. Thus with these methods
we can avoid some difficulties in numerical calculations of the Navier-Stokes
equations (e.g., the pressure term in the incompressible Navier–Stokes set).
In this sense, the LBM is a heuristic scheme for a set of partial differential
equations in a conservative form.

In the present paper, the LBM is considered as a heuristic kinetic scheme
of the Navier-Stokes equations for viscous fluid flows and for two-phase fluid
flows. The formal relation between the LBM and the Navier-Stokes equa-
tions has been derived by Inamuro et al. [10]. We do not consider the direct
connection between the LBM and the kinetic theory.

2 Lattice Boltzmann Method

2.1 Lattice Gas Model and Evolution Equation

Hereafter, we use non-dimensional variables as shown in Appendix of Ref. [5].
In LBM, a modeled fluid composed of identical particles whose velocities are
restricted to a finite set of N vectors ci (i = 1, 2, · · · , N) is considered. The
fifteen-velocity model (N = 15) is used in the present paper. The velocity
vectors in this model are given by

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15] =⎡
⎣ 0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

⎤
⎦ . (1)

The physical space is divided into a cubic lattice, and the evolution of
particle population at each lattice site is computed by using the particle dis-
tribution function. The evolution of the particle distribution function fi(x, t)
with velocity ci at the lattice point x and at time t is computed by the
following equation [11, 12]:

fi(x + ci∆x, t + ∆t) = fi(x, t)− 1
τf

[fi(x, t)− f eq
i (x, t)] , (2)

where ∆x is a spacing of the cubic lattice, ∆t is a time step during which
the particles travel the lattice spacing, τf is a dimensionless single relaxation
time of O(1), and f eq

i is an equilibrium distribution function defined below.
Note that BGK model with a single relaxation time is used for the collision
term in Eq. (2).
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A suitable equilibrium distribution function for incompressible viscous
flows is given by [12]

f eq
i = Eiρ

[
1 + 3ci · u +

9
2
(ci · u)2 − 3

2
u · u

]
, (3)

where E1 = 2/9, E2 = E3 = · · · = E7 = 1/9, E8 = E9 = · · · = E15 =
1/72, and ρ and u are fluid density and fluid velocity, respectively, which are
calculated in terms of the particle velocity distribution functions as

ρ =
15∑

i=1

fi, (4)

u =
1
ρ

15∑
i=1

cifi. (5)

Eq. (3) is derived so that macroscopic variables satisfy the Navier-Stokes
equations as shown in Sec. 2.4 and has a similar form to an expansion of the
Maxwell distribution up to |u|2 on the assumption of |u| � c (incompressible
condition).

The pressure p is related to the density by

p =
1
3
ρ . (6)

2.2 Lattice Boltzmann Method for Temperature Field

The above LBM is an athermal model (in which no temperature effect is
included) for incompressible viscous fluid flows. We can construct an LBM
for fluid temperature T as a passive scalar by using a new particle distribution
function gi as follows [13]:

gi(x + ci∆x, t + ∆t) = gi(x, t)− 1
τg

[gi(x, t)− geq
i (x, t)] , (7)

where
geq

i = EiT (1 + 3ci · u) . (8)

In the above equation, u is obtained by Eq. (5), and the temperature T is
calculated by

T =
15∑

i=1

gi. (9)

Eq. (8) is derived so that the temperature T satisfies the convection–
diffusion equation as shown in Sec. 2.4.
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2.3 Boundary Condition

Boundary conditions in LBMs are different from usual computational fluid
dynamics (CFD) methods. In the LBM, the distribution functions of the
particles pointing to the fluid region needs to be specified on the boundary.
The bounce-back boundary condition, in which the distribution function of
the particle pointing to the fluid is set equal to that of the particle in the
opposite direction, has been usually used to model stationary walls. The
details of the boundary conditions for the LBM are reviewed in the paper by
Yu et al. [14].

2.4 Governing Equations for Macroscopic Variables

Applying the asymptotic theory [9, 10] to Eqs. (2), (3), (7), and (8) with
appropriate initial and boundary conditions, we find that the asymptotic
expansions of the macroscopic variables with respect to ∆x can be expressed
by uα = (∆x)u(1)

α + (∆x)3u(3)
α + · · ·, p = 1/3 + (∆x)2p(2) + (∆x)4p(4) + · · ·,

and T = T (0) + (∆x)2T (2) + · · ·, and that u
(1)
α , p(2), and T (0) satisfy

∂u
(1)
α

∂xα
= 0, (10)

∂u
(1)
α

∂t
+ u

(1)
β

∂u
(1)
α

∂xβ
= −∂p(2)

∂xα
+

1
3

(
τf −

1
2

)
∂2u

(1)
α

∂x2
β

, (11)

∂T (0)

∂t
+ u(1)

α

∂T (0)

∂xα
=

1
3

(
τg −

1
2

)
∂2T (0)

∂x2
α

, (12)

where α, β = x, y, z (subscripts α and β represent Cartesian coordinates and
the summation convention is used). Eqs. (10), (11), and (12) are the con-
tinuity equation, the Navier–Stokes equations, and the convection–diffusion
equation for the fluid temperature, respectively, in which the kinematic vis-
cosity ν and the thermal diffusivity αT of the fluid are given by

ν =
1
3

(
τf −

1
2

)
∆x, (13)

αT =
1
3

(
τg −

1
2

)
∆x. (14)

Therefore, it is found that the solutions of the lattice Boltzmann method give
the macroscopic flow velocities, the pressure gradient, and the fluid tempera-
ture for incompressible fluid with relative errors of O[(∆x)2] [10, 13]. It is noted
that the relative errors of O[(∆x)2] are caused by the compressibility effect.

Finally, it can be shown that the heat flux q = (∆x)q(1) + (∆x)3q(3) + · · ·
is related to uT = (∆x)u(1)

T + (∆x)3u(3)
T + · · · as
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q(1) = −1
3
τg∇T (0) = T (0)(u(1)

T − u(1)), (15)

where the thermal conductivity λ is given by

λ =
1
3
τg∆x, (16)

and

uT =
1
T

15∑
i=1

cigi. (17)

2.5 Numerical Examples

Unsteady flows in a three-dimensional porous structure shown in Fig. 1 are il-
lustrated. There exist nine identical spherical bodies in a rectangular domain.
The domain is divided into 73 × 69 × 69 cubic lattice in the x-, y- and z-
directions. The spherical body is made up of a lattice block; the body does
not have a smooth surface. The diameter of the circumscribed sphere of the
body is 28.4∆x. The no-slip boundary condition [15] is used on the body, and
the slip boundary condition is used on the side walls. The periodic boundary
condition with a pressure difference fixed in time [16] is used at the inlet and
the outlet. Figure 2 shows velocity vectors on the planes of (a) y/H = 0.62, (b)
z/W = 0.09, and x/L = 0.45 at Re = uinDp/ν = 127 where uin is the time-
and space-averaged velocity at the inlet, and Dp = 29.4∆x is the equivalent
diameter of the body made up of a lattice block. In the figure, the lattice block
bodies are depicted by spheres with the equivalent diameter Dp. It is seen that
the three-dimensional vortices appear behind the bodies, and the flow field is
very complicated. The calculated pressure drops are in good agreement with
well-known empirical equations based on experimental data [17].

The LBM has been applied to heat and mass transfer problems in the
three-dimensional porous structure [18, 19], Rayleigh-Bénard convection [13,
20, 21], the simulation of moving particles in fluid [16, 22], and so on.

z

y
x

W L

Inflow

H
Outflow

Fig. 1. Three-dimensional porous structure
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z

x

5 u
_

in

(a)

y

z

5 u
_

in

(b)

Fig. 2. Velocity vectors on the plane of (a) y/H = 0.62 and (b) x/L = 0.45 at
Re = 127

3 Lattice Boltzmann Method for Two-Phase Fluids

In this section, a heuristic LBM for two-phase fluids with large density dif-
ferences is presented [23]. The difficulty in the treatment of large density
differences is resolved by using the projection method [24]. In the projection
method the continuity equation in the interfacial region is satisfied at every
time step. Two particle velocity distribution functions are used. One is used
for the calculation of an order parameter which distinguishes two phases, and
the other is used for the calculation of a predicted velocity of the two-phase
fluid without a pressure gradient. The current velocity satisfying the continu-
ity equation can be obtained by using the relation between the velocity and
the pressure correction which is determined by solving the Poisson equation.

3.1 Formulation

Two particle velocity distribution functions, fi and gi, are used. The function
fi is used for the calculation of an order parameter which represents two
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phases, and the function gi is used for the calculation of a predicted velocity of
the two-phase fluid without a pressure gradient. The evolution of the particle
distribution functions fi(x, t) and gi(x, t) with velocity ci at the lattice point
x and at time t is computed by

fi(x + ci∆x, t + ∆t) = f c
i (x, t), (18)

gi(x + ci∆x, t + ∆t) = gc
i (x, t), (19)

where f c
i and gc

i are functions of Chapman–Enskog type in which variables
x and t enter only through macroscopic variables and/or their derivatives,

The order parameter φ distinguishing the two phases and the predicted
velocity u∗ of the multicomponent fluids are defined in terms of the two
particle velocity distribution functions

φ =
15∑

i=1

fi, (20)

u∗ =
15∑

i=1

gici. (21)

The functions f c
i and gc

i in Eqs. (18) and (19) are given by

f c
i = Hiφ + Fi

[
p0 − κfφ∇2φ− κf

6
|∇φ|2

]
+3Eiφciαuα + EiκfGαβ(φ)ciαciβ , (22)

gc
i = Ei

[
1 + 3ciαuα −

3
2
uαuα +

9
2
ciαciβuαuβ

+
3
4
∆x

(
∂uβ

∂xα
+

∂uα

∂xβ

)
ciαciβ + 3ciα

1
ρ

∂

∂xβ

{
µ

(
∂uβ

∂xα
+

∂uα

∂xβ

)}
∆x

]

+Ei
κg

ρ
Gαβ(ρ)ciαciβ −

2
3
Fi

κg

ρ
|∇ρ|2, (23)

where

H1 = 1, H2 = H3 = · · · = H15 = 0,

F1 = −7/3, Fi = 3Ei (i = 2, 3, · · · , 15) , (24)

and

Gαβ(φ) =
9
2

∂φ

∂xα

∂φ

∂xβ
− 3

2
∂φ

∂xγ

∂φ

∂xγ
δαβ , (25)

with α, β, γ = x, y, z. In the above equations, δαβ is the Kronecker delta,
κf is a constant parameter determining the width of the interface, κg is a
constant parameter determining the strength of the surface tension, and the
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other variables, ρ, ρL, µ, and u are defined below. Note that κgGαβ and
κg|∇ρ|2 are of O[(∆x)2]. In Eq. (22), p0 is given by

p0 = φTφ
1

1− bφ
− aφ2, (26)

where a, b, and Tφ are free parameters determining the maximum and mini-
mum values of φ. It is noted that f c

i is the same as that of the model proposed
by Swift et al. [25]. For the calculation of the derivatives in Eqs. (22), (23),
and (25), Eq. (25) is used for the first derivative, and the following finite-
difference approximation is used for the second derivative:

∂ψ

∂xα
≈ 1

10∆x

15∑
i=1

ciαψ(x + ci∆x), (27)

∇2ψ ≈ 1
5(∆x)2

[
15∑

i=2

ψ(x + ci∆x)− 14ψ(x)

]
. (28)

Thedensity in the interface is obtainedbyusing the cut-offvalues of the order
parameter, φ∗

L and φ∗
G, for the liquid and gas phases with the following relation:

ρ =

⎧⎪⎪⎨
⎪⎪⎩

ρG, φ < φ∗
G,

∆ρ
2

[
sin

(
φ− φ∗
∆φ∗ π

)
+ 1

]
+ ρG, φ∗

G ≤ φ ≤ φ∗
L,

ρL, φ > φ∗
L,

(29)

where ρG and ρL are the density of gas and liquid phase, respectively, ∆ρ =
ρL − ρG, ∆φ∗ = φ∗

L − φ∗
G, and φ∗ = (φ∗

L + φ∗
G)/2. The viscosity µ in the

interface is obtained by

µ =
ρ− ρG

ρL − ρG
(µL − µG) + µG, (30)

where µG and µL are the viscosity of gas and liquid phase, respectively, and
both are of O(∆x). The interfacial tension σ is given by

σ = κg

∫ ∞

−∞

(
∂ρ

∂ξ

)2

dξ, (31)

with ξ being the coordinate normal to the interface [26, 27].
Since u∗ is not divergence free (∇ · u∗ �= 0) in general, a correction of

u∗ is required. The current velocity u which satisfies the continuity equation
(∇ · u = 0) can be obtained by using

Sh
u− u∗

∆t
= −∇p

ρ
, (32)
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∇ ·
(
∇p

ρ

)
= Sh

∇ · u∗

∆t
, (33)

where Sh = U/c is the Strouhal number and p is the pressure. The Poisson
equation (33) can be solved by various methods. In the present paper, we solve
it in the framework of LBM. Namely, the following evolution equation of the
velocity distribution function hi is used for the calculation of the pressure p:

hn+1
i (x + ci∆x) = hn

i (x)− 1
τh

[hn
i (x)− Eip

n(x)]− 1
3
Ei

∂u∗
α

∂xα
∆x, (34)

where n is the number of iterations and the relaxation time τh is given by

τh =
1
ρ

+
1
2
. (35)

The pressure is obtained by

p =
15∑

i=1

hi. (36)

The iteration of Eq. (34) is repeated until |pn+1 − pn|/ρ < ε (e.g., ε = 10−6)
is satisfied in the whole domain.

3.2 Algorithm of Computation

We now summarize the algorithm of computation.

Step 1. Using Eqs. (18) and (19), compute fi(x, t + ∆t) and gi(x, t + ∆t),
and then compute φ(x, t+∆t) and u∗(x, t+∆t) with Eqs. (20) and (21).
Also, ρ(x, t + ∆t) is calculated with Eq. (29).

Step 2. Using Eqs. (34)–(36), compute p(x, t+∆t). The iteration is repeated
until |pn+1 − pn|/ρ < ε is satisfied in the whole domain.

Step 3. Compute u(x, t + ∆t) using Eq. (32).
Step 4. Advance one time step and return to Step 1.

It is found in preliminary calculations that using the present method we
can simulate multiphase flows with the density ratio up to 1000.

3.3 Governing Equations for Macroscopic Variables

Applying the asymptotic theory, one can obtain the governing equations for
macroscopic variables (see [23]).
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3.4 Numerical Examples

Binary Droplet Collision

The method has been applied to the simulations of binary droplet collisions
for various Weber numbers and for impact parameters [28, 29] as shown in
Fig. 3. The dimensionless parameters of the problem are the diameter ratio
λ = Ds/Dl where Ds and Dl are the diameters of smaller and larger droplets,
respectively, the Weber number We = ρLDsV

2/σ in which V is the relative
speed of two droplets, the Reynolds number Re = ρLDlV/µL, and the impact
number B = 2X/(Dl + Ds) in which X is the distance from the center of
one droplet to the relative velocity vector placed on the center of the other
droplet. The density ratio of the liquid to the gas is fixed at 50 which is
nearly the ratio of injected fuel to compressed oxidizer in diesel engines. The
calculated results are classified into coalescence collision and two different
types of separating collisions, namely reflexive and stretching separations,
and the boundaries of three types of collisions are compared with available
theoretical predictions in good agreement. Figure 3 shows calculated results
for λ = 0.5, We = 61.5, Re = 4300, and B = 0.6. The results correspond to
the stretching separation. The mixing processes during separating collisions
are also simulated for various parameters at by tracing different-colored fluid
particles in the two droplets.

Rising Bubbles

The method was applied to the simulation of a single rising bubble in liquid,
and the terminal shapes and the terminal Reynolds numbers of the bubble for
various Morton and Eötvös numbers were in good agreement with available
experimental data [30]. The behavior of many bubbles (234 bubbles) in a
long duct was calculated by using the parallel computing with 6 CPUs in the
paper by Inamuro and Ogata [31]. In the calculation, the density ratio was
ρL/ρG = 1000, and an 80× 80× 780 cubic lattice was used.

Two-Phase Flows in a Branch Channel

We also applied the method to the simulation of two-phase flows in a branch
channel (Fig. 4). The branch has one inlet at the bottom and two outlets
at the top. The computational conditions are ρL/ρG = 45.1, µL/µG = 16.1,
and Re = ρGV L/µG = 2.1 × 104 where V is the averaged gas velocity and
L is the hight of the branch. The conditions correspond to a coolant in air-
conditioners. As shown in Fig. 4, Complicated behaviors of two-phase flows
in the branch channel at a high Reynolds number can be computed by the
present method.
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t  =1.41*

*t  =4.13

*t  =13.4

t  =2.55*

t  =7.07*

t  =9.19*

Fig. 3. Time evolution of droplet shape for λ = 0.5, We = 61.5, Re = 4300, and
B = 0.6 [t∗ = 2tV/(Dl + Ds)]. Figure taken from Ref. [29].
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t∗ = 4.38 t∗ = 13.8

Fig. 4. Unseady two-phase flows in a branch channel; the interface of two-phase is
shown. (t∗ = tV/L).

Solid-Liquid Mixture Flows

Finally, a solid-fluid mixture flow simulated by the LBM for multicomponent
immiscible fluids with the same density [32] is presented. In the calculation, a
particle is modeled by a hard droplet with large viscosity and strong surface
tension, and consequently there is no need to track the moving solid-liquid
boundary explicitly [33]. In addition, nonspherical particles are made by ap-
plying artificial forces to the droplet. we get a discoid particle by applying
a centrifugal force, and also by applying a compression force to the discoid
particle, we can make a biconcave discoid particle by applying a compres-
sion force to the discoid particle. Figure 5 shows the calculated result for a
biconcave discoid particle in a square pipe flow at Re = 107. It is found that
the biconcave discoid particle moves along a periodic helical path around the
center of the pipe with changing its attitude, and the radius of the helical
path and the polar angle of the minor axis of the particle increase as the
hollow of the concave becomes large.

4 Concluding Remarks

The LBMs for viscous fluid flows and for temperature fields are presented.
The advantages of the LBM are the simplicity of the algorithm, the accu-
racy of mass and momentum conservations, and the suitability for paral-
lel computing. In addition, the LBM for two-phase fluid flows is presented.
The method can simulate two-phase flows with the density ratio up to 1000.
The accuracy of the method would depend on the interface width related to
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t∗ = 0

t∗ = 14.8

t∗ = 32.1

Fig. 5. The motion of a biconcave discoid particle in a square pipe flow; side view
(left) and front view (right). t∗ = V t/Lx (V : the averaged velocity, Lx: the length
of the square pipe.)

the parameter κf , the mobility of the order parameter, and the lattice spac-
ing ∆x. The study of the accuracy concerning these parameters is required in
future work. Also, the development of methods without solving the Poisson
equation for pressure field is desired.

Finally, we expect that the present LBMs will become promising numerical
schemes for simulating viscous fluid flows and two-phase fluid flows, and that
the schemes will be used in many new areas of applications. For example,
the author applies the two-phase LBM to the calculations of two-phase fluid
flows in micro channels and in porous media where the capillary force plays an
important role for determining the flow characteristics. Moreover, the LBMs
have been successfully applied to complex fluids such as colloidal flows. Those
topics are found in the books by Rothman & Zaleski [1] and Succi [4].

This work was supported by the Grant-in-Aid for Scientific Research (No.
18360089) from JSPS and by the COE program ( the Center of Excellence
for Research and Education on Complex Functional Mechanical Systems ) of
the Ministry of Education, Culture, Sports, Science and Technology, Japan.
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1 Introduction

Real-life CFD applications involve a large number of choices that are to be
made in order to setup the computational configurations of the problem.
These choices include the physical models and related arbitrary constants,
boundary conditions, initial conditions as well as tuning parameters in the
numerical methods. In many cases, all physical and geometrical parameters
are not exactly known and in some instances are not known at all. This lack of
information raises the issue of taking into account uncertainties in the CFD
process, modeling it and measuring the dependency/sensitivity of the results
with respect to these uncertainties. Consequently, this approach implies that
instead of seeking a single deterministic solution, we are now interested in
recovering a continuous description of the space of possible solutions spanned
by uncertain parameters.

This article aims at providing a survey of recent progress made in the
field of uncertainty and error quantification and propagation in CFD, the
emphasis being put on Large-Eddy Simulation (LES) of turbulent flows. All
issues addressed below are also relevant to Reynolds-Averaged Numerical
Simulations (RANS) and hybrid RANS/LES methods. Section 2 illustrates
why, even in a simple academic turbulent flow, arbitrary parameters that ap-
pear in turbulence models must be considered as uncertain parameters, since
their values are flow-dependent. The concept of robust model, i.e. whose
sensitivity to the tuning of arbitrary parameters is minimal, is then pre-
sented in Section 3. The issue of representing the space of solutions spanned
by possible variations of the computational setup parameters is then ad-
dressed. Section 4 first illustrates the use of the generalized Polynomial Chaos
(gPC) [Xiu and Karniadakis (2002), Xiu and Karniadakis (2003)] method on
an academic case and then exemplifies the use of the Kriging method
[Krige (1951)] on an engineering problem.
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2 Inertial Range Consistent Subgrid/Turbulence
Models

In simulations, subgrid-scale models do not always yield their theoretically
expected solution, and this is often experienced in the significant discrepancy
between a priori tests and a posteriori results. This is caused by simplifi-
cations and assumptions related to the shape of the LES filter, the type
of turbulence at the filter cut-off, etc., in combination with the non-linear
nature of the NavierStokes equations. We illustrate here this problem by
considering the value of the adaptable model constant parameter C in the
Smagorinsky subgrid viscosity model for large-eddy simulation. The well-
known Lilly analysis [Lilly (1967)], which leads to C = C∞ = 0.17 − 0.18,
was carried out in a simplified asymptotic framework, which is not relevant
in most flows of interest, since it does not account for Reynolds effects, large-
scale dynamics, shear . . . Usual tuning methodology for arbitrary parameters
in turbulence/subgrid models relies on simple test case solutions: the model
parameters are adjusted so that a satisfactory solution is recovered. A very
popular test case is Decaying Homogeneous Isotropic Turbulence (DHIT),
which is characterized at the global level by the turbulent kinetic energy de-
cay rate. The recovery of the observed decay rate via LES or VLES method
is still a challenging issue. One of the main reasons for this is that the decay
rate is not universal, since it depends on several fine spectral features of the
solution, among which: the Reynolds number, the spectrum shape at very
large scales and very small scales, cutoff effects originating in the finite size
of the wind tunnel/computational domain. Therefore, no universal value for
C can be expected, even in the DHIT case. The exact value of the C constant
was derived by [Meyers and Sagaut (2006)] using Pope’s formulation for the
turbulent kinetic energy spectrum E(k):

C(L/∆, ReL) =
C∞
γ

Φ−3/4

√
1−

(
γη

C∞∆

)4/3

φ, (1)

where the spectrum shape is defined as

E(k) = K0ε
2/3k−5/3fL(kL)fη(kη), (2)

and the auxiliary function is defined as

φ(L/∆, ReL) =
4
3

1
(γπL/∆)4/3

∫ +∞

0

x1/3G2(x/L)fL(x)fη(xRe
−3/4
L )dx, (3)

where G is the LES filter kernel, L the integral lengthscale, η the Kolmogorov
scale, ∆ the LES cutoff scale and C∞= 0.17-0.18 the usual value. The filter-
dependent parameter γ is computed as

γ =
π

∆

(
4
3

∫ +∞

0

x1/3G2(x)dx

)3/4

. (4)
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Since this is an exact formulation of the Smagorinsky constant, it is seen
that this parameter is flow-dependent and filter-dependent. Therefore, it must
be considered as an uncertain parameter in practical LES, since most of
these parameters remain unknown. It is worth noting that the usual value
is recovered as an asymptotic limit (see Fig.1). The definition given above is
very complex, and does not satisfy the basic constraint of numerical viability.
Meyers and Sagaut proposed an efficient approach to recover inertial-range
consistency, which makes it possible to mimic the exact behaviour using the
asymptotic value of the Smagorinsky model by remapping the total effective
viscosity (defined as the sum of molecular and subgrid-induced dissipative
effects) as follows:

νeff =
√

ν2
Lilly + ν2 (5)

This analysis and remapping approach was also applied to Variational
Multiscale variants of the Smagorinsky model. Other models including ad-
ditional transport equations (DES, SAS, ) remain to be analysed from the
inertial range consistency viewpoint. Let us also notice that the usual one-
test-filter dynamic procedure fails in recovering the correct behaviour, as
shown by Porté-Agel and co-workers [Porté-Agel et al. (2000)].
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Fig. 1. Smagorinsky constant as a function of the ratio between cutoff length and
Kolmogorov scale. Solid line: exact value; dotted line: asymptotic value; dashed
line: linear and quadratic remapping.
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3 The Concept of Robust Modelling

The existence of intrinsic uncertainties in LES/VLES modelling automati-
cally raises the question of model robustness, i.e. of the sensitivity of the
results to the tuning of the free parameters in the model. A robust model
will naturally be preferred for practical purposes, even if it does not yield the
best possible results, since it will provide users with results of constant level of
accuracy. More sensitive models will be disgarded in practice. In this section,
we will propose some quality indicator, and show that robust models exist
and can be derived in simple ways [Meyers et al. (2006)]. The quantification
of the sensitivity will be addressed in the next section.

An error measure must first be introduced in order to quantify the com-
mitted error. Following Meyers and coworkers, let us consider the following
error indicator

εp(N, C) =

√√√√√√
∫ T

0

(∫ kc

0
kp(ELES(k, t)−G2(k)EDNS(k, t))dk

)2

dt∫ T

0

(∫ kc

0 kpG2(k)EDNS(k, t))dk
)2

dt

. (6)

Fig. 2. Error for the Smagorinsky model as a function of the number of grid points
N and the value of the Smagorinsky constant. Shadded regions denote optimality
regions for the mode constant, in which the committed error is within 20 percents
of the minimum possible error on the same grid. Symbols: square: p= -1; circle:
p=0; right-pointing triangle: p=1; left-pointing triangle: p=2.
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Choosing p=-1,0 or 2, one can put the emphasis on the error committed
on the integral lengthscale, the resolved kinetic energy and the resolved en-
strophy, respectively. Since in practical applications one can be interested in
predicting several parameters at the same time with satisfactory accuracy, it
is convenient to introduce the following multiobjective error measure

ε̃(N, C) =

∑
p=−1,0,1,2

(
εp(N, C)/εp(N, Ĉ(p, N)

)
∑

p=−1,0,1,2

(
1/εp(N, Ĉ(p, N)

) , (7)

which is expressed as an explicit function of the number of grid points N
and the subgrid model constant C. Here, Ĉ(p, N) denotes the value of he
constant which yields the lowest error on εp(N, C) at fixed N . A model will
be referred to as a robust model if, keeping the same value of C, a constant
level of accuracy is recovered when varying N . Results obtained in DHIT with
the usual Smagorinsky model are presented in Fig. 2, while those obtained
using the inertial-range consistant model based on a quadratic remapping
introduced above are displayed in Fig. 3. It is seen that the former is not
robust, while the latter is. This analysis can be extended to VLES, DES and
SAS-type methods in a straightforward manner.

Fig. 3. Error map for the quadratically approximated inertial-range consistent
Smagorinsky model. Same caption as in Fig. 2.
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4 Copping with Uncertainties: Response Surface

Several mathematical tools are available to compute the sensitivity of the
solution with respect to a parameter of the simulation. Local gradient of the
solution can be computed in several ways, including complex differentiation
[Lu and Sagaut (2007)]. A limitation of this approach is that the local gradi-
ent does not give access to the full space of spanned solutions, and that it is
a linearized analysis. The response surface approach is becoming more and
more popular to parameterize a full subspace, without relying on lineariza-
tion. One example is the Kriging approach that is becoming increasingly
acknowledged (e.g. [Jouhaud et al. (2006)]). The present paper will focus on
results obtained with a stochastic spectral method referred to as the gen-
eralized Polynomial Chaos (gPC) approximation [Lucor et al. (2007)]. The
gPC approach consists of discretizing the space spanned by the uncertain
parameters using a pseudo-spectral method. This is a means of represent-
ing second-order random fields parametrically through a finite set of random
variables. The basis functions, which are orthogonal polynomials, should be
chosen in accordance with the probability density function of the uncertain
solution of the problem to ensure an optimal convergence of the represen-
tation. When this density is not known, one choice is to use basis functions

Fig. 4. Uncertainty error bars on the 643 grid resolved turbulent kinetic energy
spectrum computed using a Smagorinsky model with uncertain constant: envelope
of possible solutions
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Fig. 5. pdf of the turbulent kinetic energy E(k) in DHIT with uncertain Smagorin-
sky constant following a beta distribution

Fig. 6. Flow configuration for the hot jet exhaust of an aeronautical engine cooling
system

that are optimal for the representation of the random inputs to the problem.
Using this approach, a continuous reconstruction of the space of possible solu-
tions is obtained using a restricted set of usual LES realizations. The analysis
of decaying turbulence with an uncertain Smagorinsky model has been per-
formed. We thus treat the Smagorinsky constant as an uncertain input to the
stochastic problem, and its probability distribution is assumed. In order to
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Fig. 7. Mean velocity response based on the Kriging approach

simplify the system, we make the additional assumption than Cs is a random
variable, which means that its statistical properties do not depend on spatial
or temporal dimensions. The induced uncertainty on the computed energy
spectrum is illustrated in Fig. 4. Here, the distribution of the Smagorinsky
constant is uniform and the LES computational domain is discretized with a
643 grid.

Looking at the results, it is observed that all scales do not respond to the
uncertainty in the same way, i.e. the level of sensitivity is scale-dependent.
Another striking feature is the existence of a mode which is almost insensitive
to variations in the Smagorinsky model constant. This feature was observed
for smaller grid sizes as well. The scale-by-scale sensitivity is better illus-
trated in Fig. 5, which displays the pdf of the value of E(k) for all k. Here,
the distribution of the Smagorinsky constant is a beta(4, 4) distribution and
the LES computational domain is discretized with a 483 grid. It is seen that
both the amplitude and the shape of the pdf distribution are scale-dependent
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Fig. 8. Cooling effectiveness response based on the Kriging approach

functions, showing the great complexity of the LES solution response to ran-
dom variability in the Smagorinsky constant.

We now illustrate the use of the response surface approach on a prac-
tical engineering problem, namely the separated flow at the exhaust of
the cooling system in a aeronautical engine (see figure 6). Most numerical
methods used for practical engineering purposes involve artificial dissipa-
tion. However, it is known that numerical dissipation and subgrid/turbulence
model induced dissipation are in competition. They must be tuned in an
ad hoc manner to adapt to the case in order to recover the best possi-
ble results (e.g. [Garnier et al.(2001), Ciardi et al. (2005)]). In the following
example [Jouhaud et al. (2008)], it is chosen to retain both the Smagorin-
sky constant CS and the artificial fourth-order dissipation parameter smu4
which appears in Jameson’s scheme as uncertain optimization parameters. A
variability range of ±30% around the standard values Cs = 0.18 and
smu4 = 0.01 is considered. The sensitivity of the mean flow with respect
to these two parameters is illustrated in Figs. 7 and 8, which compare the
standard LES solution (i.e. the LES solution computed using the standard
parameters), experimental data, and the extreme values retrieved from the
response surface built for the mean flow solution at every grid point. The sen-
sitivity of the solution is directly related to the differences between the two
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extrema profiles. It is observed that the robustness of the solution depends
on both the spatial location and the physical variable under consideration.

The figures reveal the existence of two cases. In the first case, the exper-
imental data lie within the two extrema, meaning that it might be possible
to tune up the parameters to match the experimental results. This will ob-
viously lead to a very accurate LES solution at the considered location. In
the second case, the experimental data are outside the response surface: the
exact solution does not belong to the space of solutions spanned by the LES
method on the considered grid.

5 Concluding Remarks

The present paper aimed at presenting recent results dealing with unresolved
scale modelling for unsteady simulation of turbulent flows. The emphasis was
put on LES, but proposed analysis tools can be extended to hybrid RANS-
LES method in a straightforward manner. In a first step, the concept of
inertial range consistency was introduced. Let us notice that this non-trivial
issue is of direct interest for practical application, since it was shown that the
usual value of the Smagorinsky constant can be used if and only if L/∆ >
20 − 30 and that ∆/η > 100, i.e. for coarse grids in flows such that L/η >
2000 − 3000. Since similar criteria may be defined for hybrid approaches,
one may wonder if model tuning on test cases with nearly-infinite Reynolds
number is of practical interest for VLES models which involve several tuning
parameters.

A second step is to design robust models, i.e. models which will lead
to very good results even if some parameters of the simulation (grid res-
olution, ) are changed. Using the error map approach and the concept
of inertial-range consistency, it will be shown that robust, nearly-optimal
subgrid models can be designed, which satisfy the three basic modelling
constraints: 1/ physical constistency 2/ robustness 3/ numerical viability
[Meyers and Sagaut (2006), Meyers et al. (2006)]. In a third step, a deeper
insight in the solution sensitivity was gained using the gPC approach. One
may wonder if DHIT is a relevant test case for model validation, since it is
a very simple turbulent flow. Let us first remark that theoretical analysis
needs relevant, unambiguous test cases. A last point is therefore the reliabil-
ity of some famous test cases for LES-like model validation, such as the plane
channel flow. It was recently shown that the error associated with coarse-grid
plane channel DNS exhibits a complex non-linear behavior, which can lead
to misleading interpretations of the results in [Meyers and Sagaut (2007)].
These authors show that coarse-grid DNS may, in some cases, lead to ex-
act prediction of usual test parameters such as skin friction, mean centreline
velocity and peak of streamwise turbulence intensity.
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The last point dealt with the representation of the uncertainty in the
solution which originates in the lack of knowledge of complex flows. The
response surface approach is observed to be an efficient tool for that purpose.
Response surfaces can be used toinvestigate the sensitivity of the solution,
but also to draw error maps at lowcost is some reference data are available.
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Summary. This article surveys recent developments of duality-based meth-
ods for “goal-oriented” mesh adaptivity and error control in the numerical
solution of flow problems. The emphasis is on laminar viscous incompressible
flows governed by the Navier-Stokes equations. But also inviscid transonic
flows and heat-driven low-Mach number flows are considered. The Galerkin
finite element method and a functional analytic setting provide the basis
for a unified approach, the “Dual Weighted Residual (DWR) Method”, to a
posteriori error control and model reduction by successive mesh adaptation.

1 Introduction

We present a general approach to a posteriori error control and mesh adap-
tation for solving flow problems by the Galerkin finite element (FE) method.
A large part of the existing work on a posteriori error analysis deals with
error estimation in global norms such as the “energy norm” involving usu-
ally unknown stability constants. However, in most CFD applications, the
error in a global norm does not provide useful bounds for the errors in the
quantities of real physical interest. Such “goal-oriented” error bounds can be
derived by duality arguments borrowed from optimal control theory. These
a posteriori error estimates provide the basis of a feedback process for suc-
cessively constructing economical meshes and corresponding error bounds
tailored to the particular goal of the computation. This approach, called the
“Dual Weighted Residual (DWR) Method” (see [BR03]), is developed within
an abstract functional analytic setting, thus providing the general guideline
for application to various kinds of flow models including also aspects of flow
control and hydrodynamic stability. Several examples are discussed in order
to illustrate the main features of the DWR method. For more details the
reader may consult the references [BR00], [GS02], [BHR02], [BR03], and the
literature cited therein.
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2 Goal-Oriented Adaptivity: Concept and Examples

Suppose that the goal of the simulation is the computation of a quantity
J(u) involving the solution of a continuous model A(u) = 0 , say a partial
differential equation, from an approximate discrete model Ah(uh) = 0 , cor-
responding to a computational mesh Th . Then, “goal-oriented adaptivity”
means the optimization of the mesh Th and possibly also the discrete model
Ah(uh) = 0 on the basis of an a posteriori error representation of the form

J(u)−J(uh) ≈ η(uh) :=
∑

K∈Th

ρK(uh)ωK , (1)

where ρK(uh) are certain cell-oriented residuals and ωK local weights. De-
pending on the size of the local “error indicators” ηK := ρK(uh)ωK the mesh
adaptation is organized according to

ηK � δ ⇒ refine K, ηK ≈ δ ⇒ keep K, ηK � δ ⇒ coarsen K.

The complex local and global error interaction has to be detected by compu-
tation, i.e. by solving an associated “adjoint” or “dual” problem, which gives
information about

- error propagation in space (global error pollution),
- interaction of physical error sources (local model sensitivities).

The use of this concept results in a feed-back process for achieving economical
computation tailored to the goal of the simulation, the DWR method.

2.1 Example 1. Drag Computation in 2-d Viscous Flow

As an illustrative example for the use of the DWR method (from [BR03]),
we consider drag computation in a laminar viscous fluid modeled by the
stationary Navier-Stokes equations for velocity v and pressure p together
with suitable conditions at the boundary ∂Ω = Γrigid ∪ Γin ∪ Γout :

�����

���

S

cdrag := c

∫
S

n · σ · dds

σ := 1
2
ν(∇v + ∇vT ) − pI

d := (0, 1)T flow direction

Fig. 1. Configuration and streamline plot for computation of drag coefficient cdrag
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Fig. 2. Adapted meshes with 5,000 cells obtained by the vorticity indicator (left),
the residual indicator (middle), and the weighted indicator (right)
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Fig. 3. Drag error J(e) versus number of cells N

− ν∆v + v · ∇v +∇p = f, ∇ · v = 0,

v|Γrigid = 0, v|Γin = vin, ν∂nv − np|Γout = 0.
(2)

This problem in its natural variational formulation is well-posed and for mod-
erate Reynolds number Re = 50 , has a stable solution. The configuration
considered is shown in Figure 1

The discretization is by a standard FE method of 2nd-order accuracy (cell-
wise bilinear velocity and pressure with least-squares stabilization). For mesh
adaptation one may use one or more of the following local refinement indica-
tors defined for each mesh cells K :

• Vorticity: ηK := hK‖∇×vh‖K .
• Pressure gradient: ηK := hK‖∇ph‖K .
• Velocity gradient: ηK := hK‖∇2

hvh‖K .
• Residual indicator: ηK = ρK(vh, ph),
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ρK(vh, ph) := hK‖Rh‖K + h
1/2
K ‖rh‖∂K\∂Ω + hK‖∇ · vh‖K

Rh|K := f +ν∆vh−vh · ∇vh−∇ph,

rh|Γ := 1
2 [ν∂nvh−nph], if Γ �⊂ ∂Ω.

• “Weighted” indicator: ηK := ρK(vh, ph)ωK ,
sensitivity factors ωK computed from an associated “dual” problem.

The resulting meshes and the corresponding solution efficiencies are shown
in Figures 2 and 3. This clearly demonstrates the principle superiority of
sensitivity-based mesh adaptation over purely feature- or smoothness-based
refinement in computing local properties of the solution.

2.2 Example 2. Drag Computation in 3-d Viscous Flow ([BR06])

The second example concerns the accurate computation of drag in a real 3-d
configuration, namely channel flow around a cylinder with a square cross sec-
tion, as shown in Figure 4. The model is chosen analogously to that in Example
1. For the discretization three different Stokes elements are considered:

a) Q2/Q1-element - with uniform refinement,
b) Q1/Q1-element - with local refinement driven by “smoothness” indicator,
c) Q1/Q1-element - with local refinement driven by “weighted” indicator.

Fig. 4. Configuration of the 3-d cylinder flow benchmark

Table 1. Results of 3-d drag computation (error level of ≈ 1% in boldface)

a) Nuniform cd b) Nsmoothness cd c) Nweighted cd

15 960 8.2559 3, 696 12.7888 3 696 12.7888
117 360 7.9766 21 512 8.7117 8 456 9.8262
899 040 7.8644 80 864 7.9505 15 768 8.1147

7035 840 7.8193 182 352 7.9142 30 224 8.1848
55 666 560 7.7959 473 000 7.8635 84832 7.8282

− − 1052000 7.7971 162 680 7.7788
− − − − 367 040 7.7784
∞ 7.7730 ∞ 7.7730 ∞ 7.7730
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Fig. 5. Refined Mesh and zoom generated by the “weighted indicator”

The corresponding results and adapted meshes are shown in Table 1 and
in Figure 5. This example demonstrates the enormous potential of “model
reduction” by sensitivity-driven mesh adaptation for achieving high accuracy
at moderate cost.

2.3 Example 3. Inviscid 2-d Euler Equations ([Har02])

The third example deals with the stationary inviscid 2-d Euler equations:

∂tρ +∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv⊗v) +∇p = ρg,

cp∂t(ρe) + cp∇ · (ρev+pv) = h,

(3)

supplemented with appropriate boundary conditions. We consider the case
of supersonic flow around a BAC3-11 airfoil (see AGARD Report 1994) with
inflow velocity at Ma = 1.2 and angle of attack α = 5◦. In this case the
(stationary) solution develops two shocks (see Figure 6). The quantity of
interest is the pressure point value

J(ρ, v, e) := p(a) = (γ−1)(e(a)− 1
2ρv(a)2),

at the (subsonic) leading edge of the airfoil.

-3

-2

-1

0

1

2

3

0 1

Fig. 6. Left: Ma = 1 isolines of primal solution, right: isolines of zρ component
of dual solution
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Fig. 7. Adapted meshes (for 1% solution accuracy) generated by the “smoothness”
indicator with N = 13, 719 (left), by constrained “smoothness” indicator with N =
9, 516 (middle), and by the weighted indicator with N = 1, 803 (right)

The discretization is by a “discontinuous” Galerkin method using bilinear
finite elements. For comparison the mesh adaptation is driven by a residual-
based indicator ηres

K and its artificially localized version, η̃res
K ,

ηres
K := hK‖Rh‖K + h

1/2
K ‖rh‖∂K

η̃res
K :=

{
ηres

K , if K ∩ C �= ∅, C = 90◦−cone
0, otherwise.

The resulting meshes shown in Figure 7 correspond to a solution accuracy of
about 1% . This example demonstrates that duality-based mesh adaptation
may even work well in cases where the sensitivity information has to pass
through solution discontinuities such as shocks.

2.4 Example 4. A 2-d Heat-Driven Cavity Benchmark ([BR00])

The fourth example presents a problem with two different physical processes:
a square flow cavity driven by a large temperature difference θh−θc = 720 K

�
adiabatic

adiabatic

θhot θcold

gΓhot Γcold

Fig. 8. Configuration (left), velocity norm (middle) and temperature (right) iso-
lines
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Fig. 9. Adapted meshes with about 58, 000 cells for a 1% error generated by the
smoothness-based indicator (left) and by the weighted indicator (right)
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Fig. 10. Computed Nusselt number versus the number of cells

and gravity g , corresponding to a Rayleigh number Ra ∼ 106 . The quantity
of interest is the Nusselt number (mean heat flux) along the cold wall:

J(u) = 〈Nu〉c :=
Pr

0.3µ0θ0

∫
Γcold

κ∂nθ ds

The configuration of this problem and computed velocity as well as tempera-
ture isolines can be seen in Figure 8. Figure 9 shows the corresponding adapted
meshes and Figure 10 the achieved accuracy on adapted meshes. It can be
seen that the smoothness-oriented indicator emphasizes mesh refinement in the
steep layer of the velocity while the weighted indicator prefers refinement in the
temperature boundary layer, which according to the achieved accuracy is more
appropriate in this coupled problem. This result demonstrates the superiority
of sensitivity-driven over purely smoothness-based adaptivity.

3 The Theoretical Framework

We begin the development of the DWR method within an abstract func-
tional analytic setting in order to provide a guideline for its application to a
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sufficiently large class of problems such as general nonlinear equations, eigen-
value problems, and optimization problems.

In a Hilbert function space X consider the approximative computation of
a stationary point x ∈ X of a differentiable functional L(·) ,

L′(x)(y) = 0 ∀y ∈ X, (4)

by a Galerkin scheme in finite dimensional subspace Xh ⊂ X :

L′(xh)(yh) = 0 ∀ yh ∈ Xh. (5)

Proposition 1. ([BR03]) There holds the error representation

L(x)− L(xh) = 1
2 L′(xh)(x−yh)︸ ︷︷ ︸

weighted residual

+ R(3)
h , yh ∈ Xh, (6)

where the remainder R(3)
h is cubic in x−xh.

Proof. By elementary calculus, the use of the trapezoidal rule and Galerkin
orthogonality for the error e = x−xh, we conclude

L(x)− L(xh) =
∫ 1

0

L′(xh+se)(e) ds

= 1
2

{
L′(x)(e) + L′(xh)(e)

}
︸ ︷︷ ︸

trapezoidal rule

+ 1
2

∫ 1

0

L′′′(xh+se)(e, e, e)σ(s) ds︸ ︷︷ ︸
remainder

= 1
2L′(xh)(x−yh)︸ ︷︷ ︸

by Galerkin orthogonality

+ R(3)
h , yh ∈ Xh

3.1 Application in Flow Simulation

We apply the general result of Proposition 1 to the situation of a general
nonlinear variational problem in a Hilbert space V of the form

a(u)(ψ) = 0 ∀ψ ∈ V, target quantity J(u). (7)

The Galerkin approximation in finite dimensional subspaces Vh ⊂ V reads

a(uh)(ψh) = 0 ∀ψh ∈ Vh, error J(u)−J(uh). (8)

In order to embed this situation into the general framework layed above, we
view the determination of the functional value J(u) from the solution of the
variational equation as a trivial constrained optimization problem and use
the Euler-Lagrange approach for its solution. Hence, the minima u ∈ V are
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determined by the stationary points {u, z} ∈ V ×V of the Lagrangian func-
tional L(u, z) := J(u)−a(u)(z) with the “dual” variable z , i.e., L′(u, z) = 0 .
This is equivalent to the set of equations{

J ′(u)(ϕ)− a′(u)(ϕ, z)
−a(u)(ψ)

}
= 0 ∀{ϕ, ψ}. (9)

Its Galerkin approximation seeks {uh, zh} ∈ Vh×Vh satisfying{
J ′(uh)(ϕh)− a′(uh)(ϕh, zh)
−a(uh)(ψh)

}
= 0 ∀{ϕh, ψh}. (10)

The corresponding “primal” and “dual” residuals are defined by

ρ(uh)(·) := −a(uh)(·), ρ∗(zh)(·) := J ′(uh)(·)−a′(uh)(·, zh).

For embedding this situation into the abstract framework, we introduce the
product spaces X := V ×V and Xh := Vh×Vh with elements x := {u, z} ∈
X and xh := {uh, zh} ∈ Xh , respectively. Then, setting L(x) := L(u, z) =
J(u)− a(u)(z) , at stationary points there holds

L(x)−L(xh) = J(u)− a(u)(z)− J(uh) + a(uh)(zh) = J(u)− J(uh),

and the general Proposition 1 yields the following result.

Proposition 2. ([BR03]) There hold the error representations

J(u)−J(uh) = ρ(uh)(z−ψh) + R(2)
h , (11)

J(u)−J(uh) = 1
2ρ(uh)(z−ψh) + 1

2ρ∗(zh)(u−ϕh) + R(3)
h , (12)

for arbitrary ϕh, ψh ∈ Vh , with remainders R(2)
h and R(3)

h , which are
quadratic and cubic, respectively, in the errors u−uh and z−zh .

3.2 Practical Aspects

The practical evaluation of the error representations (11) or (12) within the
DWR method consists in the following steps:

1. Solution of discrete linear dual problem:

a′(uh)(ϕh, zh) = J ′(uh)(ϕh) ∀ϕh ∈ Vh.

2. Linearization by neglecting the higher-order remainder term.
3. Approximation of weights by patch-wise higher-order interpolation,

(z−zh)|K ≈ (Ĩ(2)
2h zh−zh)|K ,

where Ĩ
(2)
2h zh denotes the d-quadratic nodal interpolation of the com-

puted d-linear approximation zh on certain cell patches of the current
mesh Th .
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4. Mesh adaptation on the basis of cell-wise error indicators ηK by succes-
sive “error balancing”, ηK ≈ TOL/N , or by a “fixed fraction” strategy,
e.g., refining a certain fraction (20− 30%) of cells with the largest ηK .

For more details on the practical realization of the DWR method, we refer
to [BR03] and the literature cited therein.

4 Applications

4.1 Drag Minimization by Boundary Control ([Bec01])

We consider the configuration shown in Figure 11, i.e. flow through a channel
around a fixed cylinder with circular cross section and surface S . The math-
ematical model are the stationary Navier-Stokes equations (2) complemented
by Neumann-type boundary conditions at the two openings ΓQ ,

ν∂nv − np|ΓQ = P, (13)

where P represents mean pressure. The diameter of the cylinder, the viscosity
and the mean inflow velocity are chosen such that for P = 0 the Reynolds
number is moderate, Re ∼ 40 , corresponding to stable stationary flow.
The goal is to minimize the drag coefficient J(v, p) := cdrag by varying the
mean pressure P . For given P the corresponding state {v, p} ∈ H1(Ω) ×
L2(Ω) is determined by the variational equation

ν(∇v,∇ψ) + (v · ∇v, ψ)− (p,∇ · ψ)− (χ,∇ · v) = (P, n · ψ)ΓQ , (14)

for all admissible test pairs {ψ, χ} , and the appropriate boundary conditions
at Γin ∪ Γrigid .

The discretization of this optimization problem is by a standard 2nd-order
FE method using equal-order bilinear elements for velocity and pressure with
least-squares pressure stabilization (see [Ran00] and [Ran05]). Applying the
DWR approach to this situation yields the following “primal” residual:

ρ(uh)(z−zh) :=
∑

K∈Th

{
(R(uh), zv−zv

h)K + (r(uh), zv−zv
h)∂K\(Γin∪Γrigid)

+ (zp−zp
h,∇ · vh)K − (vin − vh, ∂nzv)∂K∩Γin

}
,

.

Γin S Γout

ΓQ

ΓQ

cdrag := c

∫
S

n · σ · dds

σ := 1
2
ν(∇v + ∇vT ) − pI

d := (0, 1)T flow direction

Fig. 11. Configuration of the drag minimization problem
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Fig. 12. Streamlines of uncontrolled flow (P = 0), controlled flow (P = Popt), and
adapted mesh

Table 2. Uniform versus adaptive refinement

Uniform refinement Adaptive refinement
N Jdrag N Jdrag

10, 512 3.31321 1, 572 3.28625
41, 504 3.21096 4, 264 3.16723
164, 928 3.11800 11, 146 3.11972

with the cellwise equation and normal-jump residuals

R(uh)|K := f + ν∆vh−vh · ∇vh−∇ph

r(uh)|Γ :=

⎧⎪⎨
⎪⎩
− 1

2νn · [∇vh−phI], Γ �⊂ ∂Ω,

−νn · (∇vh−phI), Γ ⊂ Γout,

P − νn · (∇vh−phI), Γ ⊂ ΓQ.

The “dual” residual ρ∗(zh)(u−uh) has an analogous form. The results ob-
tained by the DWR method for this optimization problem are shown in Fig-
ure 12 and Table 2. The drag minimization on an adapted mesh with only
about 11, 000 cells is as accurate as that on a uniformly refined mesh with
about 164, 000 cells. This demonstrates the enormous potential of the DWR
method particularly in solving optimal control problems.

The rough pattern of the optimal state shown in Figure 12 races the ques-
tion of its stability. This has to be investigated by an accompanying stability
analysis (see [HR06]).

4.2 Fluid-Structure Interaction ([DR06]), [Dun07], [BDR08])

The use of systematic mesh adaptation in solving complex (viscous) fluid -
(elastic) structure interaction (FSI) problems has begun only recently. For
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the application of the DWR concept this coupled problem has to be written
in a “monolithic” variational form either in Lagrangian/Eulerian coordinates,
as used in the traditional ALE approach (“Arbitrary Lagrangian Eulerian”),
or in an unconventional purely Eulerian/Eulerian setting. The consistent dis-
cretization of these models by the Galerkin finite element method then re-
sults in fully coupled discrete models the main difference being in the types
of meshes used (body fitted moving mesh or fixed background mesh) and
the corresponding handling of the fluid-structure interface (either by “shock-
fitting” or by “shock-capturing”). Both approaches yield very much compa-
rable results but have possible week points in its range of applicability. The
ALE method suffers from ill-conditioning in case of large structure deforma-
tion and structure-structure touching while the Eulerian/Eulerian formula-
tion can deal with this situation but generally involves higher computational
cost. However, both frameworks are principally suitable for the use of the
DWR method. This is demonstrated for a simple 2-d FSI benchmark prob-
lem, the “Vibrating Thin Plate” as shown in Figure 13 (for more details see
[HT06]). Here, the fluid is assumed as incompressible and Newtonian and for
the structure a compressible St. Venant-Kirchhoff model is used.

Starting from the monolithic variational formulations of the problem the
numerics uses a global FE discretization with equal-order (bilinear) elements
for all variables with stabilization. The mesh adaptation is either hand-made

Fig. 13. FSI benchmark “Vibrating Thin Plate”: configuration and snapshot
computed by the ALE approach (middle) and by the fully Eulerian approach (right)
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Fig. 14. Position of the plate’s tip computed by the ALE (left); max = 0.0882m,
ν = 1.95 s−1, and the Eulerian approach (right): max = 0.0822m , ν =1.92 s−1
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Fig. 15. Snapshots of the plate obtained by zonal refinement with N ∼ 3, 000
(left) and N ∼ 12, 000 (middle) compared against sensitivity-driven refinement
with N ∼ 1, 900 (right)

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

y 
po

si
tio

n 
of

 p
oi

nt
 A

time [s]

Heuristic Refinement, N approx. 12300
Heuristic Refinement, N approx. 3000

Adaptive  Refinement, N approx. 1900

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.6  0.7  0.8  0.9  1  1.1

y 
po

si
tio

n 
of

 p
oi

nt
 A

time [s]

Heuristic Refinement, N approx. 12300
Heuristic Refinement, N approx. 3000

Adaptive  Refinement, N approx. 1900

Fig. 16. Position of the plate’s tip as function of time (left) and a zoom (right)

zonal or by the DWR method. The resulting nonlinear algebraic equations
are solved by a Newton-type iteration and the linear subproblems by GMRES
with multigrid preconditioning. One of the quantities of interest used for mea-
suring the discretization accuracy is the vertical displacement of the plate’s
tip. For this test both approaches, ALI and fully Eulerian, yield comparable
results on hand-adapted (almost uniform) meshes; see Figure 14.

A harder test involves the touching of the plate’s tip with the lower wall un-
der the action of gravity for zero inflow. This yet simple case cannot be handled
by the standard ALE method, while the fully Eulerian method has no prob-
lems as can be seen in Figure 15. The quality of the different meshes is shown
in Figure 16. The same accuracy was achieved on the zonal mesh with about
30h CPU time while that on the locally refined mesh required only 4h.

5 Summary and Outlook

The DWR method provides a universal approach to a posteriori error esti-
mation and model reduction by recursive mesh adaptation for Galerkin FE
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schemes. In principle it can be applied to any flow model posed in a variational
form. For surveys of extensions and open problems see [BR00], [GS02], and
[BR03]. Applications include so far:

- Inviscid and viscous flows ([Ran00], [Har05]),
- Viscous fluid - rigid/elastic structure interaction ([DR06], [BDR08]),
- Thermally driven and reactive flows ([BR98], [BB06]),
- Flow control ([Bec01], [BMRV06], [Ran08]),
- Stability eigenvalue problems ([HR06]),

Applications outside fluid mechanics are among many others:

- Elasticity and elasto-plasticity ([RS02]),
- Astrophysical radiative transport ([MKRW06]),
- Acoustic wave propagation ([BR99]),
- Parameter identification and model calibration ([BMRV06]).
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1   Introduction 

In the late 1990’s a promising and innovative concept of the Magnetohydrody-
namic (MHD)-bypass scramjet engine rejuvenated interest in magneto-
aerodynamic research worldwide [1]. Many interdisciplinary ideas were put forth 
in the areas of plasma actuator for flow control, MHD propulsion, remote energy 
deposition for drag reduction, radiation driven hypersonic wind tunnel, sonic 
boom meditation, and enhanced plasma ignition and combustion stability [2,3]. 
Extensive and in-depth research however has revealed that additional and refined 
fidelity of physics for modeling and analyzing are required to reach a conclusive 
assessment for the MHD-bypass scramjet engine [4]. From this lesson learned; 
most recent research activities tend to refocus on more basic and simpler aerody-
namic-electromagnetic interaction phenomena.  

The mostly widely used plasma generating processes for flow control are either 
the direct current discharge (DCD) or dielectric barrier discharge (DBD). These 
gas discharges are based on the electron collision process in which the Town-
send’s mechanism controls the multiple primary avalanches, secondary emission 
and ultimately maintains the plasma. At atmospheric pressure some highly lumi-
nous and concentrated streamers (micro discharges) from the electrodes have also 
been observed [5]. The charged particle number density is generally limited to the 
order of magnitude of 1012 per cubic centimeter. The generated plasma consists of 
electrons in a highly excited state but the heavy ions retain the thermodynamic 
condition of its surrounding environment. Therefore, the weakly ionized gas is far 
from thermodynamic equilibrium. Meanwhile the drift motion and diffusion of 
charged particles, including the ambipolar diffusion, profoundly modifies the 
transport properties of the ionized medium.  

The electromagnetic effects generated by DCD and DBD can be summarized as 
the Lorentz acceleration, electrostatic/electrodynamic force, plasma and electrode 
heating all of which have limited magnitude [6,7]. The Lorentz acceleration is 
significant only in the presence of an externally applied magnetic field and due to 
the relatively low current density the magnitude of electrodynamic force is just a 
few kN/m3. On the other hand the electrostatic force is significant only in the 
cathode layer where the space charge separation occurs; its magnitude is around 
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one kN/m3 [8]. DBD operates at atmospheric pressure and is sustained by alterna-
tive electrical potential at 5-20 kV and in the frequency range up to 10 kilo Hertz. 
Again, the driving force is derived from charges separation over an exposed and 
encapsulated electrode and the discharging field is dominated by a series of multi-
ple micro discharges. Although a complete understanding of this multiple scale 
phenomenon is still beyond our reach, it is incontrovertible that a net momentum 
transfer between charged and neutral results in a wall jet with a magnitude of few 
meters per second moving from the exposed electrode toward the dielectric barrier 
[3,8,9]. Corke has sustained a series of investigation in using DBD for flow modi-
fication at fluid bifurcation such as the flow separation and dynamic stall of lifting 
surfaces. In short, the electromagnetic forces by a plasma actuator are in general 
two to three order-of-magnitudes lower than the aerodynamic inertia of a typical 
high-speed flow. Therefore the electromagnetic perturbation must either be ampli-
fied by viscous-inviscid interaction or applied at fluid dynamic bifurcation to be 
effective as flow control mechanism [7,8]. 

The thermal effects of the DCD to fluid medium include plasma and electrode 
heating. The former consists of mainly Joule heating and stochastic heating. The 
latter however is nearly negligible in the absence of oscillating plasma sheath. The 
Joule heating also concentrates within the cathode layer and becomes a rather 
small but effective spatial heat source to the surrounding air stream. In the electron 
collision process for plasma generation, the electrode heating is an unavoidable 
consequence. This heat flux enters the flow field by the conductive process and 
has a magnitude around 10 W/m2. In a laboratory environment, these two heat 
fluxes have a comparable order of magnitude but are still very much smaller in 
comparison to the energy content of the hypersonic flow. And yet experimental 
and computational investigations have repeatedly shown perceptible effect for 
flow control [6,7,10]. 

Hypersonic flow modification by plasma can be understood only in the light of 
the subsequent viscous-inviscid interaction which is a unique feature of hyper-
sonic flow [11]. In essence, the flow displacement by a thin boundary layer is no 
longer negligible under the high-speed flow condition. The near-surface DCD 
becomes a triggering mechanism to produce a suddenly increased displacement 
thickness through heat sources in the shear layer and from solid surface. The in-
jected thermal flux heats the surrounding air stream and lowers the density within 
the shear layer and leads to a sudden increase in the displacement thickness. This 
event initiates the pressure interaction for which the induced pressure has been 
successfully formulated and verified by experiments with a single interaction pa-
rameter, χ = M3(C/Rey)1/2 [21]. This interaction actually forms a close feed-back 
loop between the growth rate of the displacement thickness and the induced 
streamwise pressure rise. Most importantly the magnitude of the induced pressure 
increases according to the cubic power of the free-stream Mach number to become 
a viable hypersonic flow control mechanism. 

The present study summarizes the computational simulations of magneto-fluid-
dynamic interactions using the surface DCD and DBD by a drift-diffusion weakly 
ionized gas model [12]. The periodic electrodynamic force of DBD will first be 
delineated to reveal the unique self-limiting future of the DBD plasma actuator 
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from arcing. However, the major portion of the present analysis will be focused on 
a glow discharge over the sharp leading edge of immobile surface and constant 
cross-section rectangular and cylindrical inlets. The verified computational results 
of virtual leading edge strake and virtual variable geometric inlet cowls will be 
presented.     

2   Governing Equations 

The combined Navier-Stokes and the reduced Maxwell equations govern all 
plasma-based flow control phenomena. In the traditional MHD formulation, only 
the Faraday’s law is included but the Ampere’s law is replaced by the generalized 
Ohm’s law. In addition, the two Gauss’ laws for magnetic and electric field are  
not explicitly integrated into the formulation [13]. The system of governing  
equations is; 

( ) 0u
t

ρ ρ∂ + ∇ ⋅ =
∂
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By omitting the viscous dissipation and conductive heat transfer, the resultant 
classic ideal MHD equations constitute a non-strictly hyperbolic system and are 
also nonconvex [14]. In addition, the ideal MHD equations in divergence form are 
not symmetrizable because the Jacobian of the coefficient matrix has a zero eigen-
value [15]. Its physical reason is also clear; for ideal MHD equation the induction 
law reduces to;  

         ( ) 0
B

u B
t

∂ −∇× × =
∂

.                                (1-5) 

It is observed that the temporal variation of B depends only on the spatial 
variation perpendicular to the component in consideration. Nevertheless by includ-

ing an added evolution equation, the Gauss’s law for magnetic flux density ∇⋅ B  
= 0; the symmetrizable system of MHD equation can be recovered and the system 
of equations also become Gallilean invariant [15,16]. 

For plasma flow control, when the interaction is lower than the microwave fre-
quency range the inducted magnetic field is negligible [13]. Under this circum-
stance and if the magnetic Reynolds uL/(µmσ)-1 is much less than unity, equations 
(1-1), (1-3), and (1-4) become the only required components of the low magnetic 
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Reynolds approximation. These equations are essentially the compressible Navier-
Stokes equation with source terms but offer more challenge for numerical analysis 
because of the great disparity in wave speeds of light and sound. However viable 
numerical procedures have been highly developed by the CFD discipline either the 
form of flux splitting or flux difference splitting, thus will not be elaborated in 
here [17,18] 

3   Model of Weakly Ionized Gas 

In plasma-based flow control applications, additional complexities arise from the 
ionization-recombination process, the drifting velocities of charged particle, and 
diffusion [19]. The eigenvalues of the equations system span a wide range and 
seriously degrade the computational stability of numerical simulations. As a con-
sequence, the progress of gaining a better understanding of plasma actuation is 
seriously impeded [2,3,4]. Until recently the interrelationship of electrical cur-

rentJ , electric field intensityE , the magnetic fluxB , and electric conductivity 

σ was described by the simplified Ohm’s law; ( )J E u Bσ= + × [13]. In this 

formulation, the electric conductivity of plasma is the required transport property 
of the flow medium. A wide range of assumptions have been imposed for this ten-
sorial variable and has led to considerable uncertainties in physical fidelity of nu-
merical simulation. 

A viable alternative to alleviate this uncertainty is to introduce a physics-based 
model for the partially ionized gas. The physics of ionization by electron collision 
is very complex and involves interaction of gas and solid at atomic level. However, 
the microscopic plasma generation via electron collision at macroscopic scale has 
been accurately described by the Townsend’s formula [5,19].   Two fundamental 
mechanisms of charged particle dynamics are the drift velocity and the diffusion 
[5,12]. This behavior is independent of how the gas discharge is generated. There-
fore a rational model for the direct current discharge only needs to concentrate on 
the dynamics of the charged particles motion for these basic mechanisms [18].   

In self-sustain plasma, the net rate of change for the charged particle number 
density in a control volume must be balanced by generation through ionization and 
depletion by recombination. The species continuity equations for electrons and 
ions are given by the drift-diffusion model [12,19]. 

                    ( , )e
e e e

n
E p n n

t
α β +
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where ( )e e e e e eD n n E u BµΓ = − ∇ − + ×  and 

( )D n n E u Bµ+ + + + + +Γ = − ∇ + + ×  are the flux vectors of the charged particle 
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number density. In fact, the externally applied magnetic field generated an effec-
tive electric field intensity which can be described by the Hall parameters for elec-
tron and ion, βe and β+ respectively [6,12]. In the above charged particle density 
flux functions, α and β are the first Townsend ionization and recombination coef-
ficient. It needs to be pointed out that the Townsend ionization coefficient α is an 
exponential function of the electric field intensity and ambient pressure, 
α(E,P)=C1P exp[-C2/(|E|/P)] [12]. The parameters µe and µ+ are the electron and 
ion mobility, and De and D+ are the electron and ion diffusion coefficients. In  
fact these transport properties of charged particles are coupled by the Einstein 
relationship [5,12]. 

A unique feature of the present plasma model equation is that it satisfied fully 
the electric current conservation equation. This constitution equation can be de-
rived by taking the divergence of the Ampere’s law and inserting Gauss’s law for 
electric displacement. In application, it is often adopted as an internal consistent 
checking procedure like the reinforcement of Gauss’s law for magnetic field, ∇⋅B 
= 0, for classic MHD computations. 

                       0e J
t

ρ∂
+∇ ⋅ =

∂
                                         (2-3) 

The electric field intensity in globally neutral plasma can be introduced by an 

electrical potential functionE φ= −∇ .  The electrical field potential is then the 

solution of the well-known Poisson equation of plasmadynamics associated with 
the net space charge density, ρe.   

           2 eρφ
ε

∇ = −                                              (2-4) 

The electric current density appearing in equations (1-3) and (1-4) is given by 
the difference of the charged particle density flux ( )eJ e += Γ −Γ . This term is the 

sole linkage between the low magnetic Reynolds MHD and the plasma model 
equations (2-1) and (2-2). 

4   Solving Scheme 

The MFD equations (1-1), (1-3), and (1-4) together with the drift-diffusion plasma 
model equations (2-1), (2-2), and (2-4) can be cast into a flux vector form [5,6,8], 

U
F S

t

∂ +∇⋅ =
∂

                                         (3-1) 

A wide range of numerical methods have been applied to solving this system of 
equations from the penta-diagonal implicit [12], Sharfetter-Gummel [20], and  
compact differencing [21] to diagonal dominant alternating direction (DDADI) 
schemes [18,22]. However, an element of the well-known flux splitting or flux  
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vector difference splitting approximation is frequently included to solve the steep 
gradient domains associated with edges of discharging electrodes [12,14,16-18,21]. 

A high-resolution, diagonally dominant alternative direction implicit scheme 
has been specially developed to solve the stiff partially differential system for the 
plasma model equations [22]. In essence, the convective components of the source 
term on the RHS of the equation are obtained by a high-order upwind Lagrange 
interpolation from the values at the nodal point to the interface of the control vol-
ume. The diffusive component is evaluated by the explicit central differencing 
scheme.  Because of the large disparity in speeds of light and sound, multiple in-
ternal iterations of the plasma model equations through a cascading sequence can 
be applied before the resultant electric current density is transmitted to the MHD 
equations.  For the rapidly varying discharging phenomenon in short duration, the 
distinguishing of temporal accuracy and iterative convergence is less critical. The 
discretized equations can be given as; 
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However, there is an important distinction of the present DDADI formulation 
from the conventional delta formulation in that all diagonal elements of the discre-
tized dependent variables are resided on the LHS of the formulas. Since the source 
terms are computed accurately, any modification to the LHS to maintain positive 
and definitive for unconditional stable should not affect the final interactive result 
as long as numerical convergence can be reached. By the approach, the resultant 
numerical procedure meets the axiom of achieving the high physical fidelity on 
the RHS terms but also maintaining best possible computational stability.    

The LHS is solved implicitly by a first-order upwind differencing scheme to en-
sure numerical stability and the increment of the flux component is approximated as   
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The initial values and boundary conditions are straight forward for this differ-
ential system. At the far field of the computational domain the vanishing gradient 
condition is uniformly applied to all dependent variables. On the cathode, the  
secondary emission condition requires the electron number density flux is only a 

fractional value of the positively charged ion; e γ +Γ = − Γ and g is the so-called 

coefficient of the secondary emission [5]. On the anode, all the positively charged 
particles must be repelled and the electric potential ϕ will be determined by the 
external circuit equation [12].  

Most importantly, the appropriate boundary condition at the media interface 
across the dielectric barrier and plasma is imposed by the discontinuous normal 

component of the electric displacement,D  ( D ε ϕ= − ∇ ). This condition is in-

termediately associated with Maxwell equations that require the jump across the 
interface to be balanced by the surface charge which has not been rigorously en-
forced by almost all previous investigations. In terms of the electrical potential, 
this critical condition can be given as; 

                        ,
p d

p d e sn n

ϕ ϕε ε ρ
∂ ∂

− =
∂ ∂

                                    (3-6)  

where pε and dε are the electric permittivity of plasma and dielectric.  In the pre-

sent investigation the surface desorption is not taken into the consideration for 

computing the surface discharge, ,e sρ . Nevertheless, this boundary condition has 

been overlooked by most earlier numerical simulations but is the key to reveal the 
self-limiting feature of DBD from arcing [8]. 

5   Results of Numerical Simulation  

A high resolution diagonally dominant alternative direction implicit (DDADI) 
procedure has been shown to be effective with the enhanced computational stabil-
ity. This improvement also significantly reduced the numerical artifact by elimi-
nating the numerical smoothing. The present predicted discharge between infinite 
parallel electrodes agrees very well with the classic theory and previous numerical 
results [22]. The computational simulations have correctly duplicated the depend-
ence of discharging pattern to the ratio ambient pressure and electric field inten-
sity, p/E. The bistable bifurcation of discharge column between parallel electrodes 
of finite dimension is also convincingly demonstrated for the first time. 

The numerical resolution in the extremely high gradient regions that at the edge 
of electrodes abridges the perfect electrically conducting and the dielectric surface 
by DDADI is depicted in Figure 1. Two numerical simulations are performed for 
the side-by-side, 2-D electrode arrangement; the cathode on the left has a separa-
tion distance of 1.0 cm from the anode. Both electrodes have the width of 0.5 cm 
and subjects to an EMF of 2.0 kV and under an ambient pressure of 5 Torr. The 
computed normal components of the electric field intensity from the coarse and 
fine mesh systems (163ä124) and (81ä62) are essentially duplicated each other,  
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Fig. 1. Numerical resolution at edges of electrode by two grid system of (163ä124) and 
(81ä62) 
 

 
 
Fig. 2. Electric potential, electron, and ion number density contours of DBD, EMF=5.0 kV, 
ϖ=10 kHz 

 
except the peak values at the edges of cathode which attaining a value of 24,000 
V/cm. Otherwise, the numerical oscillations near the piecewise discontinuity are 
conspicuously absent and the numerical results by the two grid system are nearly 
identical. The discrepancy between two numerical results over the electrodes is 
less than 0.1%.  

A typical instantaneous numerical simulation of dielectric barrier discharge in 
alternating current (AC) field with the electric potential of 5.0 kV and a frequency 
of 10 kHz is depicted in Figure 2. The contours of computed electric potential, 
electron, and ion number density are presented in a top-to-bottom panel sequence.  
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P = 1.0 Torr

P = 10.0 Torr

P = 1.0 Torr

P = 10.0 Torr

 
 
Fig. 3. Diffusive and constrictive discharge over side-by-side electrodes, p=1.0 & 10.0 
Torr, EMF=2.0 kV 

 

 
 

Fig. 4. Plasma generation power scaling law for virtual hypersonic leading-edge strake, 
M∞=5.15, Rey=2.57×105 

 
The outstanding feature of the electric potential distribution is that the free-space 
charge has significantly modified the externally applied electric field over the 
symmetric electrodes configuration. As a consequence, the symmetric electric 
field is loss. In the middle panel, the electrons are generated by the avalanche 
growth of secondary emission from the encapsulated electrode (on the left) and 
propagate toward the exposed electrode. Meanwhile, the ion is repulsed from the 
exposed electrode and accumulated on the dielectric barrier. The momentum cou-
pling of the heavy ion and neutral particle leads to the well-known electric wind of 
DBD for flow control [8,9]. 

As an illustration, the distinction between a diffusive and constrictive discharge 
on the side-by-side electrode arrangement is shown in Figure 3. Two numerical 
simulations at the ambient pressure of one and ten Torr are depicted together. At 
an ambient pressure of 1 Torr, the diffusive discharge is clearly displayed by the  
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Fig. 5. Comparison of magneto-fluid-dynamic Compression for hypersonic rectangular 
inlet 

 
uniform outward normal electric current in the cathode layer and the maximum 
electric potential of 650.27 V is required to sustain a current of 4.50 mA. On the 
other hand, the discharge is highly constricted under the same condition except at 
a higher ambient pressure of ten Torr, where the discharge takes place less than a 
half of the electrode width. Under these conditions, the total voltage drops to 
539.5 V and the electric current yields a value of 4.87 mA. For the constrictive 
discharge, multiple eddy current loops are also observed over the cathode and 
away from the anode. 

The numerical simulations are compared with measurements at the Mach number 
of 5.15 and Reynolds number of 2.57×105 by different plasma generation power 
input.  The increased surface pressure distribution over the immobile wedge with an 
activated DCD acts as if the surface had executed a pitching motion – the perform-
ance identical to a movable leading edge strake. In Figure 4, a series of calculations 
with the discharge current from 50 to 350 mA yield the equivalent angles of attack 
from one to exceeded five degrees for the deployed virtual strake. Most important, 
the DCD induces a bona fide electro-aerodynamic interaction that is not possible 
with electrode heating alone [2,7].  It was found that a scaling of power required for 
the plasma actuator per electrode area is about 9.17 watts/cm2 per degree. 

Figure 5 presents the comparison of experimental and computed Pitot pressures 
along the centerline of the rectangular inlet when the DCD is either activated or deac-
tivated. Both results generated at a stagnation pressure of 580 Torr have captured the 
interacting oblique shocks within the inlet [23].  When the DCD is actuated, the in-
duced oblique shock becomes steeper and moves the interception of the shock waves 
upstream. The ensured expansion follows the strengthened shock and produces a 
slightly lower Pitot pressure along the centerline downstream. The actuated DCD 
leads to a higher peak Pitot pressure and an upstream movement in contrast to its 
deactivated counterpart. The computed results have good agreement with the experi-
mental data. The computations underpredict the peak Pitot pressure by 2% and over-
predict the uniform entrance condition by 1.2%.  Using the small amount energy of 
69 watts for plasma generation, the magneto-fluid-dynamic compression produces 
11.7% static pressure gain over the unperturbed flow counterpart at the inlet exit. 
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6   Summary 

A viable application of plasma actuators for flow control in the high-speed regime 
has been demonstrated by computational analysis using the magneto-fluid-
dynamic equation in the low magnetic Reynolds number limit with a plasma 
model. The physics-based weakly ionized gas model has demonstrated its viability 
in describing the dynamics of charged particles for both direct current and dielec-
tric barrier discharges. 

A high resolution diagonally dominant alternative direction implicit (DDADI) 
procedure has been shown to be effective with the enhanced computational stabil-
ity. This improvement also significantly reduced the numerical artifact by elimi-
nating the numerical smoothing. Additional numerical resolution improvement is 
still urgently needed to accelerate the iterative convergence of the nonlinear, stiff 
nonlinear partial differential equations system.  

The dielectric barrier discharge at atmospheric pressure has been applied for al-
leviating dynamic stall of lifting surface and flow separation on trailing edge of 
low-pressure turbine blade. The self-limiting arcing feature is now understood 
from the charge accumulation on the dielectric barrier by the appropriately im-
posed boundary conditions. The flow control using direct current discharge in 
hypersonic flow is derived from a chain-of-event from a small electromagnetic 
perturbation and subsequent viscous-inviscid interactions. The control effective-
ness has been demonstrated for the virtual hypersonic leading edge strake and 
hypersonic virtual inlet cowl. 
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1 Introduction

Noise generated from cavity flows has been the subject of many studies due to
its frequent encounters in engineering applications. Cavity noises are affected
by various parameters such as boundary layer thickness, length-to-depth ra-
tio, Mach and Reynolds numbers, which can be categorized into two modes,
i.e., shear-layer and wake modes [RCB02]. In shear-layer mode, noises are
generated from oscillations of mixing layer which are sustained by acous-
tic feedback. On the other hand, they are generated from vortex shedding
in wake mode. For shorter cavities and for low Mach numbers, shear-layer
mode is likely to occur. When the Reynolds number increases or boundary-
layer thickness is reduced, the chance of occurrence of wake mode increases.
While possible frequencies can be predicted analytically, it is difficult to pre-
dict the dominant ones and their amplitudes by an analytical method due to
various parameters.

Computational methods for aeroacoustics can be categorized into two
groups, i.e., hybrid and direct methods. Hybrid methods [Lig52][Cur55] un-
couple flow and acoustics, and solve flow by computational fluid dynamics
and acoustics by analogies. On the other hand, direct methods [CLM97][IH02]
[GBJ03] solve compressible Navier-Stokes equations for both flow and acous-
tics and are capable of solving resonance problems such as that in cavity
flows. Since small acoustic fluctuations must be resolved, the method is com-
putationally expensive.

In the present study, noises from cavity flows are predicted by directly solv-
ing unsteady compressible Navier-Stokes equations. To resolve small acoustic
fluctuations that are weak compared to near-field fluctuations and propa-
gate long distance without being dissipated, equations have to be solved
with a high-order-accurate method. For this purpose, we adopt discon-
tinuous Galerkin (DG) method that can apply high-order-accurate spatial
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discretizations on unstructured meshes in complex geometries. In conjunc-
tion with this method, a finite element method is adopted, which allows dis-
continuities at inter-element boundaries. Thus, the present numerical method
can easily incorporate different types of elements, change order of polynomial
basis in an element without affecting adjacent ones and implement boundary
conditions without loss of accuracy. The equations discretized by DG are in-
tegrated in time explicitly and k-ω model [Wil98] is adopted for representing
the turbulence. Buffer zone [Fre97] is set up at boundaries to prevent wave
reflections. Unsteady turbulent flows over a cavity are solved to show that the
computed frequencies and amplitudes of noise are in good agreement with
those measured experimentally.

2 Numerical Formulations

In DG discretization of the governing equations for unsteady compressible
flow, each variable is double-valued at element interfaces. To treat such dis-
continuities, approximate Riemann solvers of finite volume methods are used
for convection terms and various formulations [BR97][BO99] have been pro-
posed for diffusion terms. Recently, these formulations have been applied
to Reynolds-Averaged Navier-Stokes (RANS) equations for turbulence prob-
lems [BCRS05][NPP07]. In this study, we use mixed formulation that define
derivatives as variables for diffusion terms [BCRS05] and Roe flux [Roe97]
for convection terms. As a result, the compressible flow equations can be
transformed into the following system of equations:

Z = ∇Q,

∂Q

∂t
+∇ · Fc(Q) +∇ ·Fν(Q,Z) = S(Q,Z). (1)

Final weak formulation of (1) is in surface and volume integral forms as
follows:∫

Ωe

g · (Zσ −∇Q)dΩ = −
∫

σ

g+ + g−

2
· (Q+n+ + Q−n−)dσ,

∫
Ωe

g · (Z−∇Q)dΩ = −
∑

σ∈∂Ωe

∫
σ

g+ + g−

2
· (Q+n+ + Q−n−)dσ,

∫
Ωe

φ
∂Q

∂t
dΩ −

∫
Ωe

∇φ · (Fc(Q) + AνZ)dΩ

+
∫

∂Ωe

φn · (F̂c(Q) + ÂνZσ)dσ =
∫

Ωe

φS(Q,Z)dΩ, (2)

where superscript + and - stand for the two values of variables and hat for
numerical flux at element interfaces. Functions g and φ are polynomial basis
functions [SK95] so that high-order accuracy can be obtained by increasing
order of these polynomial functions in an element.
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3 Results and Discussions

To validate the accuracy of cavity noise predicted, we solve the flow over a
cavity at a condition similar to previous experiment [CLG04]. Noise generated
from the cavity of L/D = 1 is solved at Re = 3×106. Inflow and outflow
boundaries are placed at 20L upstream and downstream of the cavity to
reduce the effects of boundary conditions. Two computational domains with
and without upper wall are used to compare the effects of reflection and are
shown in Fig. 1. All detailed flow conditions are stated in Table 1.

Under the present conditions, no vortices are shed in the mixing layer as
shown in Fig. 2(a) so that the noises are due to oscillation of the mixing layer.
Fig. 2(b) shows the sound pressure level (SPL) at the downstream corner
of the cavity for all cases. For case II which is similar to the experimental
condition, the largest SPL is 128.4 dB at St = 1.81, close to the experimental
result of 130 dB at St = 1.85.

To find the source of the noise, we performed discrete Fourier transform
(DFT) at each dominant frequency. Amplitudes of DFT coefficients in cases
I and II are compared in Fig. 3 to find the effect of wall on cavity noise. In
Figs. 3(a) and 3(b), amplitudes are large at the bottom of the cavity for both
cases as shear layer disturbances excite normal mode of cavity oscillations at
St = 1.81. However, it is much larger for case II due to the reflection from
the upper wall. In Figs. 3(c) and 3(d) at St = 5.42, amplitudes are large at
the upstream and downstream walls of the cavity as shear layer disturbances
excite longitudinal mode of cavity oscillations. Compared to the two figures

Table 1. Flow conditions of cavity flow

Case Ma δ/L Wall

I 0.1 0.033 X
II 0.1 0.033 O
III 0.1 0.132 O
IV 0.2 0.033 X

(a) (b)

Fig. 1. Computational domains for predicting the noise from the cavity flow: (a)
without wall; (b) with wall



66 S. Kang and J.Y. Yoo

(a) (b)

Fig. 2. (a) Streamlines and (b) SPL of the cavity flow

(a) (b)

(c) (d)

Fig. 3. Amplitudes of DFT: (a) St = 1.81 in case I; (b) St = 1.81 in case II; (c)
St = 5.42 in case I; (d) St = 5.42 in case II

at St = 1.81, differences at St = 5.42 are small showing that the effect of the
wall on the longitudinal mode of cavity oscillations is small in comparison to
that on normal mode.

To find the effects of different parameters in cavity flows, imaginary parts
of DFT coefficients corresponding to phase variation are compared in Fig. 4.
When boundary layer thickness changes, noises can be generated at different
frequencies. In case III, one of the dominant frequencies has changed from
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(a) (b)

(c) (d)

Fig. 4. Imaginary parts of DFT: (a) St = 1.81 in case II; (b) St = 1.64 in case III;
(c) St = 5.42 in case I; (d) St = 2.66 in case IV

St = 1.81 to 1.64 due to thickened boundary layer. Imaginary parts of these
two cases are shown in Figs. 4(a) and 4(b). At St = 1.64 in case III, the
disturbances in mixing layer does not excite acoustic modes while normal
modes are excited at St = 1.81 in case II. As normal modes are not excited
in case III, reflections due to the wall are small and noise propagates in the
upstream and downstream directions from the cavity.

Frequencies can be also changed when the Mach number is increased. As
shown in Fig. 2(b), SPL in case IV are largely increased compared to that
in case I, where the noises are generated at St = 2.66. Phase variations at
St = 2.66 in case IV is similar to that at St = 5.42 in case I, which can
be confirmed through Figs. 4(c) and 4(d). It seems that disturbances in the
mixing layer excite the same longitudinal mode of cavity oscillations and both
cases exhibit similar propagation patterns.

4 Conclusions

Discontinuous Galerkin method with mixed formulation is used to implement
RANS equations. Noises are predicted directly by solving unsteady RANS
equations so that the predicted results are in good agreement with previous
experiments. The effects of upper wall, boundary layer thickness and the
Mach number on noises have been compared. SPL with upper wall, thinner
boundary layer thickness and higher Mach number are larger than that for
other cases.



68 S. Kang and J.Y. Yoo

Acknowledgment

The authors would like to acknowledge the support from Korea Institute of
Science and Technology Information under [The Strategic Supercomputing
Support Program]. The use of the computing system of the Supercomputing
Center is also greatly appreciated.

References

[BCRS05] Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin
solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence
model equations. Comput. Fluids 34, 507–540 (2005)

[BR97] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes
equations. J. Comput. Phys. 131, 267–279 (1997)

[BO99] Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method
for the Euler and Navier-Stokes equations. Int. J. Numer. Methods
Fluids 31, 79–95 (1999)

[CLG04] Chatellier, L., Laumonier, J., Gervais, Y.: Theoretical and experimen-
tal investigations of low Mach number turbulent cavity flows. Exp.
Fluids 36, 728–740 (2004)

[CLM97] Colonius, T., Lele, S.K., Moin, P.: Sound generation in a mixing layer.
J. Fluid Mech. 330, 375–409 (1997)

[Cur55] Curle, N.: The influence of solid boundaries upon aerodynamic sound.
Proc. R. Soc. Lond. A 231, 505–514 (1955)

[Fre97] Freund, J.B.: Proposed inflow/outflow boundary condition for direct
computation of aerodynamic sound. AIAA J. 35, 740–742 (1997)

[GBJ03] Gloerfelt, X., Bailly, C., Juvé, D.: Direct computation of the noise
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1 Introduction

In this paper, shape optimization is applied to a blunt trailing edge airfoil
in an unsteady turbulent flow environment to minimize the radiated far-field
noise using a novel hybrid Unsteady Reynolds-AveragedNavier-Stokes/Ffowcs
Williams and Hawkings (URANS/FW-H) optimization algorithm. Airframe-
generated noise is an important component of the total noise radiated from
commercial aircraft, especially during aircraft approach and landing, when en-
gines operate at reduced thrust, and airframe components (such as high-lift
devices) are in the deployed state [SLL03]. Future Federal Aviation Adminis-
tration noise regulations, the projected growth in air travel, and the increase in
population density near airports will require future civil aircraft to be substan-
tially quieter than the current ones. Consequently, the attempt to understand
and reduce airframe noise has become an important research topic [SG04].

A typical approach to tackle airframe-generated noise computations is to
represent the CFD solution on a reasonable computational mesh that does
not extend too far from the aircraft. A near-field plane or surface within the
computational mesh can then serve as an interface between the CFD solution
and a wave propagation program based on principles of geometrical acous-
tics and nonlinear wave propagation [SLL03]. The two-dimensional Ffowcs
Williams and Hawkings (FW-H) equation in the frequency-domain [Loc00]
is the wave propagation formulation of choice in this work.

This paper employs a general framework to derive a discrete adjoint
method for the optimal control of unsteady flows [RZ07, RZ08] together with
a Newton-Krylov approach to optimization [NZ02, NZ04]. We present several
design problems using the novel hybrid URANS/FW-H optimization algo-
rithm after validating the FW-H wave propagation code in the next section.

2 Noise Prediction Validation

Adirect comparisonbetween the pressure fluctuations calculated via the FW-H
approach and those obtained from a CFD simulation is performed at three
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Fig. 1. Comparison of pressure fluctuations calculated by CFD (solid) and FW-H
(dashed)

distinct locations with increasing distance from an airfoil. The laminar flow
over the single-element NACA 0012 airfoil with a Reynolds number of 800, a
free stream Mach number of 0.2 and an angle of attack of 20◦ is considered.
At these conditions the airfoil experiences vortex shedding. A C-mesh with
848× 395 nodes and a non-dimensional time step ∆t = 0.03 is used. After the
flow solver has reached a periodic steady state, 1800 time steps are taken, which
cover about five vortex shedding cycles, and the solution is recorded.

The extracted CFD pressure fluctuations and those computed using the
FW-H solver are plotted in Figure 1 for the three probe locations. In two
dimensions one expects that the sound intensity, which itself is proportional
to the square of the sound pressure, is inversely proportional to the distance
of an acoustic point source. This distance law is almost perfectly fulfilled by
the pressure fluctuations which are calculated with the FW-H approach.

Comparing the pressure fluctuations probe location by probe location one
can make the following observations: At probe location 2, which is about 2c
below the airfoil, the two pressure records are almost identical, except for the
beginning and end of the data, where the necessary window function [Loc00]
tarnishes the result from the FW-H approach. The agreement in the first probe
location (less than 1c below) is also fairly good, except for the overprediction
of the amplitude by the CFD calculation. The CFD results at probe location
3 (30c below) are basically useless due to the coarser grid this far away.

3 Results

A NACA 0012 airfoil with a 0.03c thick blunt trailing edge in a turbulent
flow is investigated. The free-stream flow conditions are given by M∞ = 0.2,
Re = 2× 106, α = 0◦, and the mesh consists of about 36, 000 nodes. As dis-
played in Figure 2, the comparison of pressure fluctuations calculated by CFD
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Fig. 2. Comparison of pressure fluctuations calculated by CFD (solid) and FW-H
(dashed) about 1

3
c below the trailing edge of initial airfoil

and FW-H for the initial airfoil show good agreement at a location about 1
3c

below the trailing edge of the initial airfoil.
First, a remote inverse shape design problem is studied with a discrete cost

function J given by

J =
1
2
∆t
∑

timesteps

(pn
obs − p∗n

obs)
2. (1)

Here, pn
obs is the pressure at some far-field observer location at time step n

obtained from a current airfoil shape, and p∗n
obs is the target pressure at the

same location and time step obtained from the target airfoil shape, which
is given through a perturbation in two shape design variables of the initial
blunt NACA 0012 airfoil. Both airfoils are shown in Figure 3 and the far-field
observer location is 40c below the trailing edge.

In order to reduce the computational costs in the actual optimization runs
a bigger non-dimensionalized time step of ∆tc = 0.01 is utilized for the first
Nc = 300 steps for the adjustment period after a shape modification has taken
place, which can be seen in Figure 8. Once the interval where the pressures are
compared is reached, a smaller time step ∆t = 0.005 is used for another 700
steps, leading to N = 1000 time steps in total for each flow solve covering a
time interval of [0, 6.5]. The corresponding adjoint equations for this situation
are given in Rumpfkeil and Zingg [RZ07, RZ08].

The convergence history of this remote inverse shape design problem with
the adjoint approach in comparison to a second-order central finite-difference

X

Y

0 0.2 0.4 0.6 0.8 1-0.1

0

0.1

Fig. 3. The initial (solid) and target (dotted) airfoil shapes
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Fig. 4. Convergence history of remote inverse shape design problem

approach with a step size of h = 10−5 is shown in Figure 4. The objective
function J is always scaled such that its initial value is unity. One can see
that the objective functions are driven to small values in about ten design
iterations and that the two approaches show a reasonable agreement, which
means that the adjoint approach for the gradient calculation is accurate. For
example, at the first design iteration the finite difference method (fd) and
adjoint method (ad) yield(

∂J

∂Y

)
fd

= (−33.53, 34.18),
(

∂J

∂Y

)
ad

= (−34.36, 35.11).

The computational time of a gradient computation is about two to three
times the time of a flow solve, since the non-linear flow solve problem has a
much better initial guess leading to less linear iterations per time step than
the linear adjoint problem.

Next, two more practically relevant optimizations are considered with the
same flow conditions but two different objective functions:

1. Mean drag JD = C̄D =
1

# time steps

∑
timesteps

Cn
D (2)

2. Pressure fluctuations JN =
∑

timesteps

(pn
obs − p̄obs)2 =

∑
timesteps

(p
′n
obs)

2 (3)

where p̄obs is the mean pressure in the observer location, which is located 40c
below the trailing edge, p

′n
obs = pn

obs − p̄obs is the pressure fluctuation in the
observer location, and Cn

D is the drag coefficient both at time step n.
Eight B-spline control points are used as shape design variables which are

all located in the aft 15 percent of the chord length (four on the upper and
four on the lower surface). The unsteady shape optimizations are started
from three different initial shapes, which are shown in Figure 5 together with
their initial objective function values:
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1. The initial airfoil (solid)
2. The airfoil that results from setting all eight design variables to their

specified upper bound (dashed)
3. The airfoil that results from setting all eight design variables to their

specified lower bound (dotted)

The time horizon and time step sizes are the same as used in the remote
inverse shape design presented earlier in this section. Figure 6 presents the
final optimized airfoil shapes together with their objective function values. All
three initial shapes converge for each objective function to the same respective
final shapes shown in dotted and dashed lines for the mean drag and noise
minimizations, respectively. As indicated in the figure, the mean drag value
of the noise minimized airfoil is slightly higher than the mean drag value of
the mean drag minimized airfoil. Conversely, the pressure fluctuations of the
mean drag minimized airfoil are a factor of two higher than the ones from the
noise minimized airfoil. This shows that noise and drag improvements lead
to qualitatively similar results to a first approximation, but they definitely
do not yield the same optimized shapes.

The convergence histories of the mean drag minimizations are displayed
in Figure 7 (left). The objective function values are always scaled with the
mean drag value of the original airfoil JD = 2.14 · 10−2 to make comparisons
easier. Since all three initial shapes converge to the same final shape they
have the same minimized objective function value which translates into a
reduction in mean drag of about 39 percent from the original airfoil. The
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Original J_D=2.14E-2 J_N=5.43E-7
Upper bound J_D=1.72E-2 J_N=3.05E-8
Lower bound J_D=3.57E-2 J_N=1.48E-6

Fig. 5. Initial shapes for the turbulent blunt trailing edge flow optimizations
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Fig. 6. Final improved airfoil shapes of the turbulent blunt trailing edge flow
optimizations
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Fig. 7. Convergence histories of the mean drag (left) and noise minimizations
(right)
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Fig. 8. Time histories of CL and CD before and after the optimizations vs. time
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gradient norms are reduced by three to four orders of magnitude indicating
that the optimizer has converged to a minimum in each case.

The convergence histories of the noise minimizations (Figure 7 right) show
that the sum of the squared pressure fluctuations for the optimized shape is
reduced to 0.23 percent of the original airfoil’s value JN = 5.43 · 10−7, which
is again used to scale all the objective function values to ease comparisons.
Starting from the lower bound leads to a failed line search in the first itera-
tion because all gradients indicate that it would be beneficial to “slim” the
airfoil even more which is not allowed by the box constraints imposed on the
design variables to avoid grid movement and flow convergence problems. The
gradient norms are reduced by two to three orders of magnitude.

The time histories of CL and CD for the original blunt trailing edge airfoil
before and after the optimizations are shown in Figure 8. One can clearly
see the adjustment period for the improved airfoils in the time interval [0, 3]
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before they reach their new somewhat periodic steady state. A reduced mean
drag for both optimized airfoils is also visible, and both objective functions
lead to reduced oscillation amplitudes in both lift and drag.

4 Conclusions

The results presented in this paper show that the novel hybrid URANS/FW-H
optimization algorithm, which uses a Newton-Krylov approach in combina-
tion with a discrete adjoint method, is effective and efficient for practical
applications. We proved that it is possible to recover far-field pressure fluctu-
ations via remote inverse shape designs in unsteady turbulent flows, and we
were able to minimize the pressure fluctuations at a given far-field observer
position in an efficient manner. Our future work will focus on the ability
to modify a high-lift airfoil configuration to reduce the radiated noise while
maintaining good aerodynamic performance.
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1 Introduction

Solving the compressible, unsteady Navier-Stokes equations is a powerful
method to investigate the acoustic phenomena in technical systems with su-
perimposed meanflow. This includes pipes, bends, but also musical woodwind
instruments. Often the acoustics of these systems is treated as an linear-
acoustic problem and investigated by solving the Helmholtz equation. This
approach neglects interactions between mean flow and acoustic wave, flow
phenomena and also nonlinear phenomena like wave steepening. The pres-
sure related to the flow field and the acoustic pressure perturbations that
are radiated can vary about four or five order of magnitude. Resolving these
effects requires the solution as accurate as possible to avoid numerical dis-
sipation and dispersion errors. We use an explicit, high-order discontinuous
Galerkin formulation to minimize these errors.

Nonlinear effects like wave steepening can lead to large gradients in the
solution. Among a compact and flexible formulation discontinuous Galerkin
methods provide a stable method to resolve these phenomena.

2 Stabilization

Near discontinuities spurious oscillations can occur. To avoid instabilities we
use a slope limiting scheme. Following the declaration in Figure 1 the limiter
for a scalar value works as follow:

1. Transform the solution coefficients on element Ωe to the Legendre coef-
ficients Ûij,e(t).

2. Compute the vector nij which defines the plane through the points
xe+i,xe+j and xe (see Figure 1) with

nij =
(xe+i − xe)× (xe+j − xe)
|(xe+i − xe)× (xe+j − xe)|

(1)
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Fig. 1. Slope limiter

The point xT
e+i bases on the element averages x̄e+i, ȳe+i and Ūe+i

xe+i = (x̄e+i, ȳe+i, Ūe+i(t)); xT
e = (x̄e, ȳe, Ūe(t)). (2)

3. Estimate with
(x− xe) · nij = 0 (3)

the gradients (∂xUe(t))k and (∂yUe(t))k with k = 1 . . . 4.
4. Limit the linear gradients ∂xUe(t) and ∂yUe(t) on Ωe using the minmod

function 5 with

Π∂xUe(t) = minmod (∂xUe(t))k

Π∂yUe(t) = minmod (∂yUe(t))k .
(4)

minmod(a, b) =
{

sign(a)min(|a|, |b|) if sign(a) = sign(b)
0 else (5)

5. Set all Legendre coefficients except Û00,e(t), Û10,e(t) and Û01,e(t) to zero
and adjust the conservation properties.

6. Transform the limited Legendre coefficients Ũij,e(t) back to the solution
coefficients.

The limiter is applied separately to every characteristic variable. While
this limiting procedure reduces the accuracy locally to a first order scheme we
implemented a discontinuity detection criterion introduced by Krivodonova

et al. [1]. The Figure 2 demonstrates the efficiency of the scheme. The left
figure shows a Kelvin-Helmholtz instability at t = 1 on the domain (−1, 1)2

with the grid ∆x = ∆y = 1/512. In the right figure the limiting criterion
is illustrated. Only 11.66% of the elements are marked for limiting. So the
limiter works only where it is necessary and conserves the accuracy in the
rest of the domain [3].
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(a) density gradient (b) limiting criterion

Fig. 2. Kelvin-Helmholtz instability: (a) density gradient ‖∇ρ‖; (b) limited
elements

3 Stabilized Extrapolation Boundary Conditions

The investigation of open structures needs the implementation of stable
and non-reflecting open boundaries. Typically one-dimensional characteristic
boundary conditions or buffer zone techniques like perfectly matched layers
(PML) are used. While the characteristic treatment produces large artifi-
cial reflections, mainly if the wave front leaves the domain with an oblique
angle, PML are not available for nonlinear systems with viscous effects. As
an alternative we use a local extrapolation at open boundaries in conjunc-
tion with the slope limiter described above to avoid instabilities. Figure 3
shows the reflection error as a function of the angle φ between the wave nor-
mal vector and the boundary normal. Characteristic boundary conditions are
compared to the extrapolation boundaries. While for φ < 20◦ no significant
differences occur, the error evoked by the characteristic treatment increases
rapidly, compared to the extrapolation condition.

Fig. 3. Reflection error rφ. Circle: characteristic boundary condition, gradient:
extrapolation boundary condition
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In the Navier Stokes case the same procedure doesn’t activate instabilities
but leads to a continuous solution growth at open boundaries. To prevent
this we use first a weak characteristic treatment which is not stable generally
and in the next step also the limiting procedure. This treatment reduces the
absorbability only slightly but provides an overall stable boundary treatment.

4 Numerical Tests

4.1 Flow Around a Cylinder at Re=100

To test the numerical behavior of the stabilized extrapolation conditions we
solve the flow around an infinite cylinder at Re= 100. Here the typical von
Karmann vortex street occurs and leave the domain at the open boundary on
the right side (see Fig. 4). While the limited slopes are observable in Fig. 4 (a)
and (b) no spurious reflections occurs. It is also remarkable that compared
to other boundary schemes no additional effects while long time integration
occurs (tested up to 1 · 107 time steps using an explicit Runge-Kutta time
integration scheme).

(a) x velocity (b) y velocity

Fig. 4. Flow around a cylinder at Re= 100, time t =200

Fig. 5. Configuration tone hole investigation
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4.2 Tone Hole Investigations

Based on the numerical scheme we investigated the viscothermal effects at
an open tone hole of a flute-like structure. Simultaneous PIV measurements
are performed at the University of Edinburgh, School of Physics (see [2]).
The configuration is shown in Figure 5. In the experiments a loudspeaker
excites the system at the first eigenfrequency. In the numerical experiments
the loudspeaker is replaced by a moving, plane wall which oscillates also at
the first eigenfrequency. The outer domain is truncated using the stabilized

(a) point 1 (b) point 3

Fig. 6. Pressure fluctuations in frequency domain at point 1 and 3

x-velocity

meas. numeric meas. numeric

(a) t =8/20 T (b) t =18/20 T

y-velocity

meas. numeric meas. numeric

(c) t= 8/20 T (d) t =18/20 T

Fig. 7. Contours of: (a-b) x-velocity vx = −5 . . . 5 m
s

; (c-d) y-velocity vy =
−5 . . . 5 m

s
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extrapolation boundary conditions described above. The pressure fluctua-
tions at different measurement points are transformed into the frequency
domain and shown in Figure 6. Inside the system the fist eigenfrequency at
400Hz dominates while outside the instrument also the overtones becomes
important. Every peak in Figure 6 (b) correlates with an overtone. Additional
frequencies which could base on spurious boundary effects are not detectable,
the boundary conditions are appropriate for aeroacoustic investigations.

Figure 7 compares the PIV measurements with the achieved numerical re-
sults at different time steps. Here a good agreement between the experiments
and numerical results can be found.

5 Conclusion

We presented a numerical method to solve the unsteady, compressible Navier-
Stokes equations based on high-order discontinuous Galerkin methods. Arti-
ficial open boundaries are provided by a stabilized extrapolation condition.
The practicability of these method for aeroacoustic investigations is demon-
strated while simulating the flow behavior at open, flute-like structures and
validated using additional PIV measurements.
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Abstract. This paper presents direct simulations of acoustic near field
around a subsonic resonator by using the compressible Navier-Stokes equa-
tion. The direct simulation depends on the size of the resonator and the
capability of the PC. In the present paper, we select a recorder, a musical
instrument. Though we use regular meshes, the computational region is large
enough for prediction of both the flow field and the near field of the recorder.
In addition, to ensure the energy transfer among the waves we used the
higher order finite difference equation called Multi-Directional-TVD method
proposed in 2004 (M.Lee et al.[Ref1]). Our computations were successful in
producing acoustic noises.

Keywords: Direct Simulation, Acoustic near field, Compressible Navier
Stokes.

1 Introduction

The objectives in the present paper are to find a possibility to simulate the
acoustic resonance by instability of flows. We select a recorder, a flute-like
musical instrument. The present topics are following.

1.1 Prediction of Acoustic Resonance Phenomena

In Aero-acoustics, most topics of resonance contain several fluid mechanics
topics such as instability of flows, formation of large vortex, generation of
sounds by interaction of vortex and elastic characteristics of air. The waves
seems to be so complex since it contains many time scales, spatial scales, and
velocity scales which are related to each other with non-linearity. However, if
the resonance occurs, then the full fluid system moves with the same mode
by absorbing energy from the source. All large structures such as vortices
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are created in the same mode. It is easy to clarify the resonance oscillation.
Thus, it is quite promising to develop a design code to realize the resonance
for the benchmark test.

1.2 ”The Theory of The Fluteh by M.S.Howe

To find the clues it is important to review the theoretical approach of the flute.
The reformation on the aero-acoustics and the theory of the flute were done
by M.S. Howe (1975)([Ref2]). By assuming the existence of elliptical vortex or
oscillation of vertical speed blowing into the mouth of a flute, he obtained a
threshold Mach number for generating sound, and predicted the sound power
of a flute by using only the opening size (b, d) and the length of flue body(L),
and mean speed of the flow(equation(10.53) [Ref2]). The result implies that the
generation of sound is not dependant on the geometrical fine structure of the
flute. @It does not depend on the thickness and angle nor the angle of attack to
the reed which are mostly related to aerodynamic instabilities at the opening.
Namely, the results does not depend on the detail mechanism of the instabilities
of the shear layer which is the most difficult to be simulated by computers. He
concluded the acoustic coupling was the most important.

1.3 Computational Problems for the Compressible Navier
Stokes equation(C.N.S.E)

The set of the compressible Navier Stokes equation is well described in many
aero-acoustics papers [Ref3]. Here, we just mention the name of equations;
the continuity of equation with time derivative of density, and the two di-
mensional compressible Navier Stokes equation in a flux form, and enthalpy,
and the ideal gas equation. Many important works about the boundary
conditions for Direct Simulation has been done by K W.Thompson([Ref6]),
J.D.Baum([Ref7]), S.K.W. Tam([Ref4]), and T.Pointsot and S.K.Lele ([Ref5]).
The method has been well established. However, there are still problems for
software designers which boundary conditions and which scheme should be
selected for given acoustic problems.

1.4 Numerical Method

The present scheme has the third order non-linear terms, and the fourth order
of the Laplace operator which can pack the vortex and sustain the shape of
the vortices than the other schemes shown by Lee et all 2004([Ref1]). These
Properties seems to be the most important to aeroacoustics because vortices
produce sounds. Otherwise, vortices can be easy to penetrate itself to the
potential regions, and fade fast. In addition, on the outside of vortex region
and no-mean flow acoustics region, the non-linear terms will diminish so the
high accuracy of the linear viscous terms will become more important.
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1.5 Transition to Turbulence

Designers know that both position and shape of the reed and the shape of
outlet are important. These shapes are related to the transition from laminar
to turbulence. For example, the most recorders have a trim on the edge of the
one side to produce an asymmetry flow where the instability easily causes.
The recorder is usually played at the speed from 2 to 20 m/sec, then the
Reynolds number of the recorder in the channel of d=2mm becomes 200 to
2000. The Reynolds number is in a typical transition region. Because the
transition is a three dimensional phenomena, we are interested in “What can
the two dimensional CNSE code do?”([Ref8],[Ref10])

2 Bench Mark Computation

2.1 Bench Mark 1 :Edge-Tone

The first bench mark computation is the edge tone problem which is related
to the flute and other reed instruments. We took a simple model as shown
in Fig. 1. Because of the regular mesh, we take as many meshes as possible
which can model the reed shape. The mesh size is 0.05mm, only 8 points are
set in the vertical direction in the channel. The distance from outlet to the
reed is 3mm, and the thickness of reed is 1.5mm, the angle of reed (wedge) is
20degrees. The velocity of jet is about 14m/sec. From the Brownfs formula
of mode (m), we obtain the frequency of the third mode of 0.466x(m)x(U-
0.4)x(1/L-7) = 7285(Hz). The frequencies of the computed wave shown in
Fig. 3 are about 7300Hz and 14600Hz which are close to the Brown’s results.
The present edge-tone has a softer tone than one with a monotone tone. The
variance of the pressure (P(t,x,y) - meanP(x,y)) is shown in the Fig. 2. In the
both sides we observed the arcs which would generate the sound as monopole
since one pack of flow in one direction on each arc was running towards the
wall. In the other computation, we also obtained the similar arcs in the same
area where the mechanism is needed to be clarified.

Fig. 1. Egde-Tone Pressure Fig. 2. Egde-Tone Variance
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Fig. 3. Pressure variation with time

2.2 Bench Mark 2 :Recorder

The second bench mark test is a sound generated by a recorder, a flute-like
instrument like a flute, used mostly by elementary school students. For the
simplicity, we compute the flow near the head part of the recorder which
includes only a blowing channel and a reed and a short resonance cylinder.
The model is one third of the real recorder, and does not include the resonance
cylinder part with holes to change the frequency.

Case1. Computational results (with-hand) To make some differences to the
other recorder, the outlet of the cylinder was closed by a hand as shown
in Fig.4. The vertical wall represents a hand. By the hand, the recorder
becomes a closed resonator. The mesh size is 0.25mm, 300x110 grid points.
Input speed is about 3m/sec. In the figure, there is a small trim on the corner
of the left channel to make the blowing unstable. For case 1, computational
results are shown in Figs. 4, 5, 6, 7. The picture in fig. 4 shows a Mach num-
ber distribution where the vortex can be seen above the reed. The unstable
sinusoidal shear layer discharged from the channel is also observed in Fig. 4.
The train of vortexes, which produces sounds, can be seen. We can observe in
Figs. 5, 6 the clear difference of frequency distribution between inside of the
flute and outside of the flute. In the inside of the cylinder, the frequency band
is broader than the outside. In the outside, we observed two major frequen-
cies about 400Hz to 500Hz. The intensities gradually decrease as frequency
increases. In the final stage of the computation we observed the cyclic rota-
tional motion of the center of vortex at 12mm from the reed and 10mm above
the top of the recorder. The center draws a cyclic circle with the radius about
1mm. The result supports the assumption of Howe’s elliptic vortex theory.

Case2. Computational results (no-hand) In the case of the open end (no
hand) of the cylinder, the sound is computed. The results are shown in
Figs. 8, 9, 10, 11, 12. In Fig.10 two peaks about 400Hz and bi-harmonics
frequency 800Hz are observed at a point outside of the cylinder. The sound
inside of the cylinder is lower and has a broader band than the outside. This
tendency is similar to characteristics of case 1. But, a harmonic frequency is



Direct Simulation for Acoustic Near Fields 89

Fig. 4. Recorder-With-Hand(Mach
number)

Fig. 5. Recorder-With Hand

Fig. 6. Recorder-With-Hand Fig. 7. Recorder-Fluctuating Pres-
sure Spectrum No-Hand

observed in the open case. The spatial distributions of the variance of the
pressure are shown in Figs.12,13. Two intense regions are observed above the
reed which seems to be a dipole source at the low speed sound generators
which is consistent with the traditional acoustics theory by M.J. Lighthill
[Ref2].

Case3. Computational results(stable case) By Howefs gthe theory of the
fluteh, the flow at very low Mach number(U =0.2 m/sec) could not gen-
erate any sound. In the case3 we did not come out any sound because of the
stability of jet. We had a steady solution, and no vortex shows up in the
domain. However, It is hard to evaluate whether the Howefs potential theory

M > 5/7n2π4(sd/L2)

(eq.10.53. [Ref2]), agree with the present result quantitatively. It seems be
the instability problem in the shear layer of which critical velocity depends
on the Reynolds number.

Fig. 8. Recorder-No-Hand Fig. 9. Recorder-No-Hand
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Fig. 10. Recorder-No-Hand Fig. 11. Recorder-No-Hand

Fig. 12. Recorder-No-Hand Fig. 13. Recorder-With-Hand

3 Conclusion

1. The regular mesh system can be applied to simulate the resonator with out
fine structures of geometry such as a reed instruments at a very low speed.

2. As Howefs theory, once the vortex are generated, the mechanism of the
flute sound generation would be governed by vortex interaction even the
solver is the Navier Stokes equation. The oscillation of the vortex center
seems to support Howe’s elliptic theory.

3. With two dimensinal C.N.S.E Keys of instability could be clarified for
recorder.

4. However, the modes of edge-tone could not be clarified in the present
case, and the further computation should be performed.
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Abstract. The noises generated by the flow inside the casing or the noises in
the short distance around machines are primary subjects for environmental
engineers as well as the noises emitted from factories. In this paper, we devel-
oped a simulation software which can show a full development of both flow
and sound in an acoustic chamber, especially resonance and attenuation in
automobile mufflers. We use the compressible Navier-Stokes equation [CNSE]
without the Lighthillfs wave equation. Three bench marks were performed;
sound by a point oscillator on a cavity, sound by two jets in both a round
chamber and a square chamber. Then, the reactive muffler (Baffled Muffler
Design) was computed with perforation on the pipes. In the muffler model,
we put artificial oscillations at the inlet to observe the wave characteristics in
the perforated muffler. The transmission loss(dB) is about 25 to 34dB which
is similar to the experimental results with perforation by Gerges [Ref7]. To
observe the development of fluctuating energy with high accuracy, we use
the third order finite difference scheme, the Multi-Directional,TVD method
proposed in 2004 by Lee et al[Ref1].

Keywords: Automobile muffler, Aero-acoustics, Compressible Navier Stokes.

1 Introduction

Because of the complexity of the configuration of real mufflers, two ap-
proaches to the muffler noise problem are used mostly by designers; One is
statistical vibration method such as Transfer Matrix Method(TMM) [Ref7];
The other method is to solve flow or acoustic field with CFD [Ref6]. TMM is
easy to handle for simple configuration and need measurement data for cal-
ibration for each component because of the linearity. CFD is more rigorous
and can treat both flows and sounds at one time, but it requires tedious mesh
generations and post processing and days CPU time and Giga byte storage.
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2 Objectives

In the present paper we compute the automobile muffler flow at low speeds
with two dimensional CNSE code[Ref1]. The objectives are following as: To
check

1. Realistic computability of forcing oscillations at low speeds
2. Realistic computability of acoustic waves in shear flows with CNSE
3. Confirmation that one code can simulate both low speeds and supersonic.

and our detail research interests are the following;

1. Noise generated by vortex shedding in the wake from the outlet pipe
2. Pulsing motion from the engine at the inlet
3. Wave cancellation by an attached resonator
4. Noise reduction with perforation
5. Two dimensional turbulence in the chamber

3 Governing Equations

We use a two dimensional flux form with four variables (rho,rhou,rhov,rhoE).
The flux form of CNSE is well described in many aeroacoustics papers [Ref3].
Here, we just mention the name of equations; the continuity of equation with
time derivative of density, and the two dimensional CNSE, and enthalpy, and
the ideal gas equation. Many important works about the boundary conditions
for direct simulation has been discussed by K.W. Thompson, S.K.W. Tam, and
T.Pointsot and S.K.Lele and others. Thus, the computational method has been
well established. However, because of the huge storage and small time steps
there are stillmanyproblems for softwaredesigners suchasboundaryconditions
and how many digits should be selected for the given aeroacoustics problems.

4 Numerical Method

The present numerical scheme is discussed by M.Lee, T.Kawamura,
K.Kuwahara, and J.Ooida [Ref1]. Therefore, we skip the detail discussion
except mentioning the remarks and a drawing in Fig. 1. The schem is the
third order for non-linear term, the fourth order for the viscous term, and
17 points are used out of 25 points in 5x5 matrix. The non-linear operator
split into two components: Lxy and Lx’y’. Lxy is the operator defined on the
coordinates x,y in Cartesian coordinates, and Lx’y’ is the operator defined on
the coordinates oriented 45 degree to xy coordinates shown in Fig. 1. The op-
erator L is defined as follows: L = 2/3Lxy + 1/3Lx’y’. By adding the oblique
direction the operator has been expected to have more accuracy. In ddition,
TVD condition is imposed on the scheme. For the boundary condition, we
use Dirichlet condition in the Inlet , and Neuman condition on the outlet for
the all variables. On the top and bottom boundaries the Neumann conditions



Aeroacoustic Simulation in Automobile Muffler 95

Fig. 1. Multi-Directiona
Method

Fig. 2. Point Osc in a
Cavity

Fig. 3. Frequency Distir-
bution for one point Osc

were applied. On and in the body we used the incompressible boundary con-
dition u=v=0, the constant density, and the stagnation enthalpy as non heat
conducting fluid because of the low Mach number.

5 Bench Mark Computation

5.1 Bench Mark 1: One Point Oscillator on a Cavity

To confirm the propagation property, we pick a one point acoustic oscillator at
the mouth of a cavity discussed by A.V. Alexandrov [Ref2]. No external flow
is set, and also the initial velocity is zero in all domains. The computational
result is shown in Fig. 2. Several small vortexes drawn as small white spots can
be seen above the oscillator, and the waves generated are propagated outward.
As the oscillator acted as a dipole source and also as a vortex generator, the
vortexes were released periodically from the cavity. In Fig.3, a peak frequency
is observed at 2200Hz of the generator, but could not see a bi-harmonics
frequency. In Fig.4, the spectrum of the pressure fluctuation shows that the
low frequency variation decreases in a steeper gradient as frequency increases.
The higher frequency varies rather gradually to exponent minus one. These
patterns are similar to the spectrum of two dimensional turbulence. [Ref4],
[Ref5]. Therefore, the energy cascade may be described by the present code.
To make a confirmation, we need further computation for the decay process.

Fig. 4. Freq (log10) in one
point Osc

Fig. 5. Pressure Distribu-
tion

Fig. 6. Freq-Round-
Chamber
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5.2 Bench Mark 2: Flow Noise by Two Jets in a Round Chamber

It is well known that shear flows change the direction of sound and also
dissipate the acoustics energy. In the second bench mark, we compute mixing
flows in a round chamber with two nozzles. If the flow is unstable, then vortex
shedding is generated, and causes sounds in the chamber. If it is stable, then
any sound does not come out from stationary vortexes attached to some parts.
The computational results are shown in Fig. 5, 6, 7. The Mach number and
the pressure distribution are shown in Figs. 5, 6 respectively. The texture of
the picture depends on the slicing scale, and it is hard to draw the sound
quantitatively. However, the homogeneity of the distribution of 2D vortexes
can be shown in Fig. 5 and they are quite similar to the results in [Ref4].
The large eddies are in the round chamber. The noise level in the outlet
pipe is shown in Fig. 7. The level in the lower frequency is one order smaller
and wider because of the viscosity and contraction in the outlet pipe. The
maximum velocity at the channel was about 20m/sec.

6 Simulation of Automobile Muffler Model

We model a baffled muffler with one resonator room which is most commonly
used in the automobiles. The flow is very complex because the muffler has
several components such as pipes, baffles, a resonator, and perforated pipes as
shown in Fig. 8. In addition, pulsing inlet flows come from the exhaust valves
in the engine rooms. By using the model we simultaneously compute the
complex flows and the compound acoustics wave with reflected waves which
are canceling some parts of the inlet wave in a proper phase. We compute
four cases: no forcing oscillation, artificial oscillations with frequencies 580Hz,
1470Hz with the amplitude of 10m/sec, and flow without a resonator room
with no oscillation.

6.1 Case1: Artificial(forcing) Oscillation at the Inlet

The computed fluctuating pressures are shown in Figs. 9,10,11. The variation
with time clearly shows that each wave has a different phase. The first and the
second waves have a similar phase, but the fluctuating pressure in the third

Fig. 7. Freq-In-Outlet Fig. 8. configuration Fig. 9. Time-Variation
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Fig. 10. Muffler-Pulsing
motion

Fig. 11. No-Pulsive Pres-
Variance

Fig. 12. Pulsive-Pres-
Variance

pipe is out of phase. Indeed , the pressure outside of the muffler shows lower
fluctuation and off phase from the original oscillation. The spectral patterns
are shown in Figs. 9, 10. The transmission losses were about 24.7dB, 33.8dB
for 580Hz,1740Hz respectively. The variance of the pressure is shown in Fig.
11, three parts in the first two pipes have higher pressure, but both in the
third pipe and the outside area of the muffler, there is no high pressure. Thus,
the damping of the muffler is quite effective.

6.2 Case2: No Artificial Oscillation at the Inlet

The variance of pressure is shown in Figs. 12. There, the outside sound power
has higher intensity than one of the inside of the chamber. The slowly varying
pressure with time can be seen in Fig. 14. It has vortexes which was not shown
in the case1 of the artificial oscillation. No spike back pressure was observed.
However, in some other computation for the muffler without theresonator, a

Fig. 13. Freq-No-Osc Fig. 14. Time variation
Holes

Fig. 15. No-Resonator-
No-Osc

Fig. 16. Mach-No-Osc
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spike was shown up, and then the spike pressure was instantaneously released
at the middle of the computation as shown in Fig. 13, though it has rather
larger numerical noises as shown in Fig. 13. In the Fig. 16, the case of no
oscillation clearly shows the development of the vortexes in the train of pipes.

7 Conclusion

1. Showed Realistic computability of forcing oscillations at low speeds and
acoustic waves in shear flows with the CNSE.

2. Confirmed that one code can simulate both low speeds and supersonic
3. Need more computation in a larger domain to check noise generated by

vortex shedding in the wake from the outlet pipe
4. Successfully realized the pulsing motion in the muffler
5. Observed the wave cancellation by an attached resonator.
6. Observed the noise reduction with perforation in different frequencies
7. Seems to observe Two dimensional turbulence in the chamber
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Introduction. Jet flows have been a subject of intensive theoretical, nu-
merical, and experimental investigations during last several decades. Many
fluid dynamicists and specialists in computer simulations have endeavored to
learn more about very complicated structures in jet flows. This interest have
been in the first turn feeding by the desire to understand basic mechanisms
of strong noise generated by high-speed jets, in particular very intense tones
known as jet screech.

By present there exists a received theory on what plays a major role in
producing jet screech sound. In accordance to this theory that is referred to in
literature as feedback loop theory the screech noise occurs due to interactions
between jet large-scale turbulent structures and shocks that exist inside the
jet (for example, see [1, 4]).

In the present paper, another point of view on the jet screech mechanism
is presented. We demonstrate a close correlation between the jet screech phe-
nomenon and a 3D helical instability of the flow, which counters the existing
theory of screech generation based on the vortex/shock interaction. We pro-
vide numerical, theoretical, and experimental evidence in favor of a quite
different mechanism and state that the screech comes from the helical in-
stability that alters the flow, imparting to it the typical shape of a highly
rotating drill. And the jet screech has in fact the same nature as the sound
produced by a rotating in air drill. We intentionally use a rather simple phys-
ical model - 3D compressible ideal fluid (Euler model) - to refine this phe-
nomenon from dissipative processes that may do vague it. The helical mode
instability develops mainly due to convective processes; it is inherent the flow
itself, and dissipative factors such as heat conduction and viscosity are not
dominant.
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1 Numerical Evidence

First we present some results of the numerical simulation of a jet flow with
using the model of compressible Euler equations. Parameters of this simu-
lation are chosen to fit conditions of the experiment carried out in Nagoya
University. We refer this experiment below in Section 3 to compare obtained
numerical results with experimental observations.

The problem to be considered is a gas jet emitted from a circular nozzle
into an ambient resting medium with pressure Pa and density ρa. The exit
section diameter D = 7.8 mm, and the nozzle leap thickness is L = 1.5 mm

The jet efflux is modeled by setting a time-independent profile of the lon-
gitudinal velocity component Ue(r) (where r is the radial distance) and the
values of pressure Pe and density ρe at the nozzle exit. Two other velocity
components are assumed to be zero.

The velocity profile is analogous to that we used previously for Navier-
Stokes simulations [5]:

U(r) = 0.5Ue

{
1 + tanh

[
25
4

(
R

r
− r

R

)]}
(1)

where R = 0.5D is the nozzle exit radius, Ue is the maximal velocity (the
velocity at the axis of symmetry). Note that no artificial disturbances are
superimposed on the inflow velocity field.

The jet flow is characterized by the nozzle pressure ratio parameter
NPR = P0/Pa, where P0 is the stagnation pressure, and the ratio of the
exit pressure to the ambient pressure, Pe/Pa. These parameters are taken to
match experimental conditions (Section 3): NPR = 5 and Pe/Pa = 1.73. Un-
der these conditions the exit Mach number (based on the maximum velocity
Ue) Me = 1.33, and Mj = 1.7 that equals the isentropically fully expanded
jet Mach number.

The inflow gas and the ambient gas are considered in the model of the Euler
equations of a calorically perfect gas with the ratio of specific heats γ = 1.4.
The governing equations in the form of conservation laws are written as

∂tq + ∂kfk = 0 (2)

where q is the conservative vector, fk, k = 1, 2, 3, are the corresponding flux
vectors.

The system of equations (2) is discretized in space with the Godunov finite-
volume method. The time integration is performed with the explicit-implicit
LU-SGS matrix-free time marching scheme proposed in [2]. This allows us to
carry out the calculations with a reasonable time step, which is not restricted
by the CFL-condition. At the same time, the scheme minimizes the dissipative
error introduced by the implicit component.

The computational domain is represented by two subdomains. One of them
is the domain of basic calculations, which expands 17D in the radial direc-
tion, and 25D in the streamwise direction. The second subdomain (so-called
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buffer region) adjoins the basic one along the right-hand side boundary and
serves to dump the flow and eliminate undesirable reflections from the outflow
boundary. The buffer region expands 30D.

The computational grid is of cylindrical type. The numerical code we have
developed to solve the general system of equations (2) can treat computa-
tional cells of any polyhedral shape. Therefore, there are no problems oc-
curred when calculating degenerated cells near the longitudinal axis.

The grid of the base domain consists of 480 cells in the streamwise di-
rection, 208 cells in the radial direction, and 112 cells in the angular direc-
tion. The grid size (in radius) is 0.014D in the jet core; an axial grid size of
0.04D is used to accurately resolve the shock wave structure in the region
0 < x/D < 12. The buffer region is covered by a rather coarse grid of 25 cells
in the axial direction, which is generated so that a smooth transition between
the base and buffer grids is ensured.

All calculations were carried out with parallel processing on the platform
of the MVS-15000BM cluster at Joint Super Computer Center of the Russian
Academy of Sciences (JSCC RAS). The cluster consists of 1052 CPU IBM
Power PC 4 of an overall peak performance of 10 TFlops. Communications
are realized on the base of the Myrinet communication media (2.2 Gb/sec)
with a full graph node topology.

The time integration step ∆t was 0.5 µs which corresponds to a CFL value
of about 50. This choice turned out to be optimal, since it made possible
calculations with a single LU-SGS iteration stage.

The results obtained give us grounds to put forward a basically different
explanation for the screech nature and to ascertain that the feedback loop,
though it can probably be realized, is not related to the mechanism of screech
generation. We claim that the screech appears due to the development of
helical instability in the jet flow and that its nature is essentially the same
as that of the sound produced by a rapidly rotating drill.

Let us consider the numerical modeling results presented in Fig. 1, which
shows the instantaneous isosurface of density for ρ = 1.7 kg/m3, which is
intermediate between the ambient gas density (ρ = 1.17 kg/m3) and the
density at the nozzle exit (ρ = 3.225 kg/m3).

Fig. 1. Isosurface of the gas density ρ = 1.7kg/m3
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Fig. 2. Jet cross sections for five successive moments, showing the pressure field in
the 1.009 bar < P < 1.018 bar range and the ρ = 1.7kg/m3 isosurface sections

This surface can be considered as a kind of visualization of the jet bound-
ary. As can be seen, the axisymmetric jet flow pattern breaks up at a distance
of three to four shock cells (these are not shown in the figure; the cell length
is about 2D) and the jet acquires a typical helical drill like shape.

The helical jet shape is unsteady. Figure 2 shows the pressure field in the
jet cross section at a distance of 13D from the nozzle exit at several successive
moments. The cross sections of the aforementioned isosurface ρ = 1.7kg/m3

are depicted by a gray curve. As one can see, the shape of the isosurface
section remains unchanged and only rotates in the space at a constant angular
velocity. Thus, this isosurface behaves as the surface of a rigid rotating drill.
The rotation frequency, which can readily be determined from Fig. 2, amounts
to 10.58 kHz. Thus, we may conclude that the axisymmetric pattern is lost
as a result of the development of the helical instability and the jet takes the
shape of a rapidly rotating drill. An angular component appears in the jet
flow, while the flow character changes from near-rectilinear to helical.

What happens in the ambient gas when the helical instability arises? Ob-
viously, the jet action on the surrounding gas is the same as that of a solid
with a similar surface rotating at the same frequency (about 634800 rpm). In
other words, if the jet flow region (Fig. 1) is mentally replaced by a solid drill
rotating at the indicated frequency, the behavior of the ambient medium will
not change significantly.

A rapidly rotating drill produces discrete sound, at a frequency equal to the
rotation frequency. The nature of this tone is simple: due to the asymmetry,
the cross section of the rotating drill executes periodic upward and downward
motions leading to periodic compressions and rarefactions in the ambient gas
and the corresponding tonal sound generation.

The mechanism of the supersonic jet screech generation is precisely the
same. We ascertain that there is a complete analogy between the sound pro-
duced by a rotating drill and the discrete sound of a jet. Let us return to Fig.
1 which shows, together with the instantaneous position of the jet surface
(ρ = 1.7kg/m3 density isosurface), the pressure distribution in the near- field
zone in the 0.7 bar < P < 1.3 bar range. The compression (dark regions)
and rarefaction (light regions) zones produced by the jet due to the helical
instability are clearly visible.
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2 Theoretical Evidence

The existence of the helical modes in jet flows that was numerically demon-
strated in the previous section is theoretically examined by the linear-stability
analysis of an axisymmetric columnar jet flow. The flow is characterized by
constant pressure and density; the velocity vector has non-zero only longitu-
dinal component that depends on the radius. We consider a two-parametric
family of velocity profiles given by Eq. (1) where instead of the factor 25

4 a
parameter θ is used. Another parameter is the Mach number Mj defined by
the maximal in the profile velocity.

Linear-stability analysis is carried out for disturbances in the form of har-
monics exp [i(λt + mφ + kx)]. The problem is to find non-trivial solutions of
the linearized system of equations. It reduces to an eigenvalue problem for λ

Fig. 3. Growth rate factor for k = 2 vs jet Mach number (a) and vs parameter θ

Fig. 4 Growth rate factor vs
wavenumber K

Fig. 5 Comparison experimental
and numerical frequency spectra of
pressure signal at the observation
point r = 6D, φ = 40deg
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at given values of the wavenumbes m and k (m is an integer). The solution
of this problem is quite similar to that we used in [3].

Some results of the linear-stability analysis are shown in Fig. 3. Here we dis-
play the growth rate Im(λ) as a function ofMj at different values of θ (a), and as
a function of θ at different values of Mj (b) for wavenumbers k = 2 and m = 2.
One can see that these helical modes are unstable in a wide range of Mj and θ.

Figure 4 shows Im(λ) vs longitudinal wavenumber k, which represents the
length scale of the helical mode. There is a maximum in these distributions,
which indicates the existence certain step most unstable (dominant) modes.
For example, for Mj = 1.33 (conditions of the numerical simulation and ex-
periment) and θ = 3 the dominant mode corresponds a value of about k = 2.

3 Experimental Evidence

The experiment we refer in this paper was fulfilled in the Fluid Dynam-
ics Lab., Department of Aerospace Eng., Nagoya University. This experi-
ment was to take a high-speed camera visualization of the jet flow and the
sound spectrum data at an observation point. The camera used is Photron
FASTCAM-SA1 with a peak performance of 675000 frames per seconds. From
the video one can see discernable rotor-type movement in the jet at a distance
3-4 shock cells from the nozzle exit. The spectrum data is compared with the
numerical data in Fig. 5. One can see a good correlation between the data.
Although there is a quantitative difference, qualitatively the data well agree.

4 Conclusion

Numerical, theoretical, and experimental evidence has been given in favor of
quite new understanding of the jet screech phenomenon. In contrast to the
existing screech theory based on the feedback loop of shock/vortex interac-
tions, we assert that the screech comes out as the result of helical instability
which drastically changes the flow and shifts it into a spiral mode; the screech
has in fact the BVI nature and is quite similar to the sound generated by a
quickly rotating in air drill.

References

1. Tam, C.K.W.: Supersonic jet noise. Annual Review of Fluid Mechanics 27, 17–43
(1995)

2. Menshov, I., Nakamura, Y.: Unconditionally Stable Scheme for Unsteady Com-
pressible Flows. Physics of Fluids 17, 034102-1 – 034102-15 (2005)

3. Menshov, I., Nakamura, Y.: Instability of isolated compressible entropy-stratified
vortices. AIAA Journal 42(3), 551–559 (2004)

4. Manning, T., Lele, S.K.: Numerical simulations of shock-vortex interactions in
supersonic jet screech. AIAA Paper, No 98-0282, 1–11 (1998)

5. Hashimoto, A., Menshov, I., Nakamura, Y.: Sound emission from the helical
mode of supersonic jet. AIAA Paper, No 2004-2656, 1–12 (2004)



Calculation of Wing Flutter Using Euler Equations
with Approximate Boundary Conditions

Biao Zhu and Zhide Qiao

National Key Laboratory of Aerodynamic Design and Research, Northwestern
Polytechnical University, Xi’an 710072, China
zhubia@gmail.com, zdqiao@nwpu.edu.cn

1 Introduction

Aeroelastic simulation, such as flutter prediction, is an important issue for modern
aircraft design. If flutter occurs during flight, it will be lead to disastrous structural
failure. So flutter is a catastrophic aeroelastic phenomenon that all flight vehicles
must be clear of in their flight envelope.

Recently, there is a considerable interesting in studying the aeroelasticity of an
aircraft using unsteady Euler equations or Navier-Stokes equations. Bendiksen and
Kousen[1][2] used an explicit time accurate two-dimensional Euler code to study
the nonlinear effects in transonic flutter. With their model, they demonstrated the
possibility of LCO in a transonic flow. Lee-Rausch and Batina[3][4] developed
three-dimensional methods for the Euler and Navier-Stokes equations, respectively,
for predicting the flutter boundaries of wings. Alonso and Jameson[5] developed a
model which is close to the fully coupled method by solving unsteady Euler equa-
tions coupled structural equations. Liu[6] developed a fully coupled method using
Jameson’s explicit scheme with multigrid method and a finite element structural
model. The grids for CFD solver have to be regenerated in total computational field
at every real time step, however the grid generating is a time consuming work. So
we have to use some new numerical method for aeroelastic simulation to decreasing
the calculating time and increasing the calculating efficiency, meanwhile keeping the
required precision.

In this paper, we solve the three dimensional unsteady transonic Euler equations
coupled with structural equations by using the first-order approximate boundary
conditions[7][8][9] to simulate the wing’s aeroelasticity. Cell-center finite
volume method spatial derivatives, implicit dual-time temporal derivatives and 5-
step Runge-Kutta scheme are adopted in the solution of unsteady flow. The tech-
niques of local time stepping and implicit residual smoothing are used to accelerate
the convergence rate. Wall boundary conditions are implemented on non-moving
mean wall positions, meanwhile the first-order approximate boundary conditions
are used in Euler equations on stationary Cartesian grids. This method needn’t gen-
erate the deforming grids during calculation, thus it needs less demand on CPU time
and can be easily deployed in any fluid-structure interaction problem.
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2 Numerical Methods

2.1 Governing Equations

The three-dimensional unsteady Euler equations in conservative integral form in the
Cartesian coordinate system(x, y, z) are

∂

∂t

∫
V

WdV +
∫

S

F • ndS = 0 (1)

whereW denotes the conservative variable andF is flux vector.

2.2 Approximate Boundary Conditions

A rigid wing pitching around an unswept axis located on the planey = 0 and
at x = x0 is considered. The shape of stationary wing is described byf(x, z).
The instantaneous position of the wing surface is defined byF (t, x, z). α1(t) is
the instantaneous angle of attack. Under the assumption|F | � 1, the first-order
approximation of the velocity ofy component on the wing surface at instant timet
is

v(t, x, 0, z) = u(t, x, 0, z)Fx + w(t, x, 0, z)Fz + Ft + O(F ) (2)

where the subscriptsx, z andt denote the partial derivatives with respect tox, z and
t, respectively.

There are altogether five independent variables in the Euler equation (1), e.g.ρ,
u, v, w and p. Then the momentum differential equation in the outward normal
directionn is also used, which gives

n •
[
∂q
∂t

+ (q • �q)
]

= n • (−�p
ρ

) (3)

At the wing surface,y = F (t, x, z) equation (3) is expanded and its first-order
approximation is

py(t, x, 0, z) = Fxpx(t, x, 0, z) + Fzpz(t, x, 0, z)− ρ(t, x, 0, z)

[Ftt + 2Ftxu(t, x, 0, z) + 2Ftzw(t, x, 0, z) + Fxxu2(t, x, 0, z)+

2Fxzu(t, x, 0, z)w(t, x, 0, z) + Fzzw
2(t, x, 0, z)]

(4)

Given f(x, z), the instantaneous position of the wing surfaceF (t, x, z) is ex-
pressed implicitly as follows

f(x0 +(x−x0) cosα1−F (t, x, z) sinα1, z) = (x−x0) sin α1 +F (t, x, z) cosα1

(5)
If there is also plunging with plunging displacement defined asH(t), upward posi-
tive, then equation (5) becomes

f(x0+(x−x0) cosα1−(F−H)(t, x, z) sinα1, z) = (x−x0) sin α1+(F−H) cosα1

(6)
Under the wing being thin and undergoing small deformation, the nine derivatives

of F (t, x, z) used in equation (2) and (4) can be obtained from equation (6).
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2.3 Structural Equation of Motion

The second-order linear structural dynamic governing equation of motion can be
written as

Mz̈ + Cż + Kz = F (7)

whereM, C andK are mass, damping and stiffness matrices, respectively.z is
displacement vector, andF is the aerodynamic load. In this study, the data of natural
mode shapes and frequencies are calculated by finite-element analysis. In order to
solve equation (7), the generalized displacement is introduced. Then the transformed
equation can be solved by Newmark method.

3 Results and Discussion

As validations of three-dimensional CFD solver which based on stationary Cartesian
grid with the approximate boundary conditions for boundary implementation, the
steady state transonic ONERA M6 wing and unsteady transonic LANN wing are
calculated first. Finally, the flutter boundary of the AGARD 445.6 Wing is predicted.

3.1 ONERA M6 Wing

The ONERA wing is a classic test wing to validate CFD solver. The standard test
condition is Mach numberMa = 0.8395 and α = 3.06◦. The grid dimension
is140× 60× 40 in this case.

The computed surface pressure distributions at various cross sections are shown
in Fig.1 with the experimental data given by Schmitt et al[10]. The pressure distri-
butions at different cross section are agreement between the computation and exper-
iment. In these figures, the biggest difference occurs at the leading edge region. This
is because the singularity exists when the present method used in Cartesian grid for
blunt leading edge.

3.2 LANN Wing

The second test case is to validate three dimensional unsteady solver by using
LANN wing[11]. The LANN wing oscillates about an unswept axis at62.1% of
its root chord in a pitching motion. The harmonic pitching motion of LANN wing
can be described by the following equation.

α(t) = αm + α0 sin ωt

In this test case, the free stream Mach number isM∞ = 0.822, and the mean angle
of attackαm = 0.6◦, the pitching amplitudeα0 = 0.25◦ and the reduced frequency
k = 0.102.

In order to compare the pressure distribution of the unsteady computation,
Fourier transformation is performed for the unsteady pressure distribution. The first
Fourier mode of the unsteady pressure distributions at six span positions is shown
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Fig. 1. Pressure distributions on the ONERA M6 wing surface at different cross sections

in Fig.2, whereL is the half span. The left is for real component and the right is
for imaginary component. The shock wave strength is over predicted by the cur-
rent approximate method. And the position of shock wave obtained by using current
method is behind that of experimental result. However, the position and the strength
of the shock wave predicted by the first-order approximate boundary conditions are
better agreement with the experimental results than those by the Euler solver with
exact boundary conditions.
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Fig. 2. Comparison of the first Fourier mode of unsteady pressure for LANN wing
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3.3 AGARD 445.6 Wing

The AGARD 445.6 wing is a semi-span model which has a quarter-chord sweep an-
gle of45◦, an aspect ratio of 1.65, a taper ratio of 0.6576, and a NACA 65A004 airfoil
cross section. We consider the weakened wing model as listed in [12]. The wing struc-
ture is modeled by its first four natural vibration modes in the present computation.

In order to obtain the flutter boundary, the speed indexVf is defined as

Vf =
U∞

bωα
√

µ

whereb is the airfoil half chord,ωα is natural circular frequency for first torsional
modes,µ is mass ratio.

The flutter boundary of the AGARD 445.6 weakened wing model 3 is obtained by
the current approximate method on stationary Cartesian grids and shown in Fig.3.
In order to validate the accuracy of the current approximate method, the experi-
mental result and Batina’s result are shown in Fig.3 too. From the figure, the flutter
boundary predicted by the first-order approximate boundary conditions is agreement
well with Batina’s result and experimental result in subsonic and transonic Mach
number range, and departures from the experimental result in supersonic range. The
flutter frequency predicted by the first-order approximate boundary conditions is
more close to the experimental data than Batina’s result.
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Fig. 3. Comparison of the flutter boundary and flutter frequency of AGARD 445.6 Wing

4 Conclusion

In this paper, we use the first-order approximate boundary conditions to solve the
unsteady Euler equations coupled with equations of structural motion to predict the
flutter boundary of AGARD wing on stationary Cartesian grids. Using this approxi-
mate method, we solve the steady case for ONERA M6 Wing and unsteady case for
LANN wing first, finally the aeroelastic properties of AGARD 445.6 wing is pre-
dicted. The results obtained by the first-order approximate boundary conditions are
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compared well with those obtained by exact boundary conditionsand experiment.
The comparison preliminarily indicates that the first-order approximate conditions
are accurate enough and effective for aeroelastic simulation.
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Summary. Numerical simulations of long-range infrasound propagation in-
volving temperature gradients, realistic atmosphere at high altitude and ab-
sorption are reported in this study. A low-dispersion and low-dissipation
finite-difference algorithm initially developed for aeroacoustics applications
is used to solve the full Navier-Stokes equations including vibrational relax-
ation effects.

1 Introduction

With the aim of monitoring infrasounds (f ≤ 1 Hz) generated by supersonic
aircrafts, meteors or atmospheric explosions, accurate numerical studies of
sound propagation at high altitude in a realistic atmosphere are required to
better understand physics. Low-frequency noise can propagate to thousand
kilometers in the earth atmosphere, and can be detected passively by ground
probes. Due to temperature gradients, sound waves are refracted by strato-
sphere (∼ 50 km) and thermosphere (∼ 110 km) and are then propagated
back to the ground at large distances from the source, typically several hun-
dred kilometers [2]. The mean profile of the sound speed considered in the
present work is shown in figure 1. Local minima of the sound speed can be
observed, corresponding to channel axes of natural waveguide, and sound
waves are refracted towards these axes. This phenomenon is well known in
underwater acoustics since the work by Ewing & Worzel [7] about the sofar

channel in the Atlantic ocean.
The acoustic signature detected at the ground is therefore composed of

several wave packets characterized by different arrival times, and is strongly
affected by classical absorption, namely viscosity and thermal conductiv-
ity [12], by molecular absorption at high altitude, and also by non-linear ef-
fects due to the amplification of sound pressure levels in the upper
atmosphere [15].
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Thanks to the development of accurate time solutions of Navier-Stokes
equations for turbulent compressible flows over the last 15 years, and more
especially to the dramatic progress in computational acoustics, direct simula-
tions of long-range sound propagation in atmosphere are now reachable, and
can provide reference solutions to validate alternative approaches often based
on geometrical acoustics, as illustrated by the study of Wochner et al. [16] for
instance. In the present work, numerical algorithms originally developed for
the direct computation of aerodynamic noise are used to advance simulations
of outdoor sound propagation including atmospheric effects.

2 Case of the Misty Picture experiment

A preliminary simplified simulation of the Misty Picture experiment [8] per-
formed at White Sands Missile Range (NM, USA) is reported here. This
experiment is currently a reference case for infrasound propagation in the
Earth atmosphere [14] as discussed in Gainville et al. [9, 10].

2.1 Atmosphere Model

The atmospheric model is built up from a mean temperature profile T̄ re-
sulting from measurements for the lower part, and from extrapolations with
statistical data for the upper part. These data are provided by Gainville [10].
The mean molecular weight M = M(z) as a function of the altitude z is cal-
culated by following Sutherland & Bass [15], and a perfect gas law is used for
z ≤ 180 km. The pressure profile is then calculated by solving the hydrostatic
equation,

ln (p̄/p0) = − g

R

∫ z

0

M

T̄
dz

where g is the acceleration of gravity, R is the universal gas constant and p0

is the pressure at the ground. The density profile is thus obtained by using
the perfect gas law ρ̄ = p̄M/(RT̄ ). As already mentioned in the introduction,
the profile of the sound speed c = (γrT )1/2 where γ(z) is the ratio of specific
heats and r = R/M , is plotted in figure 1. The two parts of the profile
are clearly visible. The jump for z � 95 km is linked to the modelling of
the molecular weight, and not to the matching between measurements and
statistical data.

A classical issue is then the stability [11] of this profile which leads to the
examination of the sign of the following quantity,

N2 ≡ −g

ρ̄

dρ̄

dz
− g2

c̄2

and the atmosphere model is stable when N2 > 0. Figure 1 also displays the
profile of N = sgn(N2) ×

∣∣N2
∣∣1/2, where N is known as the Väisälä-Brunt an-

gular frequency. The atmosphere is found unstable at four different locations
which means that sound waves passing these regions could generate internal
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Fig. 1. Misty picture experiment, mean flow profiles up to z = 180 km. Left, speed
of sound c and right, Väisälä-Brunt angular frequency N .

gravity waves. This is not, however, a crucial problem here since the travelling
time of an acoustic wavepacket is very small compare to the characteristic
time of gravity waves τg = 2π/N � 2π/0.02 � 314 s corresponding to an
oscillation period of around 5 minutes.

2.2 Governing Equations and Numerical Algorithm

The more general governing equations are the Navier-Stokes equations,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)
∂t

+∇p +∇ · (ρuu)−∇ · τ − ρg = 0,

∂ (ρet)
∂t

+∇ · [(ρet + p)u] +∇ · q −∇ · (τu)− ρg · u = 0

symbolically noted L(U) = 0. In these equations, u denotes the fluid velocity,
τ is the viscous stress tensor, et is the total specific energy and q is the
heat flux vector. The system can also be linearized around the mean state
defined in the previous section, and linearized’s Euler equation are recovered
by neglected molecular effects.

The considered system is excited by a source term written as S =
s(t) × F (x, z) where F is a space Gaussian function and s is the initial
time signature, yielding L(U ) = S. In the present study, the simulations are
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two-dimensional, x and z denotes respectively the horizontal distance and
the altitude, and the function s is given by

s(t) = 0.5 sin(ωst)
[
1− cos

(
ωst

2

)]
[H(t)−H(t− 2Ts)]

where ωs = 2π/Ts = 2πfs, fs = 0.1 Hz, 0 ≤ t ≤ 2T and H stands for the
Heaviside function.

The discretization of the governing equations is performed with an opti-
mized eleven-point stencil finite-difference scheme for the spatial derivation
associated with a selective filtering [3, 5]. A six-stage low-storage Runge-
Kutta algorithm [3] is used for the time integration. Wall boundary condi-
tions are enforced along the line z = 0 and non-reflecting boundary conditions
are implemented elsewhere by means of the boundary schemes of Berland et
al. [1]. This numerical algorithm is widely used by the authors for the direct
computation of aerodynamic noise, refer to [4] for a recent discussion.

Figure 2 displays snapshots of the calculated fluctuating pressure field nor-
malized by the density, p′/

√
ρ̄, which is generated by the impulsive source

located near the ground. The physical computational domain has the di-
mensions 450 km × 180 km. It is discretized with a uniform step size
of ∆ = 300 m, the time advancement is performed with a CFL number
of 0.8 and linearized’s Euler equations are solved in this case. Formation of
shadow zones corresponding to the two natural wave guides discussed in the

Fig. 2. Snapshots of the computed pressure field normalized by the density, p′/
√

ρ̄,
for different times. A ray-tracing (dashed lines) is also superimposed to support the
interpretation. Note that y ≡ z in all theses pictures.
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introduction, and of caustics is clearly visible. More precisely, one can distin-
guish: (1) - stratospheric waves, (2) - thermospheric waves refracted between
120 and 180 km, (2’) - ground reflection of waves (2), (3) - thermospheric
waves refracted around 115 km and (3’) - ground reflection of waves (3). The
pressure signatures for a receiver located at x = 400 km and at different alti-
tudes have been also analyzed and compared with results obtained by solving
the full Navier-Stokes equations.

3 Modelling of Atmospheric Sound Absorption in
Time-Dependent Simulations

Sound propagation in the upper atmosphere requires to take into account
not only the thermo-viscous effects but also the vibrational relaxation ef-
fects [12, 13, 15]. The translational and rotational processes are already
included in Navier-Stokes equations through the dynamic viscosity µ and
the bulk viscosity µb respectively in the viscous stress tensor ∇ · τ =
µ∇2u+(µ/3+µb)∇ (∇ · u), and a thermal equilibrium is also assumed. Time
integration of molecular relaxation effects at near equilibrium state is carried
out by introducing a Landau-Teller relaxation equation for each species β,

∂t(ρTβ) +∇ · (ρuTβ) = (ρ/τβ)(T − Tβ)

where Tβ denotes the vibration temperature and τβ is the associated relax-
ation time. The internal total energy writes thus as the sum of the transla-
tional, rotational and vibrational contributions

ρe = ρetr + ρerot + ρevib =
p

γ − 1
+ ρr

∑
β

XβT �
β e−T �

β /Tβ

In this last expression, Xβ is the mole fraction and T �
β is the tempera-

ture associated with molecular vibration at equilibrium. Physically, an energy
transfer due to the passage of the acoustic wavepacket is produced when the
characteristic acoustic time is smaller than the vibrational relaxation time
τβ = τβ(p, µ, Xβ). Preliminary simulations have been performed by rewrit-
ting the energy equation for the variable ρĕt ≡ p/(γ − 1) + ρu2/2 in order
to preserve the formulation of the non-reflecting boundary conditions in the
solver.

4 Concluding Remarks

A computational aeroacoustics algorithm has been used to provide reference
solutions for long-range propagation in Earths atmosphere at high altitudes.
The next step is to implement a shock-capturing procedure [6] since strong
non-linear propagation effects occurs because of the amplification of sound
pressure levels in the upper atmosphere. Time signatures will be also dis-
cussed by comparisons with experimental data.
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2 Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris
sagaut@lmm.jussieu.fr

1 Introduction

Symmetries are transformations which act on the physical variables of a sys-
tem. They can transform the time, the position, the velocity and the thermo-
dynamical properties (density, pressure) of the physical system. But they do
not modify the evolution of the physical system. This work deals with con-
tinuous symmetries which are described by the Lie group theory. In physics,
symmetries are space-time transformations, such as the Galilean transforma-
tions, the Lorentz transformations, the projective transformations, the scaling
transformations, the translations.

Symmetry techniques are powerful tools for the differential equation analy-
sis. Symmetries have beenused to generate new solutions of complex differential
systems. These are special solutions, called similarity solutions or invariant so-
lutions, i.e. solutions which remain unchanged when the related symmetries are
applied. These explicit solutions can be used to build models for physical exper-
iments, or as reference solutions to evaluate the performance of the numerical
methods. They can also be used to understand the physical dynamics of specific
phenomena. For instance, symmetries have been used in the turbulence model-
ing. Razafindralandy and Hamdouni [RH05], Razafindralandy et al. [RHO07]
have used symmetries to build turbulence model which preserve the features of
the turbulent phenomena. Moreover, if the system is derived from a Lagrangian
action, Emmy Noether theorem states that each symmetry of the Lagrangian
action corresponds to some physical quantity that the system conserves.

In computational aerodynamics, most classical methods, do not preserve
the symmetries of the original problem. This leads to the introduction of an
additional numerical error, which depends on the amplitude of the transfor-
mation. The numerical methods provide an approximate solution of another
problem. Oscillations and instabilities may appear. Figures 1 and 2 show the
dependency of the numerical solution of the Burgers equation upon the frames
stemmed from Galilean transformations. Each frame Fi is corresponds to a
specific value of the velocity vG of the transformation. The Burgers equation
is preserved by the Galilean transformations. But oscillations appear when
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Fig. 1. Numerical results of the Lax Wendroff scheme (Reh = 4, CFL = 0.5), at
t=1

Fig. 2. Space variation of the numerical solutions for the forward-time centered-
space method and Crank Nicolson one (Reh = 4, CFL = 0.5), at t=1

the discrete variables are transformed. Chhay and Hamdouni characterized
this additional error in [CH08] and introduced the concept of the error of
consistency in symmetry.

This additional error arises, in complex computational codes, when the
spatial domain is divided into sub-domains which are in relative motion. For
instance in fluid-structure interaction, the fluid follows the solid structure
motion. The fluid particles are subjected to transformations. If the numerical
method does not inherit the symmetries of the original problem, an additional
error is introduced in the numerical solution.

Symmetry preserving schemes belong to the fundamental research in math-
ematics, which is called geometric integration. Symmetry preserving schemes
have been implemented for generic problems of mathematical mechanics. It is
little known in aerodynamics. The technique has been initiated by Yanenko
[YS76] and Shokin [Sho83] in 1976. They proposed a local analysis of the
symmetries of finite difference schemes, based on the equivalent differential
system. Budd approach [BHR96] has provided schemes preserving scaling
transformations, for problems with exponential increase in time. Olver ap-
proach [Olv01] is based on the theory of Cartan of moving frame. The classical
schemes are invariantized to inherit the symmetries of the original problem.
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Our work concentrates on the so-called method of finite-difference invari-
ants, introduced by Dorodnitsyn [Dor91]. It is a discretization technique
based on a Lie group analysis prolonged to the stencil discrete variables.
The obtained scheme is build on an invariant adapted mesh.

The method [BDK97] is implemented to find finite difference approxima-
tions of the one-dimensional Euler equations, which govern a compressible
and inviscid flow. The approach consists in the building of a discrete invari-
ant model, consistent with the equations. It uses techniques of Lie group
application to algebraic equations [Olv86], [Ibr96]. Comparisons between the
discrete invariant method and the Lax Wendroff scheme will be realized.

2 Euler Equations

The one-dimensional Euler equations for a compressible inviscid flow is
written:

ρt + {ρu}x = 0 (continuity)

{ρu}t + {ρu2 + p}x = 0 (momentum) (1)

{ρE}t +
{
u
(
ρE + p

)}
x

= 0 (energy)

ρe =
p

γ − 1
(ideal gas equation)

ρ, ρu, and E are respectively the density, the momentum and the total energy.
The latter is composed of the internal energy and the kinetic energy:

E = e +
u2

2

x and t are the independent variables. An equivalent closed system involved
the dependent variables ρ, u and the pressure p.

System (1) admits six continuous symmetries:

• Spatial and temporal translations
(x, t, u, ρ, p) �→ (x + a1, t, u, ρ, p)
(x, t, u, ρ, p) �→ (x, t + a2, u, ρ, p)

• Scaling transformations
(x, t, u, ρ, p) �→ (a3 x,a3 t, u, ρ, p)
(x, t, u, ρ, p) �→ (x, t, u,a4 ρ,a4 p)
(x, t, u, ρ, p) �→ (x,a5 t,a5

−1 u, a5
2 ρ, p)

• Galilean transformations
(x, t, u, ρ, p) �→ (x + a6 t, t, u + a6, ρ, p)

The transformations depend continuously upon the physical variables and
the parameters ai, which provide the amplitudes of the transformations.
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3 Discrete Invariant Method

Denote by Σh a finite difference scheme for the Euler equations, by z the
discrete variables of the stencil Z, and by F an approximation of the Euler
equations. Σh can be written as:

F(z) = 0 (2)

Ω(z, h) = 0

where Ω defines the finite difference mesh.
The scheme Σh is invariant under the symmetries of the Euler equations,

if the numerical solution remains the same when the frame is changed under
the action of the transformations.

The action of a symmetry is considered to be the motion of the fluid
particles, described by the equations. The motion is a flow generated by a
vector field, which is called infinitesimal generator.

Denote by Lα(z) the discrete infinitesimal generators related to the sym-
metries of the Euler equation. The infinitesimal change in the scheme under
the flow is written:

Lα(z) F(z) = 0, Lα(z) Ω(z, h) = 0, α = 1, . . . , 6 (3)

Equations (3) are discrete infinitesimal conditions of invariance. These linear
equations easily evaluate the invariance of expressions. They are also used to
derive expressions which inherit the symmetries of the original system. The
building of the discrete invariant scheme follows the procedure:

• Resolution of the invariance conditions with the unknowns Ik:

Lα(z) Ik(z) = 0

The invariants Ik(z) is determined by an algorithmic procedure, which
uses symmetry techniques based on the method of characteristics and
techniques of substitution.

• The discrete invariant scheme is written as:

F(I1(z), . . . , Iθ(z)) = 0

The obtained scheme depends on the discrete invariants Ik(z) and inherit
the whole symmetries of Euler equations. F is chosen in such a way that
it is consistent with the Euler equations. θ is the difference between the
cardinal number of the stencil and the dimension of the matrix composed
of the coefficients of the infinitesimal generators.

The symmetry techniques derive difference equations with Lagrangian for-
mulation, because of the preservation of the Galilean transformation. The
numerical method uses an adaptative mesh method. The numerical reso-
lution is simultaneously done for the fixed computational domain, and the
moving physical domain. A conservative formulation is adopted.
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4 Numerical Results

The numerical test case is the propagation of a linear Gaussian pulse (L =
0.0625, h = 0.001). The Gaussian pulse is initially located at the center of
the domain, at t = 0:

ρ = 1 + h ∗ exp
(

− (x − 0.5)2

2L2

)
, u = 0.5, p =

1
γ

+ h ∗ exp
(

− (x − 0.5)2

2L2

)

Figure 3 shows the evolution of the density at different time steps. The nu-
merical solution of the discrete invariant method agrees well with the exact
solution. Figures 4 show the evolution of the L∞ error norm for the Lax Wen-
droff scheme and the discrete invariant method in different frames stemmed
from Galilean transformations. Each frame corresponds to a specific value

Fig. 3. Propagation of a Gaussian pulse (t=0, t=0.05, t=0.08, t=0.125) with the
discrete invariant method

Fig. 4. L∞ error norm for the Lax Wendroff scheme and the discrete invariant one
in the frames F1, F2, F3
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of the velocity vG of the Galilean transformation. The L∞ error norm for
the Lax-Wendroff scheme depends highly on the velocity. With the discrete
invariant method, the dependency of the error upon the velocity is visibly
minimized. The numerical solution remains the same when the frame changes
under the Galilean transformations.

5 Conclusion

Symmetry theory is applied to computational methods, to build numerical
scheme which inherit the physical properties of the original equations. Partic-
ularly, the discrete invariant method initiated by Dorodnitsyn is implemented
for an inviscid and compressible flow. The implementation leads to the min-
imization of the dependency of the numerical error upon specific frames.
In close future, an improvement of the numerical properties of the discrete
invariant methods will be studied in order to investigate the treatment of
sharp discontinuities. Then the method will be implemented to the Riemann
problem, with the propagation of shocks and contact discontinuity.
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Université de la Rochelle (2008)

[Dor91] Dorodnitsyn, V.A.: Transformation groups in net spaces. J. Sov.
Math. 55(1), 1490–1517 (1991)

[Ibr96] Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential
Equations, vol. 1,2,3. CRC Press, Boca Raton (1994-1996)

[Olv86] Olver, P.J.: Applications of Lie Groups to Differential Equations.
Springer, New-York (1986)

[Olv01] Olver, P.J.: Geometric foundations of numerical algorithms and symme-
try. Appl. Alg. Engin. Comp. Commun 11, 417–436 (2001)

[RH05] Razafindralandy, D., Hamdouni, A.: Subgrid models preserving the
symmetry group of the navier-stokes equations. Comptes Rendus
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1 Introduction

In finite volume (FV) or discontinuous Galerkin (DG) schemes the approxi-
mate solution may jump at the grid cell interface. Any physical phenomena
which can not be resolved on the given grid will result in such a jump. If the
time evolution of these jumps can be approximated in a stable and consistent
way, then the numerical scheme does not generate spurious oscillations and
gives meaningful mean values of under-resolved phenomena. In his pioneer-
ing work Godunov proposed to approximate the convection flux between grid
cells by solving the break down of the jump into different waves. Approxima-
tions of this approach are called Godunov-type schemes and are described,
e.g., in the book of Toro [TOR99].

In the case of diffusion the situation is different. The usual approach in
FV schemes is to reconstruct data at the interface, but under the assumption
of continuity. This is motivated by the fact that the solution of the Cauchy
problem for diffusion is continuous even for discontinuous initial data. But,
this pragmatic approach means that convection and diffusion is treated in
different ways. Furthermore, such a finite difference type approximation needs
a couple of grid cells within a profile not to generate spurious oscillations at
steep viscous profiles. For DG schemes other approaches have been proposed
which take into account the jump via some sort of penalization. This idea
goes back already to symmetric interior penalty (SIP) of Nitsche [NIT71].
Another technique is based on the reformulation of the parabolic equation to
a first order system as proposed in [BR97, CS98].

In the following we propose to follow Godunov’s way also for diffusion and
to base the flux on the local diffusion of a discontinuity. We look at the exact
solution of the so called diffusive generalized Riemann problem. We start
with a scalar linear diffusion equation and extent the results to systems of
diffusion equations. A linearization leads to the general nonlinear case. We
discuss the use of these fluxes in FV and DG schemes and show DG results
for the compressible Navier-Stokes equations.
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2 The Generalized Diffusive Riemannproblem

Linear Scalar Case

In a first step we consider the one-dimensional scalar linear diffusion problem

vt = (µ(x)vx)x with µ(x) =

{
µ+, for x > 0,
µ−, for x < 0,

(1)

with initial values

v(x, 0) =

{
u+ + xu+

x , for x > 0,

u− + xu−
x , for x < 0.

(2)

We use the exact solution of this diffusive generalized Riemann problem
(dGRP) to get information about the local behavior of the solution at jumps.

To obtain the exact solution we use Laplace transformation. The general
solution is first calculated separately in the regions x < 0 and x > 0 in which
the diffusion coefficients are constant. With w(x, s) := L{v(x, t)} the Laplace
transformations of initial value problem (1),(2) read as

w±
xx −

s

µ±w± = −u± + xu±
x

µ± , (3)

where w+ and w− denotes the solution for x > 0 and x < 0, respectively.
The solutions of these two ordinary differential equations contain four con-

stants which are determined by the conditions that the solutions do not
grow exponentially for |x| → ∞ and that the solutions as well as the flux
fd := µ(x)vx is continuous at x = 0. The transformation back results in the
flux at x = 0

fd(0, t) =
[[u]]
√

µ+µ−
√

πt(
√

µ+ +
√

µ−)
+

√
µ+fd− +

√
µ−fd+√

µ+ +
√

µ− , (4)

where [[u]] = u+ − u− denotes the jump. This flux is singular at t = 0, but
the integral average over a finite time step exists as an improper integral

gd :=
1

∆t

∆t∫
0

fd(0, t)dt =
2 [[u]]

√
µ+µ−

√
∆t
√

π(
√

µ+ +
√

µ−)
+

√
µ+fd− +

√
µ−fd+√

µ+ +
√

µ−

(5)
and is defined to be the desired numerical diffusion flux. The state udGRP at
the initial jump is given as

udGRP = lim
t→0+

v(0, t) =

√
µ+u+ +

√
µ−u−√

µ+ +
√

µ− . (6)
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If the diffusion coefficient does not jump, then this expression simplifies to the
arithmetic mean of the state left and right, denoted by {u}. The numerical
diffusion flux (5) reads in this case as

gd :=
√

µ√
∆tπ

[[u]] +
1
2
(fd− + fd+) = µ

(
η
[[u]]
∆x

+ {ux}
)

. (7)

The dGRP flux (7) has a similar form as that of the SIP scheme and may
be considered as its mathematical justification due to the behavior of local
solutions. The parameter η = ∆x/

√
∆tµπ serves as the penalization param-

eter. Its minimal value can be determined by considering the stability of the
method, see [LGM08].

Linear Systems

We consider next the linear diffusion system

Ut −D Uxx = 0, (8)

with the assumption that the diffusion matrix D is positive semi-definite and
diagonalizable. We denote by T the right eigenvector matrix and introduce
the variables W = T−1 U . This transformation decouples the system and
yields for each component of W a scalar linear diffusion equation with dif-
fusion coefficients given by the eigenvalues of D. For each of these scalar
equations, flux (7) is used. After back-transformation into the original vari-
ables, the dGRP flux of the linear system (8) reads as

1
∆t

∆t∫
0

D Ux(x = 0, t) dt = D

(
η
[[U ]]
∆x

+ {Ux}
)

. (9)

Non-linear Systems

For a non-linear diffusion system

Ut − (D(U)Ux)x = 0, (10)

the exact solution is not longer known. A suitable approach seems to linearize
the non-linear system at a state Ũ = Ũ(U+, U−) and to use the dGRP flux (9)
for the resulting linear system. In the simulations for the compressible Navier-
Stokes equations shown in the next chapter, we use simply the arithmetic
meanvalue Ũ = {U}. For cases where the diffusion coefficients have stronger
jumps the average given by (6) is more appropriate.

Multi-dimensional Case

The extension to the multidimensional case is straightforward, when we as-
sume that the underlying problem is invariant with respect to rotation. For
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the approximation of the diffusion flux gd into normal direction at grid cell
surface, the gradient of the state variable ∇u is rotated from the global x-
system into the ξ-system aligned with normal and tangential directions of
the side surface. The transformation can be written as

∇ξu = T ∇xu, (11)

where the subscripts denote the gradients with respect to the corresponding
coordinates. Using the rotational invariance

fd(u, ∇xu) · n = fd
1 (u, ∇ξu) for all n ∈ Rd, (12)

we can write

fd(u,∇xu) · n = µuξ1 =: fd
n. (13)

Hence, the multi-dimensional problem can be reduced to a one-dimensional
problem into the normal direction ξ1. In an analogous way we get for the
numerical fluxes

gd(µ±, u±, ∇xu±) · n =: gd
n(µ±, u±, u±

ξ1
) (14)

where “−” and “+” denote the values at the grid cell interfaces from inside
and outside of the considered grid cell. More details are given in [GLM08].

3 The Use in High Order DG and FV schemes

The big advantage of the dGRP flux in a FV scheme is that the original
reconstruction for advection can directly be used for the diffusion term, too.
The functional values at the interface have the order of the reconstruction.
Due to the fact that derivatives are involved in the diffusion flux we have
to differentiate the local dGRP solution, by which one order of accuracy
is lost. Hence, if we perform a polynomial reconstruction of degree k, then
the convection flux is of order k + 1, while the diffusion flux is of order
k. This is avoided, if under the assumption of smoothness a second central
reconstruction is done for the derivatives at the interface which is up to
now the usual approach. But, using the dGRP-flux it becomes possible to
approximate a with respect to the given grid steep viscous profile within a
few grid cells similar to a shock wave. This may increase the robustness of
the calculations.

In a DG scheme the approximation of diffusion terms have an optimal
order of convergence, if the approximation is adjoint consistent, see, e.g.,
[ABCM02]. This can be obtained in the DG variational formulation by ap-
plying the integration by parts twice to the diffusion term. For a scalar linear
one dimensional diffusion problem, the novel weak formulation is given by
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Q

utφdx −
∫

∂Q

uxφds +
∫

∂Q

uφx ds−
∫
Q

uφxxdx = 0 (15)

where Q is an arbitrary grid cell and φ denotes a test function. See [GLM07]
for details.

4 Example: Compressible Navier-Stokes Equations

We show numerical results for the flow past a sphere at Mach number M = 0.3
and Reynolds number Re = 300. The sphere has the radius r = 1 and is cen-
tered at x = 0. This is a calculation with an explicit space-time DG scheme as
proposed in [LGM07, GLM08] on which the advection flux and the diffusion
flux are combined. The very flexible unstructured grid is shown in figure 1.
Prisms around the surface of the body to capture the boundary layer very
well are combined with tetrahedrons and then with quite regular ”Cartesian”
grid cells for the outer flow. Although the mesh is non-conforming, the result-
ing discretization is fully conservative and high order accurate. To capture
the geometry, prims with curved boundaries are used. The results for a sim-
ulation with 4th order polynomials are listed in Table 1 and show quite good
agreement with incompressible reference results In figure 2 the structure of
the vortices are shown using the λ2 vortex detection criterium.

Fig. 1. Unstructured grid

Table 1. Drag coefficient, lifting coefficient and Strouhal number

CD ∆CD CL ∆CL Sr

0.672 0.0031 −0.065 0.012 0.135
Johnson&Patel [JP99] 0.656 0.0035 −0.069 0.016 0.137
Tomboulides [TOM93] 0.671 0.0028 - - 0.136
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Fig. 2. Isometric view of λ2 isosurface

References

[ABCM02] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of
discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.
Analysis 39, 1749–1779 (2002)

[BR97] Bassi, F., Rebay, S.: A High-Order Accurate Discontinuous Finite Ele-
ment Method for the Numerical Solution of the Compressible Navier-
Stokes Equations. J. Comput. Phys. 131, 267–279 (1997)

[CS98] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for
time-dependent convection diffusion systems. SIAM J. Numer. Analy-
sis 35, 2440–2463 (1998)
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1 Introduction

Recently, in Computational Fluid Dynamics (CFD), the computational ac-
curacy and efficiency have been enhanced with the aids of numerical schemes
and computing systems. However, for the accurate calculations of flow prob-
lems, dense grid points are still needed in the spatial domain. Moreover, the
increase of grid points results in the decrement of the size of the cells, which
limits the size of time step. Therefore, much computational cost is necessary
for accurate calculations of flow problems, especially for unsteady cases.

In spite of needing dense grid systems, it is the waste of the computational
resources to use fine grids in the whole domain because the majority of the
CFD datasets is smooth region where the accurate solutions can be obtained
with relatively coarse grids. Adaptive methods can be a solution for this situa-
tion and adaptive wavelet methods have been studied as good adaptive tools.
For examples, Holmström proposed the algorithm that uses the interpolating
wavelet transformation to organize an adaptive dataset.[Hol99] Sjögreen also
used a multi-resolution scheme based on the interpolating wavelet transfor-
mation to solve the compressible Euler equations.[Sjö95]

The objective of this study is the improvement of the computational ef-
ficiency of unsteady flow problems while the numerical accuracy of a solu-
tion is automatically maintained. For achieving this purpose, the threshold
value developed in the previous research[KKL08] is extended to unsteady
flow problems in order to maintain the spatial and the temporal accuracy
of conventional CFD schemes. And the general adaptive wavelet transfor-
mation procedure is changed by adopting residual interpolation. Throughout
these processes, the accuracy of a conventional solver is conserved and the
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computational cost is substantially reduced. In order to demonstrate the ef-
ficiency and the accuracy of the developed method, the method is applied to
a complicated shock-vortex interaction problem.

2 Implementation of the Modified Wavelet Method

In this research, the two-dimensional Euler equations are used as the govern-
ing equations of unsteady flow problems. The generalized coordinate trans-
formed two-dimensional Euler equations are written as Eq. (1).

∂Q

∂τ
= −[

∂E

∂ξ
+

∂F

∂η
] = −Rn

i,j , (1)

with Q =
Q

J
, E =

1
J

[ξtQ + ξxE + ξyF ], F =
1
J

[ηtQ + ηxE + ηyF ].

Here, our objective is to improve the computational efficiency of unsteady flow
problems with maintaining the numerical accuracy of conventional solvers. For
these purposes, the modified threshold method is applied in order to maintain
the spatial and the temporal accuracyof conventional schemes. And the general
adaptive wavelet procedure is changed by adopting residual interpolation at
the n time step and time integration is performed on the entire domain. The
overall procedure of modified adaptive wavelet method is as follows.

First, by the decomposition process, the estimation of flow variables is per-
formed. If we assume that (i, j) cell is even numbered cell and (i+1, j), (i, j+1)
and (i + 1, j + 1) are odd numbered cells, the values at even numbered cell is
saved to a point in the coarser level grid.At oddnumbered cells,we approximate
the original values by interpolating polynomial. In this research, our concentra-
tion is focused on unsteady flow problems and a tiny change of flow properties
may grow large with the passage of time. Therefore, we use the 6th order of
interpolating polynomial in order to capture the tiny variation of flow proper-
ties, accurately.The equations with 6th order of accuracy for the approximation
procedure of two dimensional flow problems are presented in Eq. (2).

Q̃n
i+1,j =

1
256

(3Qn
i−4,j − 25Qn

i−2,j + 150Qn
i,j + 150Qn

i+2,j − 25Qn
i+4,j + 3Qn

i+6,j)

Q̃n
i,j+1 =

1
256

(3Qn
i,j−4 − 25Qn

i,j−2 + 150Qn
i,j + 150Qn

i,j+2 − 25Qn
i,j+4 + 3Qn

i,j+6)

Q̃n
i+1,j+1 = 0.5× (

3
256

Qn
i−4,j−4 −

25
256

Qn
i−2,j−2 +

75
128

Qn
i,j +

75
128

Qn
i+2,j+2

− 25
256

Qn
i+4,j+4 +

3
256

Qn
i+6,j+6) + 0.5× (

3
256

Qn
i−4,j+6 −

25
256

Qn
i−2,j+4.

+
75
128

Qn
i,j+2 +

75
128

Qn
i+2,j −

25
256

Qn
i+4,j−2 +

3
256

Qn
i+6,j−4)

(2)

After the approximation, we calculate the difference values between origi-
nal values and approximated values as Eq. (3). These routines are performed
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multi-resolutionally and consequently, all difference values except the original
values in coarsest level grid are calculated.

dn
i+1,j = Qn

i+1,j − Q̃n
i+1,j , d

n
i,j+1 = Qn

i,j+1 − Q̃n
i,j+1

dn
i+1,j+1 = Qn

i+1,j+1 − Q̃n
i+1,j+1 (3)

After calculating the difference values, the modified threshold value ε′ is de-
fined in order to maintain the lth order of spatial accuracy and the mth order
of temporal accuracy of the numerical schemes simultaneously, as given by Eq.
(4). Based on this value ε′, we control the flag values of the grid points. If dif-
ference value is larger than ε′, the flag value is determined as 1 and the point is
included in I(ε′) dataset; if not, the flag value is set as 0 and the point is excluded
from I(ε′) dataset. Throughout this process, the dataset is adapted to the flow
features while maintaining the numerical accuracy of conventional schemes.

ε′ = min[ε, max((∆x)l, CFLm · (∆x)m)]. (4)

Then, flux values are only calculated at the included cells in I(ε′) dataset
by the conventional spatial discretization schemes and residual values are
computed at these cells. At excluded cells in the dataset, residual values are
interpolated by using the same interpolating polynomial as Eq. (2). Here,
wavelet transformation and the residual interpolation are performed at the
same time. Then, the residual interpolation can be executed based on the
I(ε′) dataset at n time step and there is no problem due to time discrepancy.
And time integration is performed on the whole computational domain until
some criteria are satisfied.

3 Numerical Test and Discussion

To demonstrate that the modified adaptive wavelet method enhances the
computational efficiency and maintains the numerical accuracy of conven-
tional CFD schemes, it is applied to a shock-vortex interaction problem.[IH99]
The computational domain is set as 0 ≤ x, y ≤ 40. The Mach number of vor-
tex is 0.39 and the initial vortex core is located at the point (7, 7). This
vortex is propagated to a stationary normal shock with the Mach number of
1.29. And the normal shock is inclined by 45 degrees at the point (10, 10).

The governing equations are the two-dimensional Euler equations. For spa-
tial discretization, AUSMPW+ method [KKR01] with the 2nd order MUSCL
scheme [Van97] is used. For time integration, the 4th order Runge-Kutta
method with CFL=1 is used. ε is set as 10−5. Then, the modified threshold
value is presented as Eq. (5).

ε′ = min[10−5, max((∆x)2, CFL4 · (∆x)4)]. (5)

Figure 1 shows adaptive datasets according to the wavelet decomposition
level at t=15sec. It can be known that the datasets follow the flow features
accurately and many cells are remained near the vortex and shock regions.
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In the other smooth regions, the changes of the flow properties are negligible
and the remaining cells are sparsely distributed. Also, in these figures, the
adaptive datasets between level 3 and 4 are very similar. Therefore, there
is a proper level of wavelet decomposition according to the complexity of
solutions. In this case, the appropriate wavelet decomposition level is 3.

Throughout the application of modified adaptive wavelet method, the com-
putation becomes about 2.0 times faster when the wavelet decomposition
level is 3. The L2 error between the solutions of the conventional solver and
the modified adaptive wavelet method is 1.26 × 10−7. The overall efficiency
improvement and the L2 error according to wavelet decomposition level are
summarized in Table 1. If the number of the cells becomes large, the higher
computational efficiency can be obtained because the portion of the region
where the flow properties change smoothly increases and the compression
ratio of the wavelet method can be enhanced. Therefore, the present method
can become more effective in the flow problems that require a huge number
of grid points.

(a) Level1 (b) Level2

(c) Level3 (d) Level4

Fig. 1. Adaptive datasets of shock-vortex interaction problem according to wavelet
decomposition level at t=15sec



Enhancement of the Computational Efficiency of UFP via a MWM 139

Table 1. Results of efficiency improvements and L2 error for the shock-vortex
interaction problem; Grid size is 481 × 481

Wavelet L2 CPU Time
Decomposition Error Time Ratio

Conventional 1162.27
Level1 3.96E-08 921.75 1.26
Level2 7.08E-08 629.52 1.85
Level3 1.26E-07 581.58 2.00
Level4 2.56E-07 578.70 2.01

(a) Conventional method (b) Modified wavelet method

(c) Comparison of density at y=17 (d) Comparison of density at y=25

Fig. 2. Density plots of shock-vortex interaction problem at t=15sec; the wavelet
decomposition level is 3

Figures 2 (a) and (b) show the density distributions of conventional CFD
schemes and the modified adaptive wavelet method at t=15sec, respectively.
The comparisons of the density distributions at y=17 and y=25 are presented
in Figs. 2 (c) and (d), respectively. The density distributions are very similar
to each other. Also in Figs. 2 (c) and (d), the original features around the
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vortex core or the shock discontinuity region are represented exactly by the
modified adaptive wavelet method.

4 Conclusion

Throughout this research, the modified adaptive wavelet method is proposed
for the unsteady flow problems in order to increase the overall computational
efficiency of a conventional CFD solver while maintaining the original nu-
merical accuracy of CFD schemes. First, the threshold value is modified in
order to maintain the spatial and temporal accuracy of conventional CFD
schemes, simultaneously. Second, residual interpolation is performed at the
n time step, not at the n+1 time step to eliminate the problems due to
the time discrepancy. This modified adaptive wavelet method is applied to the
shock-vortex interaction problem. And the computational cost is reduced by
half with maintaining the numerical accuracy of conventional CFD schemes.
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Abstract. This paper uses a fourth-order compact implicit operator scheme for
solving 2D/3D steady incompressible flows using the artificial compressibility
method. To stabilize the numerical solution,numerical dissipation terms and/or fil-
ters are used. Results obtained for test cases are in good agreement with the available
numerical and experimental results. A sensitivity study is also conducted to evaluate
the effects of grid resolution and pseudocompressibility parameter on accuracy and
convergence rate of the solution. The effects of filtering and numerical dissipation
on the solution are also investigated.
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The high-order compact method used herein is an alternating direction implicit
operator scheme, proposed by Ekaterinaris (1999, 2000) for computing 2-D
compressible flows. In the present study, this numerical scheme is efficiently imple-
mented to solve the incompressible Navier-Stokes equations in the primitive vari-
ables formulation using the artificial compressibility method. For space discretizing
the convective fluxes, fourth-order centered spatial accuracy of the implicit opera-
tors is efficiently obtained by performing compact space differentiation in which the
method uses block-tridiagonal matrix inversions. High-order spectral-type low-pass
compact filters are used to regularize the numerical solution and eliminate spuri-
ous modes. The numerical dissipation terms (6th-order) are also used to stabilize
the numerical method. The numerical dissipation term is added to the differenced
equations while filtering is a postprocessing procedure. In this study, the high-order
compact implicit operator scheme is also extended for computing three-dimensional
incompressible flows. A sensitivity studyis performed to examine the accuracy and
convergence rate of the solution to grid size and the pseudocompressibility param-
eterβ. The effects of filtering and numerical dissipation on the solution are also
studied.
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Fig. 1. Effect ofβ andαf on wall shear for backward facing step at Re=800

Fig. 2. Effect ofβ on convergence rate of solution for backward facing step at Re=800

Some of obtained results are presented herein. Figures 1 through 4 show the re-
sults for the flow in a 2- D backward facing step. As shown in Figs. 1 and 2, the
results are not very sensitive to the values of the pseudocompressibility parameterβ
and also the filtering coefficientαf . The results indicate that values of the pseudo-
compressibility parameter in the range of 2-10 give a faster convergence. Figure 3
illustrates the computed flowfield for the backward facing step shown by the velocity
profiles and streamlines for 200≤Re≤1200. As shown in Fig. 4, the present results
for reattachment location of the primary recirculating region in the range Re≤400,
in which the two-dimensionality of the flow retains, agree with the experiment. The
fourth-order accuracy of the method is demonstrated through a grid refinement, as
shown in Table 1.

The effects of the filtering coefficientαf and the numerical dissipation valueεe

on the flowfield parameters (L1,L2,L3 see Fig. 4) are presented in Table 2. The
results show that a larger value ofεe especially for coarse grid affects the solution.
It can be seen that the filtering coefficient in the rangeαf ≥ 0.40 give the reasonable
results.
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Fig. 3. Computed flowfield for backward facing step shown by velocity profiles and stream-
lines, Re=200-1200

Fig. 4. Comparison of reattachment location for backward facing step flow for different Re

Table 1. Order of accuracy of the numerical method implemented

Grid Log x 2 NormLog L

(300 60) -0.7781 -5.2164
(600 120) -1.0791 -6.3832

Order of 
Accuracy

- 3.9
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Fig. 5. Computed flowfield for 3-D cavity shown by streamlines at the planes x=0.5 and y=0.5
for Re=100 (top), and 1000 (bottom)

Fig. 6. Comparison of velocity profiles at the mid-planes x=y=0.5 and y=z=0.5 for 3-D cavity
flow for Re=100,1000

Figure 5 gives the computed flowfield shown by streamlines at they-z (x=0.5)
andx-z (y =0.5) planes for the 3-D cavity for Re=100,1000. With increasing Re,
the centers of the centered vortices in they-z plane are considerably moved toward
the lower wall and the vortices near the corners grow. Also, the center of primary
vortex in thex-z plane is moved toward the center of the cavity. The present re-
sults for the velocity components (u,w) at the mid-planes (Fig. 6) are in agreement
with the available numerical results. The present computations indicate that the
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Table 2. Effects ofαf andεe on flowfield parametersL1,L2,L3 at Re=800

Grid 300 60 600 120

Parameter 1L 2L 3L 1L 2L 3L

0.0025e 6.138 4.901 10.443 6.108 4.866 10.465

0.0050e 6.137 4.900 10.451 6.106 4.864 10.468

0.0100e 6.109 4.870 10.458 6.098 4.855 10.471

0.35f 6.098 4.857 10.466 6.093 4.850 10.473

0.40f 6.095 4.853 10.465 6.093 4.850 10.473

0.45f 6.088 4.846 10.463 6.092 4.850 10.472

high-order compact implicit operator scheme used is robust, accurate and efficient
for computing the incompressible flow problems.
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1 Introduction

Traditional fluid-structure solutions usually involve the use of distinct method-
ologies and codes, eg., finite-volume for the fluids and finite-element for the
structural dynamics [GG92]. Such a strategy consequently involves the use of
sub-iterations to ensure temporal accuracy [MM98]. Alternately, a staggered
solution procedure that preserves temporal accuracy without sub-iterations
may be employed [FL98]. Further, coupled implicit solution schemes have also
been developed [FF92]. Despite these developments, issues remain regarding
the accuracy of load transfers between the fluid and structural domains as
well as the robustness and efficiency of loosely-coupled solution approaches.
In this article, we consider a unified formulation that employs finite-volume
solutions of both the fluid and structural counterparts and a fully coupled
solution of the combined system. Specific attention is paid to the formulation
of the interface flux balance between the fluid and structural zones to insure
appropriate flux conservation at the interface as well as full implicitness of the
non-linear solution procedure. The algorithm is applied to one-dimensional
fluid-structure problems to demonstrate the capabilities of the method.

2 Technical Approach

Equations of Motion

The governing equations for coupled fluid, mesh motion and structural dy-
namics can be expressed using the Arbitrary Lagrangian-Eulerian (or ALE)
formulation:

∂

∂t

∫
V

QdV +
∫

S

E′
idSi =

∫
S

VidSi +
∫

V

HdV (1)
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τ ′
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(
∂ui
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+ δijλ∇ · u
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ij = Ef

2(1+νf )

(
∂df

i

∂xj
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∂df
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∂xi
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+ δij

Ef νf
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τs
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(
∂ds

i

∂xj
+ ∂ds

j

∂xi

)
+ δij

Esν
(1+ν)(1−2ν)∇ · ds

In the above equation, the first three rows represent the standard fluid dy-
namics conservation laws, the next two are the pseudo-structural equations
used to model the fluid-mesh motion and the last two are the structural
equations. The stress terms in each case are also given above.

Preconditioning Formulation

Efficient numerical solution of the unsteady system demands the use of a
dual-time scheme with preconditioning scaling of the pseudo-time derivatives:

Γp
∂

∂τ

∫
V

QpdV +
∂

∂t

∫
V

QdV +
∫

S

E′
idSi =

∫
S

VidSi +
∫

V

HdV (2)

Γp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ′p 0 ρT 0 0 0 0
ujρ

′
p ρδij ujρT 0 0 0 0

h0ρ
′
p − (1 − ρhp) ρui hoρT + ρhT 0 0 0 0

0 0 0 ρf

εf 0 0 0
0 0 0 0 1

εf 0 0
0 0 0 0 0 ρs

εs 0
0 0 0 0 0 0 1

εs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The scalings of the fluid dynamic terms take their standard form (see for
example [SZ04]), while the structural scalings are scalings of the time-step
based on the eigenvalues of the structural system. In 1D, the eigenvalues are
given by the longitudinal seismic velocities, eg., ±

√
Ef/ρf for the fluid-mesh

motion terms. The scaling term is then defined as:

εf =
V√

Ef/ρf
(3)
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A similar expression can be used for the structural equations as well; however,
as we will see later, the structural equations are partitioned from the fluid
dynamics at the linear solver level for domain decomposition. Therefore, the
corresponding pseudo time-step is naturally chosen to be commensurate with
the structural eigenvalues, obviating the need for further scaling.

Discrete Formulation

The unified finite-volume formulation of the fluids and structural equation
permits a common discretization framework to be employed for the entire
system. For instance, the inviscid flux terms can be written as:

E′
k+1/2 =

E′
L + E′

R

2
− ∆x

2
|σ(A′)|(QR −QL) (4)

There are two issues that come up with the discrete formulation. The first
has to do with insuring that the discrete geometric conservation law (GCL)
is satisfied. Substituting for constant flow into the discrete equations:

3
2
V n+1 − 2V n +

1
2
V n−1 = un+1

f,k+1/2 − un+1
f,k−1/2 (5)

In other words, GCL is ensured provided the cell volume is updated using
the appropriate flux formula for the inter-facial grid velocity terms.

The second issue of concern in Eqn. 4 is the dissipation formulation for
the structural flux terms. In Eqn. 1, the structural inviscid fluxes are zero;
nevertheless, we note that the structural equations represent a hyperbolic
system and the addition of appropriate dissipation terms is necessary for
ensuring monotonicity and diagonal dominance. The latter aspect is particu-
larly important for the implicit solution of the combined system. In our work,
we choose the absolute values of the structural eigenvalues, εs

√
Es/ρs and

εf
√

Ef/ρf , to define the respective artificial dissipation terms for these equa-
tions. Note the presence of the preconditioning scaling terms in the eigenvalue
definitions.

Interface Condition

At the fluid structure interface, we must ensure that the flux terms match
and that all compatibility constraints are satisfied. Conservation of mass,
momentum and energy yield the following:

p + τ ′
nn = τs

nn, τ ′
nt = τs

nt, uj = uf
j ,

∂T

∂n
= 0 (6)

Finally, the following compatibility conditions relating the structural and
fluid-dyamic mesh motions must also be enforced:

us
j = uf

j =
∂df

j

∂t
=

∂ds
j

∂t
, ds

j = df
j (7)
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In all, the above equations represent seven equations in seven unknowns (in
1D) and 17 equations in 17 unknowns (in 3D). The solution of these equa-
tions can be expressed as a single vector equation, which can be solved using
Newton’s method:

Ω(Q) = 0 =⇒ ∂Ω

∂Q
∆Q = −Ωk (8)

where Ω(Q) represents Eqns. 6-7. The above solution is used to calculate both
the fluid and structural fluxes at the fluid-strcture interface and the variables
are therefore coupled to the field variables on both sides of the interface. The
implicit coupled solution procedure is discussed in the following section.

Implicit Solution Procedure

Implicit solution of the coupled system of equations in Eqn. 2 can be written as:

Γp
∂QpV

∂τ
= −

[
3Qn+1−4Qn+Qn−1

∆t V n+1 +
∑

faces(Ê
′
iSi)n+1

−
∑

faces(ViSi)n+1 − (HV )n+1
]

= −Rn+1 (9)

which can be linearized and written in delta form as:

[ Γp

∆τ
+
( ∂R

∂Qp

′)]
(Qk+1

p −Qk
p) = −

[( ∂R

∂Qp

)
(Qk

p −Ql
p)−Rl

]
(10)

We note that the left hand side Jacobians may be approximated for a variety
of reasons, but the dual-time iterations still preserve full implicit coupling. In
particular, for domain decomposition purposes, it is easiest to solve the fluid
and structural sub-systems independently. Thus, the above equation would
take the following form:

[
Γp

∆τk
+
(

A′ 0
0 D′

)]
∆k

(
Qf

Qs

)
= −

[(
A B
C D

)
∆l

(
Qf

Qs

)
−Rl

]
(11)

where Qf = (ρ, ρuj, e, ρ
fuf

j , df
j )T and Qs = (ρsus

j , d
s
j)

T , i.e., the fluid and
structural sub-systems respectively. When the pseudo-iterations converge, the
fully coupled implicit solution represented on the right-hand side is satisfied,
thereby ensuring that no new numerical stability constraints are introduced
by the fluid-structure coupling.

3 Results

The coupled implicit fluid-structure algorithm has been implemented in a
one-dimensional code for demonstration purposes. Initial verification focused
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on the stand-alone versions of the fluid and structural dynamics modules.
Figure 1 shows sample convergence performance for steady state structural
computations for an elastic beam with a force applied on one end and for
unsteady fluid computations of a shock tube. In both cases, these results
confirm that the two modules perform as expected.

The individual modules are then combined together using a Python-based
framework [AL04], which manages the overall execution and data transfer
between the constituent solvers. Representative results for a shock-tube with
elastic walls are shown in Fig. 2. Time-accurate computations are performed
using the dual-time formulation and the converged pressure field and struc-
tural displacement are plotted for several time instances. The pressure so-
lutions show a rarefaction wave moving leftward into the high pressure gas,
while a shock and contact discontinuity proceed rightward into the low pres-
sure gas. Eventually, when the shock wave hits the right-wall of the shock
tube, it is reflected and then travels leftward back towards the center of
the shock tube. When the shock hits the right-wall, the pressure rise in turn
causes the beam structure to compress as the wave traverses the beam. It can
be observed that as the pressure rises on the right wall, the beam displace-
ment increases. At the highest point shown, the pressure is about 20 atm,
which is twenty times compared to the initial pressure (on the right side)
of 1 atm. The corresponding beam displacement is observed to be about
25 mm.

These results and more detailed performance estimates (not shown here)
confirm that the coupled formulation provides robust and efficient predictions
for fluid-structure interaction problems. Current work is focused on extending
the analysis to multi-dimensions and to demonstrate the application of the
method to more practical problems.

Fig. 1. Convergence rates for stand-alone structural and fluid dynamics modules.
Figure shows steady-state structural code performance for an elastic beam (left)
and unsteady fluid-dynamics code performance for a shock-tube(right).
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Fig. 2. Sample fluid and structural dynamics results for a 1D shock-tube fitted
with an elastic wall at the head-end. Figure shows pressure along the duct at several
time-instances (left) and the corresponding structural deflections (right).
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AUSMPW+ and M-AUSMPW+ were modified to solve the equations of the ideal 
Magnetohydrodynamics(MHD). Discontinuity-sensing functions in AUSMPW+ 
and M-AUSMPW+ were newly defined for MHD equations. In order to obtain 
high resolution results and to satisfy the magnetic divergence free constraint, the 
OMLP, which is a high order interpolation scheme and a hyperbolic divergence 
cleaning technique, were applied. One-dimensional Brio and Wu’s shock tube 
problem, two-dimensional interaction of shock and cloud problem were calculated 
to validate and show the advantages of the newly developed schemes. 

1   Introduction 

Over the past 20 years, many researchers have been interested in Magnetohydro-
dynamics(MHD) because of its many possible applications to various fields of 
science and engineering such as astrophysics, and thermonuclear, electrical and 
aerospace engineering. In the MHD equations, the magnitudes of all eigenvalues 
are the same order as that of flow speed with the assumption that the electrical 
field is known in advance. Thus, most of the numerical schemes for the MHD 
equations have been based on gas dynamics. Among the many modern upwind 
schemes for gas dynamics, Roe’s approximate Riemann solver was firstly applied 
to the MHD equations by Brio and Wu.[BW88] After that, many other researchers 
including Ryu and Jones, Balsara et al., Dai and Woodward, Zachary et al. have 
used the Roe-type linearized Riemann solver to solve the MHD equations. [RJ95] 
Basically, Roe-type schemes are more accurate than other upwind-type schemes 
because all of the discontinuities in the MHD equations can be physically consid-
ered by each corresponding eigenvalue. However, they require the complex proc-
ess of eigen-decomposition for the MHD system and require more computational 
time, especially for multi-dimensional problems. 

As another approximate Riemann solver, the HLL method has been generalized 
to MHD equations.[Jan00] However, when applied to gas dynamics, HLL essen-
tially made a contact discontinuity smeared since it had no way to recognize  
the discontinuity. Another representative method of the upwind scheme for gas 
dynamics is the Flux Vector Splitting(FVS) method, such as the Steger-Warming 
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scheme. Unfortunately, it cannot be applied directly to the MHD equations  
because it is not homogeneous of degree one with respect to the state vector. 
Therefore, MacCormack modified these equations into homogeneous of degree 
one conservative form by adopting Powell’s model and then used the modified 
Steger-Warming flux splitting algorithm to solve the MHD equations.[Mac98] 
While this method kept the robustness in capturing the fast shock wave, it had a 
basic problem: it could not capture a contact discontinuity accurately. As another 
upwind scheme, the AUSM-type methods were recently developed for gas dynam-
ics. The AUSM-type schemes promise enhanced accuracy over the previous FVS 
schemes like the van Leer or Steger-Warming scheme and offer simpler imple-
mentation compared to the approximate linearized Riemann solver like Roe’s 
FDS. Agarwal et al. firstly applied the original AUSM method with first order 
spatial accuracy to the MHD equations in a one-dimensional case. Even though it 
was successfully applied, the AUSM showed a numerical overshoot at a strong 
shock region. It also generated a relatively more diffusive result at a contact dis-
continuity than Roe’s FDS, which was an interesting result since the AUSM has 
been known as one of the numerical schemes that can capture a contact disconti-
nuity accurately in gas dynamics. 

With respect to spatial discretization, Roe’s FDS gives more accurate results 
than the many modern upwind schemes. However, it requires expensive computa-
tional cost, especially when it is applied in multi-dimensional cases. On the other 
hand, FVS and AUSM-type scheme are more efficient, although they have diffi-
culties in capturing a contact discontinuity accurately. 

With recent demand of an accurate calculation with a lower computational cost, 
a high order spatial calculation of the MHD equations as well as spatial discretiza-
tion has been studied. Jiang and Wu presented the 5th order WENO finite differ-
ence scheme combined with the Lax-Friedrich spatial discretization to calculate 
ideal MHD equations. Even though it was successfully applied to the MHD equa-
tions, the numerical tests seemed to give slightly diffusive results because the Lax-
Friedrich scheme intrinsically generated a higher artificial viscosity. With such 
problems, all of the mentioned schemes have their own weaknesses in accuracy, 
robustness or efficiency, all of which must be overcome. 

The goal of the present paper is 1) to develop a new spatial discretization 
scheme which can ensure both higher accuracy and efficiency over Roe’s scheme 
and 2) to extend the developed new scheme to higher order spatial accuracy with 
robustness. To this end, AUSMPW+ and M-AUSMPW+ schemes[KKR01, KK05] 
were chosen as the base flux function and modified for the MHD calculation. 
Also, the recently developed high order interpolation scheme, the Optimized Multi 
dimensional Limiting Process(OMLP) method [KLL08] was adopted into our new 
scheme to realize stable higher order calculations. 

Through the numerical experiments for one-dimensional and two-dimensional 
cases, our new developed schemes have shown good performances in accuracy, 
robustness and efficiency. 
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2   Governing Equations 

2.1   Ideal MHD Equations 

The ideal MHD equations include the continuity, the momentum, the energy, and 
the magnetic induction equations. The two dimensional ideal MHD equations in 
conservative form are as follows. 
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∂
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∂
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where ρ , p ,V , B , e  are density, pressure, velocity field, magnetic field and spe-
cific total energy, respectively. Total pressure and specific total energy are given by 
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2.2   Modifying the Ideal MHD Equations (Cleaning Divergence Errors) 

Generally, there are no magnetic sources or monopoles in a magnetic field, that is, 
a magnetic field has to satisfy the following divergence constraint.  

0=⋅∇ B .                                         (5) 

For multi-dimensional problems, however, it is difficult to satisfy the divergence 
free constraint using conventional numerical MHD solvers. The violation of the 
divergence constraint in simulations of MHD is due to numerical errors and con-
servation characteristics in the computations. Since this violation may frequently 
lead to severe stability problems, many researchers have tried to enforce the  
divergence-free constraint in their MHD formulations. 

In this study, the mixed-type Hyperbolic Divergence Cleaning Method(HDCM) 
was used to eliminate divergence errors since it can be easily implemented with-out 
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a great modification of the numerical solver. The modified governing equations of 
the mixed type HDCM can be written in the following conservative form.[DKK02] 

3   Numerical Method 

3.1   AUSMPW+/M-AUSMPW+ Scheme of Ideal MHD Equations 

The key idea of the AUSMPW+/M-AUSMPW+ scheme is numerical oscillation 
control by sensing of the discontinuous region and control of advection through 
the use of pressure-based weighting functions. In order to apply the key idea to the 
ideal MHD equations, the pressure-based weighting functionsf andw  should be 
modified to consider the effect of the magnetic field. Although magnetic field 
plays important roles as thermal pressure does in MHD, oscillatory behaviors are 
frequently observed without consideration of the effect of the magnetic field. 

The modified numerical flux of AUSMPW+ /M-AUSMPW+ in two dimen-
sions can be given by 
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3.2   A High Order Interpolation Scheme: OMLP 

OMLP(Optimized Multidimensional Limiting Process) is the high order interpola-
tion scheme. In the OMLP, The mechanism for distinguishing continuous from 
discontinuous regions, which is based on the Gibbs phenomena in computation, is 
introduced so that the decision of the distinguishing function can be used to limit 
the application of MLP to improve the solution accuracy in the continuous region. 
The details of OMLP are described in Ref. [KLK08]. We combined our new 
modified AUSMPW+/M-AUSMPW+ schemes with 5th order OMLP.  

4   Numerical Results 

4.1   Brio and Wu’s Shock Tube Test 

This shock tube problem was firstly tested by Brio and Wu.[BW88] It has been 
considered as one of the standard one dimensional MHD test problems because it 
involves a compound structure that consists of attached shock and rarefaction 
waves. 

The initial conditions of the left and right states are given by 

]1,0,1,0,0,0,1[),,,,,,( =Lzy pBBwvuρ  

]1.0,0,1,0,0,0,125.0[),,,,,,( −=Rzy pBBwvuρ  

with 75.0=xB  and 3/5=γ . The CFL number was 0.8, and 400 grid points  

were used for comparing the numerical flux functions. Figure 1 shows the spatial 
distributions of density according to the numerical schemes at time t=98. 

As shown in Fig. 2, AUSMPW+ shows the most diffusive characteristic,  
followed by Roe’s scheme. M-AUSMPW+ shows a sharper density slope than the 
other two schemes. Especially, the density slope of M-AUSMPW+ with the  
5th-order OMLP is almost twice as steep as that of AUSMPW+ and comparable  
to that of Roe’s scheme on 800 grids. In addition to enhanced accuracy,  
M-AUSMPW+ showed robustness and stability. Especially, although the 5th-
order OMLP was combined with M-AUSMPW+, the calculations were robust and 
the results were accurate without any numerical oscillations. 
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Fig. 1. Density distribution of Brio and Wu’s MHD shock tube test at t=98sec 
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Fig. 2. Comparison of density plots on contact discontinuity between the numerical flux 
functions 
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4.2   2-D Cloud and Shock Interactions 

The next test case was a problem involving the interactions of a high density cloud 
with a strong shock wave. The initial conditions contained a discontinuity parallel 
to the y axis at x = 0.6. The left states and right states across the discontinuity 
were given by 

 
(a) Density contour of Roe with 2nd order and 200X200 grid points. 

 
(b) Density contour of M-AUSMPW+ with 2nd order and 200X200 grid points.

 
Fig. 3. Comparison of density contours between numerical flux functions
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(c) Density contour of M-AUSMPW+ with 5th OMLP/ 200X200 grid points. 

BA

 
(d) Density contour of Roe with 2nd order and 400X400 grid points.

 
Fig. 3. (continued) 

]345.167,73718.7,73718.7,0,0,0,0,86859.3[),,,,,,,( −=Lzyx pBBBwvuρ  

]1,2,2,0,0,0,2536.11,1[),,,,,,,( −=Rzyx pBBBwvuρ  

In front of the shock wave, the initial spherical cloud with radius of 0.15 was lo-
cated at (x, y) = (0.8, 0.5). The initial states of the circle were given by 

]1,2,2,0,0,0,2536.11,10[),,,,,,,( −=circlezyx pBBBwvuρ  
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Fig. 4. Comparison of density line plotted along the line AB in Fig. 3(d) 

 
For boundary conditions, the supersonic inflow was applied to the right bound-

ary, and outflow conditions were applied for all other boundaries. The CFL num-
ber used for the calculation was 0.6, and the computational domain was with a 
uniform mesh. The 3rd order TVD Runge-Kutta method was used for time inte-
gration. In the present study, the calculations using M-AUSMPW+ and Roe’s 
scheme combined with the van Leer limiter “blew up” after some number of itera-
tions. By applying the minmod limiter, which is more diffusive than the van Leer 
limiter, numerical calculations were performed successfully. Thus, all of the 2nd 
order calculations were performed with the minmod limiter in this test case. Even 
though M-AUSMPW+ with the van Leer limiter failed to calculate this problem, 
M-AUSMPW+ with the 5th order OMLP succeeded without any difficulty due to 
the oscillation control ability of the OMLP in multi-dimensions. 

Figure 3(d) is the result of Roe’s scheme with the minmod limiter and the 400 
by 400 grid points, which was used as the reference solution in the present study. 
As shown in the magnified rectangular region of Figs. 3(a) ~ 3(c), M-AUSMPW+ 
with the 5th order OMLP in the 200 by 200 grid points clearly resolves the com-
plex patterns including the contact lines and shock waves. For detailed compari-
sons between the numerical schemes, density line contours are plotted along the 
line AB in Fig. 3(d). The rectangular(C), circle(D) and elliptic(E) regions in Fig. 4 
are enlarged in Figs. 5(a) ~ 5(c), respectively. As shown in Figs. 5(a) ~ 5(c), Roe’s 
FDS and M-AUSMPW+ with the minmod limiter smeared out a local extrema and 
finally show very different density patterns from that of the reference solution. On 
the other hand, M-AUSMPW+ with the 5th order OMLP follows the reference 
solution well even with a quarter grid points. 
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(a) Comparison of density line contours at continuous region(C) in Fig. 4. 
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(b) Comparison of density line contours at discontinuous region(D) in Fig. 4. 

Fig. 5. Comparison of density line contours between the numerical flux functions 
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(C) Comparison of density line contours at continuous region(E) in Fig. 4 

Fig. 5. (continued) 

For the computational time, the elapsed time ratio of M-AUSMPW+ to 
AUSMPW+ was 1.21 and that of Roe’s scheme to AUSMPW+ was 1.62 as in 
Table 1. 

Table 1. Required time for calculation of shock-cloud interaction problem 

Scheme AUSMPW+ M-AUSMPW+ Roe’s FDS 
Time/Iter 1 1.21 1.62 

※ 5th order OMLP and 3rd order TVD Runge-Kutta method were employed. 

5   Conclusions 

The modified AUSMPW+ and M-AUSMPW+ schemes were presented for solv-
ing the ideal MHD equations. And they were extended to higher order spatial ac-
curacy by combination with the 5th order OMLP interpolation method. The newly 
modified M-AUSMPW+ scheme has the following desirable characteristics in 
solving the MHD equations. First, M-AUSMPW+ guarantees enhanced accuracy 
especially in a contact discontinuity because it was originally designed to mini-
mize the numerical dissipation. Second, M-AUSMPW+ can reduce numerical 
oscillations effectively. Third, M-AUSMPW+ shows superior efficiency. Last, M-
AUSMPW+ can easily incorporate the high order OMLP interpolation, and it per-
forms numerical calculations robustly. Through  the various numerical tests, it is 
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confirmed that the newly developed M-AUSMPW+ can solve the complicated 
physical phenomena of MHD systems with enhanced accuracy, robustness, effi-
ciency and high order spatial accuracy. 
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1 Introduction

The extension of the classical Roe’s formulation to the numerical integration
of fully compressible multi-component reacting flows will be presented. The
matrix of the five Navier Stokes equations written in conservative form has
been completed with a set of (N - 1) transport equations for the species
mass fractions. The Eddy Dissipation Model (EDM) [MH76] has been used
as the combustion model of choice, whereas turbulence has been taken into
account via the one equation Spalart & Allmaras model. Coupling of the
above mentioned modeling represents a challenge per se, as the turbulence
mixing time τt had to be derived from the only resolved turbulent quantity ν̃.
The method has been validated against a set of test cases, both in subsonic
and supersonic regimes.

2 Theoretical Formulation and Numerical Treatment

2.1 Governing Equations

The fully coupled system of the species conservation, fluid dynamics, and
turbulent transport equations can be written in a compact vector form as:

∂Q

∂t
+ P · (∂(Fx −Gx)

∂x
+

∂(Fy −Gy)
∂y

+
∂(Fz −Gz)

∂z
) = P · S (1)

where details on the arrays of conservative variables Q, convective and dif-
fusion flux vectors, −→F and −→G , and on the reaction source term −→S , are given
in [FMO97]. The Newton’s, Fourier’s and Fick’s laws of viscosity, heat and
mass diffusivity, together with two equations of state, close the mathemat-
ical model. Dependence on temperature of the specific heat coefficients Cpi
for each of the chemical species i, is modeled via a polynomial function of
T. In order to extend the method to the low Mach number regime, system
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of equations (1) can be preconditioned. The preconditioning matrix is given
by P = M · M−1

m , where M is the Jacobian matrix of conservative vari-
ables vectors Q = (ρ ρ

−→
V ρE ρY1 · · · ρYN )T with respect to the vector

of the viscous-primitive variables Qv = (p V T Y1 · · ·YN )T . Matrix M
contains arbitrary thermodynamics in terms of derivatives of density and
enthalpy with respect to pressure and temperature (ρp, ρT , ρYi , hp, hT , hYi),
while matrix Mm, that is a modified version of M , contains a modified ther-
modynamics in terms of ρm

p . If no modification is applied, (P = I), the
original non-preconditioned system form is recovered (see [MDT02] for more
implementation details).

2.2 Numerical Modeling

The governing equations are integrated by using a cell-centered finite-volume
approach on block structured meshes. Convective inviscid fluxes are ap-
proximated by a second order Roe’s scheme for multi-species reactive flows,
whereas viscous fluxes and source terms are calculated through a standard
cell-centered Finite-Volume techniques and are both second order accurate
(see [MDT02] for a thorough implementations details).

2.3 Turbulence Modeling

The Spalart Allmaras (SA) turbulence model [SA97] is a one transport equa-
tion model for the resolved variable, ν̃, which is similar to the eddy viscosity
νt in regions far from walls. The choice of this model has been suggested for
its well known characteristics of robustness and accuracy, as well as because
it does not require the use of wall functions in wall bounded flows even on
the same kind of grids typically used with algebraic models.

2.4 Combustion Modeling

In industrial applications, the chemical reaction time scale is considerably
short and one generally makes the assumption of a total, irreversible and
infinitely rapid combustion process. Under this assumption, the reaction rate
is mainly controlled by the turbulent mixing time, τt, that can be estimated
from the turbulence kinetic energy k and its dissipation rate ε as: τt = k

ε .
Complete details on the Eddy Dissipation Model (EDM) can be found in
the work of Magnussen and Hjertager [MH76].

3 Coupling the EDM Model with the SA Model

The problem is how to go from νt or ν̃ to ε
k . The idea is to reformulate ε

k
in a quasi LES fashion with the assumption of local equilibrium between the
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production of turbulent kinetic energy and its dissipation rate (Pk = ε). In
this case the turbulent eddy frequency (ω = 1

Cµ

ε
k ) is related to the strain

rate via:

ω =
1√
Cµ

· |S| (2)

where |S| =
√

(Sij − 1
3Skk)2 and Sij = 1

2 · (
∂ui

∂xj
+ ∂uj

∂xi
) is the mean strain

rate tensor. This formulation is valid only in regions far from walls. In fact,
close to walls, strong gradients of the dependent variables occur and the
viscous effects on the transport processes are large. It is then necessary to
extend the model down to solid walls. A wall function based on a two-layer
approach is then used to specify both ε and k in the near-wall region. By fol-
lowing this approach, the computational domain is divided into two regions:
a viscosity-affected region (near walls) and a fully-turbulent region (away
from walls). The standard coupling (2) is used away from the wall. In the
near wall region, the turbulent kinetic energy is computed from the resolved
field variables, while the length scale is specified by using reasonably well-
established algebraic equations. The boundary between the two regions is
determined by a wall-distance-based, local turbulent Reynolds number Rey.
At first εSA and kSA are evaluated as functions of the resolved field variables.
The choice of using ν̃ and |Ω| would lead to: kSA ∝ ν|Ω| and to a dissipation
rate εSA ∝ ν|Ω|2. A better choice may be given by: εSA = νl · |Ω|2 and
kSA =

√
νt·εSA

Cµ
. A local Reynolds number Rey is then computed, being y

the distance to the closest wall: Rey =
√

kSA·y
νl

. In the fully turbulent region
(Rey > 200) the quasi LES model (2) is used. In the viscosity-affected near-
wall region (Rey < 200), the same approach used in one equation turbulence

energy models [W93] is used. By assuming that ε ∼ k
3
2

l and by introducing

a coefficient λε, the dissipation field can be computed as: ε = λε · k
3
2
SA

lε
. As

mentioned in [W93], there are several ways to compute λε and lε. Generally,
length scale distributions similar to those for mixing-length models are used.
Wolfshtein [W69], for low-Reynolds-number flows, introduces a damping fac-
tor which resembles a Van Driest function. The chosen λε and lε are:

λε = 0.5[1 + tanh( Rey−200
40

tanh(0.98)
)] and lε = y · Cl · (1− e−

Rey
Aε )

where: Cl = 0.4187 · C−0.75
µ and Aε = 2 · Cl

Finally, the inverse of the turbulent mixing time can be computed as:

if{
Rey > 200 ε

k =
√

Cµ · |S|

Rey < 200 ε
k = λε · k

1
2
SA

lε

(3)
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4 Test Cases

4.1 Moreau’s Combustor

A stream of a fresh premixed mixture of methane and air (φ = 0.87) enters
through the inlet’s upper part of a 1.3 m long, 0.1 m high, planar combustor
of rectangular section. The flame is stabilized via a stream of hot gases, that
enters the combustor through its inlet’s lower part. A detailed description
of the case can be found in [MB76]. Figure 1 shows the computed profiles
of temperature and axial velocity at several combustor’s cross sections. The
agreement with the experiment looks fairly good.
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Fig. 1. Moreau combustor: transverse distribution along the combustor axis of: a)
temperature; b) velocity

4.2 Kent’s and Bilger’s Combustor

Two separated streams of hydrogen and air enter a cylindrical combustor
[KB76]. The form of the flame depends on the relative velocity of the two
streams. The present calculation is for the velocity ratio (vfuel/vair) of 10.
Figures 2 and 3 show the computed axial and radial distributions of temper-
ature and species mole fractions. In the axial direction results appear to be
in fairly good agreement with the experiment, while in the radial direction
some discrepancy with respect to the experiments is probably due to the
insufficient resolution of the turbulent field.

4.3 Supersonic Flow over a Flat Plate with Injection Slot

A stream of hydrogen is injected through a 1 mm hole into a supersonic (M
= 2.5) stream of nitrogen over a flat plate. This test case allows to check
the method’s capability to solve compressible problems. The system of three
vortexes shown in figure 4 (a) holds the flame. Iso-lines of temperature are
shown in figure 4 (b).
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Fig. 2. Kent combustor: axial distribution of: a) temperature and b) mole fraction
of species
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Fig. 3. Kent combustor: radial distribution of: a) temperature and b) mole fraction
of species

(a) (b)

Fig. 4. Supersonic flow with injection slot: vortex structure in the proximity of the
injection slot (a); iso-lines of temperature (b)

5 Conclusion

The coupling of the Spalart and Allmaras turbulence model with a finite-
rate (EDM) combustion model has been carried out. The resulting formu-
lation, tested against a variety of compressible and incompressible cases,
has given generally more accurate results than those achievable with tradi-
tional approaches. Nevertheless, still some problems have been encountered
in the limit zone of Rey = 200, which are probably due to a still insufficient



172 T. Belmrabet et al.

approximation of the mixing length scale. Future work will be devoted to
address these problems and to give a sounder theoretical background to the
proposed model.
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Summary. Blood flow rheology is a very complex phenomenon. Hemodynam-
ics owns Newtonian or non-Newtonian characteristic is still debatable. There
is no model which represents the viscous property of blood is approved by all
researchers. Recently, studies related to blood tend to classify blood as non-
Newtonian fluid. In this research, power law, Casson and Carreau which are
being the most popular non-Newtonian models are applied to investigate the
hemodynamics variables that influence formation of thrombosis and predict
damageability to blood cell. The branched arterial system is simplified as T-
junction geometry and the computational fluid dynamics software Fluent 6.2
with finite volume method is utilized to analyze the blood flow rheology in
cases of continuous and pulsatile flow. The analysis results are compared with
that of Newtonian model and give out very interesting hemodynamics predic-
tions for each model. The size of recirculation zone is different from each model
that is observed significantly. The wall shear stress of Carreau model gets the
highest value, 14% in case of continuous flow and around 17% in pulsatile case
bigger than that of Newtonian model. The results of pulsatile flow show that
the Newtonian model is closed to power law model while the Casson model is
similar to the Carreau model.

Keywords: hemodynamics, Newtonian, non-Newtonian, recirculation zone,
wall shear stress.

1 Introduction

It is known that about 45% of blood volume contains three main kinds of cells
that are known as red blood cells (RBCs), white blood cells and platelets.
Normally, the red blood cells occupy from 35% to 50% of the blood, Saladin
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et al (2000), so as a result they are important components in determining
the flow characteristics of blood. When whole blood is tested in a viscometer,
its non-Newton character is revealed, Fung (2004). Thus, generally speaking,
blood is non-Newtonian fluid, Quarteroni (2006).

Many studies showed out evidences that blood behaves as a non-Newtonian
fluid even in large arteries. It was proved that blood behaves predominantly
as a non-Newtonian fluid in most of the cycle period, Rodkiewicz et al (1990).
Other studies also gave out conclusions that non-Newtonian viscosity influ-
ences hemodynamics factors both in medium and large size arteries, Gijsen
et al (1999a, 1999b). The conclusions were consolidated by investigating the
non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar
branch, Chen et al (2006). Studies suggested that the non-Newtonian prop-
erty of blood is important in the hemodynamic effect and plays an important
role in vascular biology and pathology. With studying of blood flow in right
coronary arteries Johnston et al (2006) concluded that the non-Newtonian
model is more appropriate than Newtonian to simulate the blood properties.

Several theories have been built to describe the complex behavior of non-
Newtonian fluid with varying degrees of success. Recently, Power law and Car-
reau models, among variety of non-Newtonian models, are the most widely
used, Quarteroni et al (2006). In addition Han et al (2001) found that blood
flow could be described as a Bingham plastic following the Casson equation.

In present study, the analysis of blood flow phenomena is conducted by
using three-dimensional model in both continuous and pulsatile flow cases
with utilizing the computational fluid dynamics software Fluent 6.2. Three
commonly used non-Newtonian models of Carreau, Casson and power law
are still applied to describe the properties of blood.

2 Materials and Methods

2.1 Power Law for Non-Newtonian Viscosity

η = k
·
γ n−1eT0/T (1)

2.2 Carreau Model

η = η∞ + (η0 − η∞)[1 + (
·
γ λeT0/T )2](n−1)/2 (2)

2.3 Casson Model

η =
τ0 + k[γn − (τ0/µ0)n]

·
γ

(3)
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2.4 T-Junction Model

Fig. 1. T-junction model

3 Results and Discussions

Blood flow is demonstrated that the transition from laminar to turbulent only
happens at Reynolds numbers of 3200 with vessel diameter about 7 mm, and
500 with vessel diameter about 1 mm, Han et al (2001). With assumption of
Reynolds number approximately 480 along with 10 mm artery diameter, we
could definitely consider the flow as laminar flow.

The appearance of vortex or recirculation zone is the condition for forming
thrombosis. In both steady and unsteady cases, Newtonian as well as non-
Newtonian fluids form the recirculation zones at the beginning of branched
tube. The Newtonian model provides the largest vortices while the Carreau
model gives out smaller size vortices. We focus on only comparing the results
between Carreau model which owns the biggest viscosity and Newtonian one
with the smallest viscosity.

Blood damage can be categorized as hemolysis, platelet activation, and the
formation of thrombus and two of them are mainly caused by shear stress.
In our research, different viscous models provide different wall shear stress

Fig. 2. Parabolic Pulsatile inlet velocities
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Fig. 3. Velocity distribution-Carreau-Newtonian - Steady

Fig. 4. Wall Shear Stress - Continuous Pulsatile flow

Fig. 5. Velocity distribution-Carreau Newtonian - Unsteady

(WSS) values. The Carreau model shows out the biggest WSS with average
value about 14% in steady case and 17% in unsteady case higher than that
of Newtonian model. The highest viscosity of Carreau model can account for
this behavior. As depicted in Fig.4, while the difference between Newtonian
and non-Newtonian models in case of continuous flow is not apparent even
though Newtonian model gives out the smallest value, the analysis results
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in case of pulsatile flow, especially results of Carreau model, show out much
more obviously this difference.

4 Conclusion

In case of continuous flow, the Newtonian model predicts the largest size
vortex, while the Carreau model predicts smaller size. Higher WSS value is
obtained in case of continuous flow compared with that in case of pulsatile
flow, but the difference between Newtonian and non-Newtonian does not
reflect obviously. While the Casson model is closed to Carreau model, the
Newtonian is similar to power law model.

In case of pulsatile flow, WSS variation of four models highlights that the
difference between Newtonian and non-Newtonian models is very obviously.
In this case, Newtonian model also provides the largest size of recirculation
region, but more obvious than that in case of continuous flow.

In both continuous flow and pulsatile flow cases, Carreau model always
predicts the highest value of viscosity and provides the biggest wall shear
stress. The advantage of Carreau model might give us the numerical analysis
results closer to behavior of nature blood.

Branched artery which is simplified as T-junction mode with angle of 900 is
the worst case we have studied. This finding helps medical scientist be easier
to specify which area inside circulatory system often forms thrombosis.
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A number of hemodynamic studies have already indicated that there is a
relationship between the development of vascular diseases (e.g., atherosclero-
sis, intimal hyperplasia and thrombosis) and the local hemodynamic factors.
Steady flow in the loosely coiled helical pipes is investigated, which is moti-
vated by physiological and clinical applications. The objective of this study
is to improve understanding of the influence of geometrical curvature and
torsion on flows in helical pipes, in which the radius of pipe is much larger
than the distance from the center of the pipe to the center of the helix. The
three-dimensional computations of steady flows in the loosely coiled helical
pipe are performed using a Navier-Stokes equation solver, which is based on
spectral/hp element method for high accuracy. In this study, it is noted that
the position of the maximum axial velocity component is influenced more by
the curvature than by the torsion. It turns out that the effect of torsion on
the axial flow is relatively minor, although torsion can radically influence the
asymmetric pattern of the transverse flow and coherent vortical structures
in a helical pipe. The ensuing results can provide hemodynamic information
(i.e., vortex formation, mixing performance and wall shear stress distribution)
within the loosely coiled vessels, so that clinical applications such as the de-
sign of stents and the model of synthetic bypass graft vessel to enhance the
mixing of blood flow may be proposed.

1 Introduction

Nowadays, many developed countries face high rates of vascular diseases (e.g.,
atherosclerosis, intimal hyperplasia, thrombosis). Various medical, numerical
and experimental observations have suggested that there is a strong correla-
tion between mechanical factors and preferential sites for the accumulation
of lipids in the early stage of atherosclerosis. For one thing, there seems
to be a general agreement that wall shear stress affects the development of
atherosclerosis. However, there is still uncertainty about the exact mecha-
nism. It is hypothesized that low levels of wall shear stress are atherogenic
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[CFS71, KGZG85] and some suggest that the gradient or the level of os-
cillation of wall shear stress are atherogenic, while others believe that high
shear stress can damage the endothelium leading to atherosclerosis [Fry68,
BTY83]. It has also been reported that high wall shear stress may have influ-
ences on initiation of the disease in the very young, but that low wall shear
stress may have influences in adults [NL83, BW98, MCW01]. It is generally
accepted that local hemodynamic factors are associated with the formation
and the development of atherosclerosis, so that an answer to this question can
be given in terms of hemodynamic factors, e.g., velocity, secondary motion,
existence of separation, wall shear stress and coherent vortical structure.

The objective of this study is to provide a better understanding of the
effects of torsion and curvature on the steady flow in the helical geome-
tries with small amplitude. This further hemodynamic knowledge of flow
in helical geometries can subsequently be applied to the optimization of a
LITA (left internal thoracic-artery) graft and the design of stents for clinical
applications.

2 Numerical Models and Methodology

Steady flow in helical geometries as shown in Figures 1 and 2 is studied. The
radius (R) of the helix, the radius (r) of the tube (4R = r) and two different
pitches (P = 20r and 6r) are chosen to correspond to physiologically realistic
vessels. Hybrid high-order meshes are generated by using modified advancing
front technique and the numerical results are achieved by using a Navier-
Stokes equation solver, on the basis of spectral/hp element method [KS99].
In this method, vascular geometry can be defined accurately by increasing
hybrid elements and high p-convergence is obtained by high polynomial order
expansion.

3 Results

Let us show the evolution of steady flow at Re = 125 and 500 in a loosely
coiled helical pipes (Helix I and II) with different pitches to consider the
effects of curvature and torsion, by examining sectional velocity and vorticity
profiles, coherent vortical structures and wall shear stress distribution.

Figures 3 and 4 show the wall shear stress normalised by that in the
Poiseuille flow at the inlet of a straight pipe at the same Reynolds numbers.
The sections of interest in axial velocity, normal vorticity at half-, one-, one &
half- and two-turn of helices are presented on the left and right, respectively,
at Re = 125 and 500. All sections are oriented as shown in Figure 3(b).

In Figures 3 and 4, as Re becomes larger, the effect of curvature and tor-
sion on the flow in helical pipes appears to be more pronounced. In summary,
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Fig. 1. Two-turn helical models, (a) Helix I, (b) Helix II with different pitches P
= 20r and 6r

(a)

(b)

Fig. 2. (a) Side view of two-turn Helix I; (b) Front view of Helix I with the definition
of the amplitude of the helix (A)



184 K.E. Lee and J.Y. Yoo

(a) (b) (c) (d) (e) (f) (g) (h)

Helix I

(i)

Fig. 3. Helix I: (a) the normalised wall shear stress, (b) physical orientation of
each section, (c) axial velocity at Re = 125, (d) axial vorticity on the cross-sections
at Re = 125, (e) axial velocity at Re = 500, (f) axial vorticity on the cross-sections
at Re = 500, (g) coherent vortical structure (λ2 = -0.1) at Re = 125, (h) coherent
vortical structure [JH95] (λ2 = -0.3) at Re = 500 and (i) the scale bars of wall shear
stress, axial velocity and normal vorticity

torsion influences strongly on the transverse flow and the coherent vortical
structure, although torsion does not affect significantly on the change of the
axial flow. In Helix I with small curvature and small torsion, a helical sym-
metric vorticity pattern is observed. In Helix II with large curvature and large
torsion, an asymmetric vorticity pattern presents the dominant single vortex.
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(a) (b) (c) (d) (e) (f) (g) (h)

Helix II

(i)

Fig. 4. Helix II: (a) the normalised wall shear stress, (b) physical orientation of
each section, (c) axial velocity at Re = 125, (d) axial vorticity on the cross-sections
at Re = 125, (e) axial velocity at Re = 500, (f) axial vorticity on the cross-sections
at Re = 500, (g) coherent vortical structure (λ2 = -0.3) at Re = 125, (h) coherent
vortical structure [JH95] (λ2 = -0.3) at Re = 500 and (i) the scale bars of wall shear
stress, axial velocity and normal vorticity

4 Conclusions

The results provide a better understanding of the role of vascular configura-
tions in terms of the curvature and the torsion on the flow. Therefore, these
results can suggest clinical applications with consideration of mixing and wall
shear stress distribution within the helical shaped vessel.
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Abstract. A detailed unsteady simulation of the flow and the forces on the blood 
vessels at the iliac bifurcation of the aorta for both healthy and diseased patients is 
presented. The flow geometry of two patients, one healthy and one diseased, is 
obtained from CT data, while their blood pressure was measured directly. The 
simulations using finite volume CFD and overset grid techniques are shown to be 
very accurate. The abnormal geometry for the abdominal aortic aneurysm patient 
in this investigation effects the flow patterns resulting in large forces that are 
shown to be caused primarily by the blood pressure rather than the flow pressure.  
These forces are directly related to flow area and the direction of the iliac arteries 
relative to the descending aorta. The fluid flow is disturbed by the vessel geometry 
in the diseased patient as shown by areas of significant flow recirculation and 
stagnation. 
 
Keywords: Patient specific AAA stent-graft, computational fluid dynamics, un-
steady flow and dynamic forces. 

1   Introduction 

Over the last decade there has been rapid progress in the technology to repair 
abdominal aortic aneurysms (AAA) with the use of endovascular stent-grafts 

([CRH96], [LL01], [WCM03]).  Although the technology is improving, there is 
pressing need to understand the flow and the forces in individual patients, since 
individual parameters such as advanced disease, age of the patient and blood 
pressure can have a significant influence on long term success of the intervention. 
In the present work, we performed simulations of the flow and calculated the 
forces on two patients in whom there are large variations in the geometry of  
the aortic bifurcation leading to the left and right iliac arteries. The geometry of 
the bifurcations is obtained and modeled from CT scans of the individual pa-
tients, one with an endovascular stent-graph and one without ([S04]). This data is 
used to create three dimensional surface models of the abdominal aorta region 
(see figure 1). These surfaces are then used to generate the overset mesh system 
for our computations.   
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Fig. 1. Surface and Computational grids generated from CT Scans. Healthy Patient (left) 
and AAA Patient (right). 

2   Methods of Approach 

The fluid flow in our system is modeled by the incompressible Navier–Stokes 
equations in dimensionless control volume formulation. 

Continuity 

                0
S
V dA• =∫∫                                  (1) 

Momentum  
2 1

( )
Re ReV V S S

V
dV V VdV p dA dA

t

α τ∂ + •∇ = − • + •
∂∫∫∫ ∫∫∫ ∫∫ ∫∫       (2) 

where p is the pressure, τ  is the viscous stress tensor, R is the inlet radius of the 

aorta, 
2

Re
RU

ν
= the Reynolds number, 

1 / 2

R
ωα
ν

⎛ ⎞= ⎜ ⎟
⎝ ⎠

is the Womersley pa-

rameter [W55], U  is the maximum inlet velocity, ν is the kinematic viscosity of 
the fluid, and ω is the inlet pulse frequency (ω=2πf where f is the heart rate).  For 
most applications this system of equations cannot be solved analytically and a 
numerical method must be employed.  

A control volume approach is used to approximate the solution to equations (1) 
and (2) ([SDC02],[KDC04]). In our numerical simulations, the inlet flow velocity 
at the proximal end of the vessel is specified as a function of time (figure 2), and 
the shapes of the velocity profile and the blood pressure phase are assumed to be 
the same for both subjects. The peak systole average blood velocity in the ab-
dominal aorta is approximately 60 cm/s for a healthy individual and using the ac-
tual measured radii for the subjects and the same cardiac output we obtain a peak 
Reynolds number of Re = 1523 for the stented subject and Re = 2498 for the non–
stented subject. The asymmetric shape of the blood pressure curve in figure 2 
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Fig. 2. Inlet velocity profile and blood pressure curve for one cycle. The cardiac cycle starts 
at 0 and ends at 360. 

corresponds to systole (cardiac contraction) and diastole (cardiac filling).  A fifty 
percent split of the flow volume at the bifurcation is assumed at all times during 
the cardiac cycle. The Womersley number is set at α = 15 in both cases. The 
forces acting on the vessel and the stent-graph are also calculated using a control 
volume approach. 

3   Discussion 

Results of our unsteady three dimensional flow simulations indicate very different 
flow structures and forces between the stented and non-stented subjects. In our cal-
culations the pressure is separated into two parts: the blood pressure and the flow 
pressure.  The sum of these two pressures which represents the actual pressure rela-
tive to the pressure outside the vessel wall, is presented in  figure 3.  When the inlet 
flow is at its peak, the difference between the  maximum and minimum pressure 
values for the AAA stented patient is about 2.5% of the maximum and for the non-
stented patient it is 5.1%.  This relatively small change in pressure indicates that any 
wall motion is primarily due to the overall blood pressure rather than the flow. 

    

Fig. 3. Pressure along the surface of the vessel at peak flow conditions for healthy patient 
(left) and stented AAA subject (right) 
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Fig. 4a. Velocity and instantaneous streamlines along the lateral surface at two different 
times for the stented AAA patient 

 

Fig. 4b. Velocity and instantaneous streamlines along the lateral surface at the same two 
times for the healthy unstented subject 

The velocity and instantaneous streamlines at various stages of the cardiac cy-
cle for both subjects are presented in figure 4.  The bend in the vessel near the 
inlet and the expansion of the vessel area after the bend appear to cause a recircu-
lation zone for the stented AAA subject (figure 4a).  Large sections of flow sepa-
ration are not observed in the case of the non-stented subject during most of the 
cardiac cycle where the geometry is relatively straight and the vessel radius  
remains relatively constant (figure 4b).   

Wall shear stress is calculated and presented in figure 5. The lowest wall shear 
appears in the region after the entrance bend in the vessel near the inlet for the 
AAA stented patient.  Since the cross-sectional areas in this region expand to over 
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Fig. 5. Wall shear stress for healthy patient (left)  and  AAA patient (right) 

twice the cross-sectional area of the inlet, the velocity in this region must de-
crease, resulting in lower wall shear stress. 

Using a control volume surrounding the stent material, the force needed to keep 
the stent-graft fixed, the clamping force, is calculated. A time history plot of the 
various force components is presented in figure 6. In both cases, the blood pres-
sure is the dominate force component indicating that the forces due to the flow are 
of secondary importance when calculating the overall forces acting on the stent 
graft vessel.  The force magnitude calculated, of almost four Newtons, is similar to 
that obtained by Liffman et al [LL01], however the mechanism is much different. 
By doing a comparison of the different forces resulting from fluid flow, the un-
steady acceleration terms and the flow pressure gradient are the largest; however 
they tend to cancel each other out, since flow acceleration and the pressure gradi-
ent are strongly connected through the flow dynamics. 

  

Fig. 6a. Force Components for healthy 
non- stented patient. 

Fig. 6b. Forces AAA patient. Total forces in 
this case is the sum of P-blood and stent 
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The clamping force needed to keep the stent graph fixed also has components 
along all axii, and the relative size is approximately 50% in the vertical or z direc-
tion, 40% in the y direction, and 10% in the x direction.  For the stent graft patient, 
the force due to the measured blood pressure is almost two orders of magnitude 
larger than all the other forces (figure 6b). In the non–stented case, although the 
blood pressure is still the dominating force component, the flow pressure plays a 
more significant part of the force on the vessel wall. Furthermore, the magnitude 
of the clamping force for the stented case is more than an order of magnitude  
larger than that of the non–stented case.  

There are two important factors that explain our results for the force calcula-
tions. First, the dominating force is the blood pressure term, and second, the blood 
pressure term is strongly dependent on the cross-sectional areas of the flow inlet 
and outlets and their orientation. In the case of the non–stented subject, since the 
sum of the outlet cross–sectional areas is approximately the same as the inlet area 
and the normals to the cross–sectional surfaces are nearly parallel, the blood pres-
sure forces on the inlet and outlets nearly cancel each other out. For the stented 
subject the normals to the inlet and outlets are nearly at right angles to each other 
and there is very little cancellation between the inlet and outlets of the blood pres-
sure force. If the right and left iliac arteries are artificially bent for the healthy  
patient, the force magnitude would increase into the range of five Newtons. There-
fore, the direction of the iliac arteries relative to the direction of the aorta plays a 
very significant role on the forces acting on the vessel. 
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1 Introduction

It is well known from literature that unsteady motions of airfoils and wings
create aerodynamic forces suitable thrust and lift forces which propel and
sustain insect and bird flight. Most of the experimental studies carried out
by Freymuth[1], Jones et al.[2], Lai and Platzer[3] and numerical computa-
tions by Liu and Kawachi[4], Wang[5], Lewin and Haj-Hariri[6], have focused
on static flapping or active flight while neglecting the dynamics of forward
flight. In an experiment by Vandenberghe et al.[7], the problem of forward
flight has been discussed in detail with more emphasis on the dynamic mo-
tion of a wing undergoing plunging motion. The transition between the state
of rest and free flight for a flapping wing is shown to take place at a critical
reduced frequency of plunging. Numerical computations in two-dimensions
following the lines of Vandenberghe et al.[7] have been performed by Alben
and Shelly[8], Chandar and Damodaran[9]. Three-dimensional computations
on free flight highlighting the effect of wing rotation modes can be found in
Chandar and Damodaran[10]and is extended in the present paper to under-
stand the effect of outer boundaries on trajectories due to flapping motion in
two-dimensions and analyze the effect of combined wing rotation on forward
flight in three-dimensions.

2 Computational Model

The motion of a wing is governed by the unsteady incompressible Navier
Stokes equations coupled with the dynamical equations of motion. The com-
plete description of the numerical method, implementation of the boundary
conditions, interpolation on the overlapping mesh and convergence studies,
can be found in Henshaw [11], Chandar and Damodaran [9]. However for the
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sake of completeness, an outline of the numerical method is provided here.
The time dependent incompressible Navier Stokes Equations are given by,

∂u
∂t

+ (u.∇)u +
∇p

ρ
= ν∆u + F (1)

∇.u = 0 (2)

Here u is the velocity vector, p is the pressure, F is a vector of external forces
per unit volume, ν is the kinematic viscosity and ρ is the fluid density. These
equations are discretized in space on a system of overlapping meshes. An im-
plicit multi-step method is used for time stepping and second order differences
are used for spatial discretization. The pressure is obtained by solving a pres-
sure Poisson equation using the Bi-Conjugate Gradient Stabilized method
from PETSc(Portable Extensible Toolkit for Scientific Computation) [12].
The acceleration of the body is computed using aerodynamic forces FA and
torques T =

∫
dΩ(r−xcm)×dFA where r is any point on the body and xcm is

the center of mass. This appears in the boundary condition for pressure in the
pressure equation. The Navier-Stokes equations are solved numerically with
this boundary condition and a new set of forces are obtained. This procedure
is repeated over a period of time till the final time of computation. When the
meshes move rigidly with the body, the solutions in the region of overlap are
interpolated using a Lagrange interpolation formula. The non-dimensional
quantities of interest are the Reynolds number Re = Vpc/ν and the Strouhal
number St = ωch0/Vp, where Vp is the maximum plunge velocity, c the mean
aerodynamic chord, ω the flapping frequency, and h0 the maximum plunge
amplitude.

3 Results and Discussions

Validation cases for the OverBlown code can be found in Chandar and
Damodaran[9]-[10]. Two sets of computations are shown in this paper to
address the effect of (i) location of outer boundaries on estimated aerody-
namic coefficients and computed flight trajectories and (ii) wing rotations on
computed flight trajectories.

3.1 Effect of Outer Boundary Locations on Computed
Aerodynamic Characteristics

This assessment is carried out to study the effect of the extent and location
of far-field outer boundary on the computedaerodynamic characteristics and
trajectories for a plunging and pitching symmetrical airfoil (10% thick). Three
different extents of the outer boundary locations are considered. The width
(W ) and height (H) of the computational domain for these cases are given
by (a) W = 24c, H = 16c (b) W = 12c, H = 8c and (c) W = 6c, H = 4c
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Fig. 1. Comparison of aerodynamic characteristics of an airfoil in free flight (a)
vertical force (b) horizontal force and (c) trajectories for different domains

where c is the airfoil chord. The mesh density is maintained the same in
all cases and the minimum mesh spacing from the wall is 5 × 10−4c. The
airfoil undergoes a combined plunge and pitch oscillation analogous to a
flapping wing as described in the next section. The plunge and pitch are
governed by the expressions, h = −h0(1 − cos2πft), θi = θ0(1 − cos2πft)
respectively with h0 = 0.34, θ0 = 10o and f = 1.5 Hz. From the aerodynamic
forces, the position of the centre of mass is then obtained by integrating
Newton’s second law for a rigid body. Figures 1(a)-1(b) show the variation
of the vertical and horizontal force components with spatial x-coordinate
of the forward flight direction for the three cases. Computations show that
these forces are either overestimated or underestimated on a smaller domain.
The forces corresponding to case(b) do not differ much from that of case(a)
(very large domain) hence the domain corresponding to case(b) would be an
optimum choice for economic three-dimensional computations. The computed
trajectory corresponding to these three cases are shown in Fig. 1(c). It can
be seen that the computed trajectory corresponding to case(c) has a larger
wavelength compared to that of case(a) and case(b). This shows that on
smaller domains, numerical errors will cause the airfoil to travel slower.

3.2 Effect of Wing Rotations on Computed Trajectories

Of all flapping wing computations available in literature, computing the free
flight characteristics is conceivably the most interesting one. By allowing the
wing to translate freely, one can get an idea of the trajectory the wings
establish and hence monitor its dynamic performance. From existing com-
putations on flapping wings, it is well known that an optimal combination
of reduced frequency, amplitude and plunge-pitch phase, gives rise to thrust.
But it is unknown what will happen when the body is propelled forward
by virtue of this thrust. Static flapping computations have some drawbacks
i.e.,(i) they might over/under-estimate the thrust due to the fact that the
imposed free-stream velocity is constant. The vortices which are shed as a
result of flapping have a fixed residence time within the vicinity of the airfoil
or wing (ii) It is unknown whether the lift produced as a result of flapping
can sustain the body’s weight. These issues are avoided when the wing is set
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free to move at a velocity which is determined by the aerodynamic forces.
An arbitrary wing consisting of elliptical wing sections with a thickness ratio
of 0.1 and a low aspect ratio of 2is considered so that the three-dimensional
effects are not negligible and a high density ratio of 10 is chosen to ensure
that the wing will move slowly. Choosing a low density ratio wing will result
in large accelerations requiring the imposition of very stringent time steps for
the computation. The span-wise, chord-wise direction extends along the Z-
axis and X-axis respectively as shown in Fig. 2(a)-2(c). Overlapping meshes
with 607,000 mesh points are generated for the wing. The wing is enclosed
in a box (cartesian mesh) which has all its sides as interpolation boundaries
(inner box in Fig. 2(c)). When the wing moves, this box also moves with
respect to a stationary cartesian mesh (outer box in Fig. 2(c)) and the inter-
polation relationship between the outer and inner box is regenerated every
time step. The dimensions of the outer box are decided based on the obser-
vations from the previous sub-section. The domain corresponding to case(b)
is used and the extent of the domain in the span-wise direction is given by
8S where S is the wing-span. Rotations about all three axes can be specified
and the resulting translational motion be obtained by integrating the rigid
body equations. Presently, computations have been carried out for periodic
rotations about 2 axes (X and Z) and the position of the wing being con-
strained to move along X-axis. These are equivalent to plunging and pitching
in two-dimensions. The specified rotational motions for the wing follow the
equation θi = θ0(1 − cos2πft) where θi denotes the angular position of the
wing about axis ‘i’ which passes through the point P(0,0,-1) as in Fig.2(a).
The Reynolds number and the Strouhal number are computed based on the
maximum plunge velocity Vp = 2πθ0Sf where S is the wing-span. Based on
a flapping amplitude of 10 degrees, kinematic viscosity of 0.01cm2s−1 and a
Strouhal number of 2, based on maximum arc length traversed by the wing
tip, the Reynolds number is 329. Since the wing flaps in zero free-stream
velocity, a steady flow initial condition is not required to start the com-
putation at t=0. Three different types of rotation modes are considered
namely (a) rotation about X-axis (b) rotation about Z-axis and (c) combined

(a) (b) (c)

Fig. 2. Free flight of a flapping wing showing (a),(b) The elliptical cross-section
wing of aspect ratio 2 and (c) Mesh block boundaries
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(a) (b) (c) (d)

Fig. 3. Computed (a) trajectory (b) forward speed for a flapping wing with different
modes

rotation about X and Z axis. Using approximately 333 time steps per cycle,
the solution is computed till the wing reaches the vicinity of the boundary.
Figure 3(a)-3(b) shows the computed trajectory and forward speed corre-
sponding to different modes of oscillation. It can be seen that between cycle
4.5 and 5.5 , the combined mode of oscillation propels the wing at an aver-
age speed of 2.05 cm/s. This is about 62% of the peak plunge velocity (3.29
cm/s). Whereas rotation about X, Z axis resulted in an average speed of
0.019 cm/s and 0.0013 cm/s respectively. This result confirms the fact that
pure plunging motion of the wing (rotation about X-axis) results in higher
thrust compared to pure pitching (rotation about Z-axis) at the same reduced
frequency. Figure 3(c)-3(d) shows the contours of vorticity magnitude about
a plane passing through the mid-section of the wing and iso-surfaces respec-
tively. The wake is partially deflected downwards which indicates lift is being
produced. This is also evident from Fig. 4(a) where the time history of lift
over one cycle is plotted along with the wing positions at specific times. The
region from cycle = 4 to cycle= 4.5 is the downstroke and from cycle=4.5 to
cycle = 5 is the upstroke. The average lift in the downstroke is about 8.32
and in the upstroke is about -5.17. Figure 4(b) shows the time history of
the horizontal force over one cycle. The numerical values differ from an ear-
lier computation[10] as the pressure forces were not taken into account while
calculating the total force. In this case the downstroke produces a thrust of
-0.74 whereas the upstroke produces a thrust of 1.25. Hence the conditions
for maximizing lift and thrust occur at different phases of the cycle. A possi-
ble solution to this problem would be to provide a phase difference between
pitch and plunge.

(a) (b)

Fig. 4. Computed aerodynamic forces (a) Vertical force (b) Horizontal force over
one cycle of flapping
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4 Conclusion

The importance of passive form of flapping flight has been discussed based
on the computational study by solving the Navier-Stokes equations on mov-
ing overlapping meshes. The effect of the location of the outer boundary on
computed solutions show that on a smaller domain, the aerodynamic forces
are either over- or under-estimated depending on the position of the airfoil
in the oscillation cycle and that the airfoil motion is slower due to boundary
interference errors. For three-dimensional wings, it has been shown that more
lift is produced in the downstroke than the upstroke and that the combined
flapping mode which involves simultaneous rotation about two axes yielded
a high forward speed due do higher thrust. By varying the phase between
different rotational motions, it might be possible to optimize both thrust and
lift either during the downstroke or upstroke. Further research is aimed at
analyzing the flexibility of the wing in free flight.
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Abstract. An in-house developed multi-block grid CFD code called NSAWET  
is used for simulations of complex aeronautics configurations. With its Win-
dow-Embedment grid technique, the grid generation about complex configuration 
can be greatly simplified by generating grid about each part of the configuration 
separately with appropriate grid topology and density. Multi-scale flow field can be 
well simulated. Both the block number and the grid point number can be dramati-
cally reduced. The code allows exchanging flow information between block inter-
faces on which points are not one-to-one matched with the technique of Overlap 
Area-Weighted Reconstruction. A realistic civil transporter configuration is  
numerically simulated. The results match well with experimental data. 

Keywords: Structured grid, window embedment method, vortex generator, civil 
transporter. 

1   Introduction 

Compared with the unstructured grid, the structural grid’s major drawbacks are its 
difficulties in process complex geometry and inconveniences in local grid refine-
ment. In modern CFD investigations, more and more multi-scale geometries and the 
relevant multi-scale flow fields often need to be simulated. For example, some 
aerodynamics parts are relatively small in size compared with the whole aircraft, 
such as vortex generators, high-lift devices and external stores. Fine grids are 
critical to reveal these critical parts’ surrounding flow details which are important to 
the aircraft’s overall performance.  

In the conventional ‘1-to-1’ multi-block grid technique, because of the strong 
correlation among grid blocks on the grid point number and grid distribution, the 
grid clustering in one block often have to be ‘broadcasted’ to other blocks, leading 
to waste of grid points and excessively large aspect-ratio of grid cells in the far-field 
region. What’s more, the selections of grid topology for different blocks are also 
often mutually restricted and not able to suit each block’s specific geometry and 
flow characteristics. 

In present study, Window Embedment (WE) grid technique is introduced to deal 
with the problems of structured grid. Several successful cases of the WE method 
will be shown in the following sections.  
                                                           
* Corresponding author. 



204  Y. Zhang, H. Chen, and S. Fu 
 

2   Introduction to Window Embedment Grid 

The NSAWET (Navier-Stokes Analysis based on Window-Embedment Technique) 
code is developed for the engineering viscous simulation of realistic aircraft configu-
rations. The Window Embedment technique [CFL03] is the core strategy of the code. 
As a cure for those structural grid technique’s inherent problems, the WE method has 
been successfully used in several realistic aircraft configurations [CZX06]. 

Decomposing a complex configuration to simple parts, and generating grid 
separately, are the basic ideas of the WE method. These ideas come from the 
Chimera grid. But the WE grid is quite different from the Chimera grid, because the 
WE grid has clear interfaces between the outer and inner grid. Flow information is 
interpolated on the grid interfaces. There are two superficial but very important 
advantages for the WE method. First, with the clear interfaces, the conservation of 
the flow information is easy to reserve. Second, high accuracy interpolation 
methods such as ENO and WENO methods are efficacious on the grid interfaces. 
Flow information between the interfaces is exchanged by the method of overlap 
area-weighted reconstruction (OAWR) [CFL03]. Moreover, WE grid method is 
easy to realize local grid refinement, and the total grid point number could be re-
duced. In the window region, a part of outer block grid is replaced by the inner grid. 
But it doesn’t need to eliminate the part of outer block grid. The part is blocked by 
setting the timestep to zero. Block number could be dramatically reduced by this 
method. The array in computer memory of the blocked part is used as ghost cells to 
change flow information between the outer and inner blocks. 

 

). Baseline inlet grid and a window on the grid 

(2). Vortex generators mesh and interface of the window 

(3). Streamlines and Mach number distributions  

Fig. 1 Meshing strategy of WE technique for vortex generators 
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Fig. 2. Surface grid of a civil transporter with nacelle and pylon 

 

To explain the meshing strategy of WE technique, the grid generation procedure 
about vortex generators in a serpentine inlet is used as an example (Fig. 1): First, in 
Fig. 1 (1), an O-H grid is generated about the baseline inlet; then in Fig. 1 (2), a 
window is specified on the baseline grid, and H-H grid blocks for the blades of 
vortex generators are embedded into the window. With such a two-layer embed-
ment, the whole configuration is simulated with high quality grids. The regions of 
vortex generators are simulated by grids with appropriate density and topology. In 
the simulation results, as shown in Fig. 1 (3), the streamlines pass through the 
window smoothly, and the vortex structure after the blades and their effects are 
clearly revealed. 

A more complex example is shown in the Fig. 2. A civil transporter, with nacelle 
and pylon, is separated as three parts: fuselage, wing (or horizontal and vertical 
tails), and nacelle. The mesh near the wing is more dense than the fuselage region. 
Total number of the grid is about 2.5×106. Only about 20% of the points are in the 
fuselage and far-field region; 80% of the grid points are in the window, near the 
wing and the nacelle. 

3   Numerical Methods 

3.1   Spatial Schemes 

Spatial discretization of NSAWET code is formulated in the frame of the finite 
volume approach in order to get a highly efficient, robust and accurate solver for 
engineering application. Two upwind schemes, the Roe’s Flux Difference Splitting  
 

 
(1) Fuselage grid 

 
(2) Wing-body-tail grid         (3) WBT and nacelle pylon grid 
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(FDS) scheme and the van-Leer’s Flux Vector Splitting (FVS) scheme are inte-
grated. Third order MUSCL up-wind bias interpolation is employed to ensure that 
the schemes are 2nd order accurate on non-uniform and curvilinear grid. Smooth 
and continuously derivable van Albada limiter is used to restrict the high-order 
spurious oscillation in the numerical solution. In present study, the Roe’s FDS 
scheme is employed for spatial discretization. 

3.2   Turbulence Models 

Several two-equation turbulence models are integrated in NSAWET for the closure 
of Reynolds stress. The k-ε model, k-ω model with its TNT and SST [Men94] 
variations, and the k-g [XCF05] model are adopted. These models all have the 
so-called low Reynolds number property. Therefore no wall function is needed. 
Solving of model equations for k, ωor g is decoupled from those of N-S equations. 
Second order upwind scheme are used for spatial discretization.  

The k-ω SST and k-g models are employed for comparison in present study. 

3.3   Time Advancing Schemes 

The fully implicit lower-upper symmetric-Gauss-Seidel scheme developed by 
Yoon and Jameson is integrated as the time stepping method for both N-S equations 
and the turbulence model equations. In order to achieve 2nd order of temporal 
accuracy in unsteady computation, dual-time stepping is adopted. 

4   Numerical Experiments 

4.1   DLR-F4 Wing-Body Configuration 

We generated the grid by using the window embedment method. In Fig. 3, field 
information is exchanged between a span-wise patched C-H and H-H grid interface. 
The pressure contours on the two sides of the interface are almost identical. 

The k-ω SST and k-g turbulence model are compared in the computation, shown 
in Fig. 4. The shock location predicted by k-ω SST is a little bit downstream to the 
measured location, while the k-g model matches very well. The result of k-ω SST 
model shows more serious shock-induced separation and larger wing root separation 
than that of k-g model. 

   

Fig. 3. Grid and pressure distribution on a non-matched interface (DLR-F4 wing-body  
configuration) 
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Fig. 4. Comparison of Cp and surface streamline for k-ω SST and k-g model (DLR-F4 
model, Ma=0.755, α=0.93°, Re＝3.0×106) 

4.2   Application for Transporter Simulation 

In this section, a realistic modern twin-engine transporter is numerical investigated. 
The k-ω SST turbulence model is employed for the computation.  

The comparisons on wing surface pressure distribution between the 
wing-body-tail configurations without and with the nacelle-pylon are showed by Cp 
contours in Fig. 5. In our computation, we need only to turn off/on the window of  
 

  
Fig. 5. Comparison of pressure and surface streamline for civil transporter (Ma=0.76, α=4°, 
Re=5.0×106) Left: wing-body-tail; Right: wing-body-tail and nacelle-pylon 
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Fig. 6. Comparison of Cp for civil transporter (Ma=0.76, α=4°, Re=5.0×106) Left: 
wing-body-tail; Right: wing-body-tail and nacelle-pylon. 
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the nacelle and pylon to switch between the two configurations. Fig. 5 shows that 
the nacelle, without a strake, caused an obvious upper surface separation.  

The Cp profiles match well with the measurements, as shown in Fig. 6. Fig. 6 
shows that the nacelle reduces the suction peak of the wing, which may decrease lift 
and increase drag. Similar as section 4.1, the shock position of the SST model 
results is a little downstream in the wing-body-tail case than the experiment (Fig. 6, 
the 62% section). 

5   Conclusions 

The Window Embedment method shows good performance in aeronautics appli-
cations. The results of DLR-F4 wing-body and a twin-engine civil transporter show 
that, the shock locations of SST model are a little bit downstream compared with 
measurements. At the same time, SST model shows more serious separation than 
k-g model in the wing-body configurations. The pressure distributions of k-g model 
match well with the experiments. 
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Summary. An innovative and efficient method for fast prediction of the aero-
dynamic performances of a Vertical Takeoff and Landing Micro Air Vehicle
(VTOL MAV) during the conceptual design phase is presented in this paper.
Characterized by low aspect ratio lifting surfaces and low Reynolds number
regime flight, typical MAVs generate complex flow phenomena that cannot
be accurately accounted using conventional-aircraft design tools. This com-
plexity of the flow motivates the necessity of using advanced Computational
Fluid Dynamics (CFD) tools, even in the conceptual design stage. However,
full CFD simulations for predicting the aerodynamic performances of vari-
ous MAV configurations created during the design stage are not realistic due
to time and computational cost constraints. This paper proposes an inno-
vative solution which based on the Component Buildup Method (CBM) to
predict the full vehicle aerodynamic performances. In order to include the
aerodynamic interferences while still maintaining a low computational cost,
an improved CBM (I-CBM) was developed to predict the VTOL MAV aero-
dynamic performances at various configurations.

1 Background

One of the most common tools used in the aerodynamic prediction during
the conceptual design phase of a conventional aircraft is the Component
Buildup Method (CBM). In this method, each component of an aircraft is
investigated individually and independently. Assuming the validity of super-
position principle of aerodynamic effects, the aerodynamic coefficients of a
vehicle are calculated by adding the aerodynamic coefficients of its major
components. The early formulation of CBM is presented by Pitts, Nielsen,
and Kaattari[1] in their paper about the interactions of circular-cylindrical
bodies with various types of wings/tails. The authors suggest that the lift
of the wing-body-tail combination can be estimated by the sum of lift from
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its principal components. CBM is intensively applied and developed for mis-
sile/rocket design[2][3]. In the conventional-aircraft design process, Roskam[4]
uses CBM to predict the aerodynamic performances of conventional aircraft.
Research in the application of CBM in the conceptual design phase of a
VTOL MAV has only been done recently. A CBM-based code, AVID OAV,
has been developed to predict the aerodynamics of ducted fan MAVs[5]. In
predicting the aerodynamic performances, AVID OAV uses empirical instead
of computational data. This software is also designed only for ducted-fan
MAVs with no wing and inside-the-duct control vanes. In this work, a case
where the MAV may be equipped with wings and outside-the-duct control
vanes is considered.

2 The Proposed Method

The lack of analytical and empirical models to predict the aerodynamic per-
formances of a VTOL MAV makes a quick design analysis difficult. Thus,
the aerodynamic design analysis is usually based more on computational ap-
proach (CFD). The VTOL MAV aerodynamics can be simulated fully or
per component (CBM). Full configuration simulations are too complex and
costly to account for various degrees of freedom in the design envelope. The
component simulations (CBM), which will be referred as individual simula-
tion/analysis, are less complex and less costly than the full configuration.
However, the results obtained using such method are usually inaccurate due
to the negligence of the aerodynamic interferences. A more sophisticated
approach, called the Improved Component Buildup Method (I-CBM), is pro-
posed here. In comparison to the original method (CBM), the I-CBM includes
the interference effects by introducing the correction models. In I-CBM, sim-
ilar to the CBM, the VTOL MAV is decomposed into its major components:
duct, wing, stator, horizontal and vertical tails. In I-CBM, the aerodynamic
performances of the VTOL MAV are calculated by adding the duct-wing
(coupled) results and the corrected-CBM results of the rest of the compo-
nents (Fig. 1).

Three types of analysis are performed in this study: full configuration,
individual and coupled duct-wing. The full configuration analysis is the ref-
erence for all the simulations (Fig. 2). In the individual analysis, each compo-
nent of the VTOL MAV is simulated individually and independently. Thus,
each component in the individual analysis experiences flows with freestream

Fig. 1. Schematic diagram of different computation methods
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Fig. 2. Full configuration of the VTOL MAV

angles-of-attack (α). The full configuration analysis includes all the compo-
nents of the VTOL MAV, such that the flow around a component is perturbed
by other components. The perturbed angle-of-attack is termed as local angles-
of-attack (αlocal) in this study. The duct-wing coupled analysis is performed
to study the aerodynamic interference effects between the two components.
In all equations, lift and drag are referred as forces and symbolized by F.

The duct has an aligning effect to the x-body axis for the flow that passes
through it (Fig. 2). Therefore, the local flow entering the stator is straighten
in the direction of the x-body axis, despite of the angle-of-attack of the
freestream flow. The stator which has a cascade configuration will further
change the direction of the flow before it passes the horizontal and vertical
tails. As a result of lower local angles-of-attack, the stator and the tails pro-
duce lower drag and also lower lift compared to the individual analysis results
for the same freestream angle of attack.

Three parameters are introduced in the analysis: α, β and δ (1). The
freestream angle-of-attack (α) of the VTOL MAV is the relative angle be-
tween the x-body axis and the freestream velocity vector. The second param-
eter (β) is the setting angle of the stators, whereas βL is for the left plane and
βR is for the right. The setting angle of the horizontal tail is symbolized as δ.

CF (α, βL, βR, δ) = CFDuct+W ing (α) + CFStator (α, βL, βR)
+ CFHorizontal−T ail

(α, βL, βR, δ) (1)

Based on βL - βR configuration, the computational model for stator can be
divided into three different categories: symmetrical, asymmetrical-equal and
asymmetrical-unequal. The horizontal tail tested has δ of −2◦, 0◦ and 2◦.

• Symmetrical βL = βR → 0◦ - 0◦ and 5◦ - 5◦

• Asymmetrical-equal βL = −βR → −5◦ - 5◦ and −10◦ - 10◦

• Asymmetrical-unequal βL �= βR → 0◦ - 5◦ and 10◦ - 0◦

3 Validation

A total of 24 computational models are created to validate I-CBM. Us-
ing a RANS solver, FLUENT, each model is tested for three different
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Fig. 3. Lift of the symmetrical and asymmetrical-unequal stator models

Fig. 4. Lift and drag of the asymmetrical-equal stator models

angles-of-attack of 0◦, 10◦ and 20◦. The individual and full configuration sim-
ulation results of a particular component are compared to build the correction
models. The corrected equations are taken from the linear approximation of
the full configuration analysis and marked with “ ∗ ” in Fig. 4 and 5. In this
work, the corrected equations are for α range from 0◦ to 10◦.

The computational results of the duct-wing configuration show that the
lift and drag predictions for the individual simulations (CBM) are signifi-
cantly higher than the coupled (I-CBM) or the full configuration (Table 1).
On the contrary, the lift predictions for the coupled duct-wing and the full
configuration models are in a very good agreement. Both the coupled and full
computational models include the interference effects, and thus the coupled
configuration must be used to accurately predict the aerodynamic properties
of the duct-wing configuration (2).

CFDuct and W ing
�= CFDuct + CFW ing

CFDuct and Wing
= CFDuct+W ing(coupled) (2)

The lift and drag predictions of the individual symmetrical stator model
(CBM) are higher than the full configuration. A consistent pattern of devi-
ation of the individual (CBM) simulation results from the full configuration
ones is also found in the aerodynamics coefficient predictions (Fig. 3). It is
also found that the equation for the the full configuration analysis has signif-
icantly lower lift and drag curve-slopes compared to the individual one (3).
These findings show that the freestream angle-of-attack has a small influence
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Fig. 5. Lift and drag predictions of the horizontal tail for various δ

Table 1. Aerodynamic performances for α of 10◦ for various methods of prediction

Method Total CD Total CL Error (%)
Full configuration 0.0819 0.5233 Total CD Total CL

I-CBM (Coupled Duct & Wing) 0.0916 0.5294 11.84 1.16
CBM (Uncoupled/Individual Duct & Wing) 0.1244 0.7953 51.89 51.97

Table 2. Comparison of results for α of 10◦

CBM I-CBM Full Model
CL CD CL CD CL CD

Wing 0.527 0.065 0.529 0.092
Duct 0.268 0.059
Horizontal tail 0.045 0.013 0.001 0.005
Vertical tail 0.003 0.009 0.003 0.009
Stator 0.059 0.054 0.016 0.046

Total (CBM) 0.902 0.202 0.550 0.152 0.547 0.141
Error (%) 64.70 43.34 0.41 8.12 - -

on the aerodynamic performances of the stator because the duct redirects
the flow before it reaches the stators. Similar findings are observed in the
computational results of the asymmetrical-equal and asymmetrical-unequal
models (Fig. 4).

∂CF ∗
Stator

∂α
≪ ∂CFStator

∂α
(3)

∂CF ∗
Horizontal−T ail

∂α
≪

∂CFHorizontal−T ail

∂α
(4)

The aerodynamic performances of the horizontal tail are not fully dictated
by the freestream angle-of-attack. One can notice from the variations of the
CL vs. α and the CD vs. α curves in Fig. 5 that the drag and the lift of
the horizontal tail with various setting angles (δ) only change slightly with
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the increase of the freestream angle-of-attack. These results show that the
stator redirects the flow before it passes the horizontal tail, generates a lower
local angle-of-attack, which leads to a lower drag and a lower lift produced
by the horizontal tail (4).

After the duct-wing coupled model is analyzed and the correction model
for stator and horizontal tail are formulated, the I-CBM can be applied to
predict the aerodynamic performances of the VTOL MAV. The corrected
values, italicized in Table 2, are calculated using the correction models. The
rest of the components are computed individually and independently. As
shown in Table 2, I-CBM gives significantly more accurate results compared
to CBM. The CBM overpredicts the total lift and the total drag of the VTOL
MAV by more than 60% and 40% respectively. Using the I-CBM, the total
lift for the MAV is overpredicted by less than 1%, while the total drag is
overpredicted by 8%.

4 Conclusions

Two main points are taken from this study. First, the duct and wing are
inseparable due to the strong interference effects between them. The sep-
aration of the duct and the wing leads to significant error in predicting
the vehicle’s aerodynamic performances using the CBM. Second, the rest of
the components can be analyzed individually and independently by applying
the correction models. Therefore, I-CBM by taking into consideration the
duct-wing interference effects and the correction models for the stator and
the horizontal tail, proved to be a fast and reasonably accurate approach to
predict the aerodynamic performances of the VTOL MAV.
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This study takes place in the frame of a research project to simulate the
flow in a multistage High Pressure Compressor (HPC). The present paper
focuses on the effect of tip gap deteriorations that occur in a high pressure
compressor due to thermal constraints. To simulate this challenging industrial
problem, the compressor is considered with two radial tip gap dimensions.
The flow is computed by the mean of a 3D unsteady RANS calculation and is
compared with experimental measurements, showing that a good decription
of the mean flow is obtained with the proposed numerical model. The results
show that the last stage is responsible for the loss of stability. An increase
of the radial tip gap leads to a dramatic reduction of operability (by 20%),
pressure ratio and efficiency. Finally, detailed investigation of the flow at off-
design conditions are presented to obtain a better understanding of the flow
in this multistage compressor.

1 Introduction

To answer to the objectives in terms of pollutant emissions and economi-
cal constraints, the design of the next engine generation points toward com-
pact, high efficiency and large operability configurations. To achieve these
challenging goals, an increase in performances of the critical component like
the compressor is thus a necessary step. Unfortunately, some phenomena that
take place in a modern gas turbine engine are still not well understood, espe-
cially in a multistage compressor. It is now well established that overall per-
formances of a compressor are strongly dependent on the flow behavior near
end walls [DE07]. Moreover, the compressor operability is directly linked to
the tip clearance dimension [IKY+04] but this radial gap varies in size, mainly
due to thermal constraints and deterioration. Even if the impact of this pro-
cess is not easy to estimate, it must be taken into account at the design stage,
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resulting in an increase of the surge margin (about 30% of the total margin)
and thus an increase of the engine specific consumption. Moreover, many au-
thors such as Crook et al. [CGTA93] and Hoying [Hoy96] have clearly shown
that the tip leakage region exhibit usually the first signs of instabilities for most
of the subsonic and transonic compressors. Indeed, a better description of tip
leakage flows can give valuable information to design high efficiency and more
stable compressor. These last few years, the development of reliable numerical
tools (Computational Fluid Dynamics) and high performance computers led
to significant progress to study turbomachine flow problems.

To simulate very complex flows that occur in turbomachine, few authors
have recently shown that a balance between a correct physical description and
the time calculation can be found. For example, Hathaway et al. [HHCW04]
have investigated the development of instabilities in a full helicopter multi-
stage compressor and a simulation of a rotating stall phenomenon has been
done by Gourdain et al. [GBM+06] in a full subsonic compressor stage. Both
studies have been performed thanks to an unsteady RANS method. A higher
level in terms of very large system simulation has been reached by Schluter
et al. [SAKVDW05] with the simulation of a full aircraft gas turbine, using
an inventive RANS/LES coupling strategy.

Even if the unsteady RANS approach is very costly, it is still the most
appropriate method to describe the flow in a multistage compressor, at any
operating point. Based on this state of the art, it is proposed in this paper to
investigate the unsteady flow of a three-stage compressor, with a particular
interest for the flow evolution after a deterioration of the tip gap in the two
last rotors. The test case and the numerical method are presented in the first
section. Due to natural periodicity, only a 22.5o sector is sufficient to take into
account all the rotor-stator interaction phenomena. However a good balance
has to be found between precision and simulation cost to represent the flow in
such a system. To obtain a validation of the numerical model, experimental
data are used to compare mean aerodynamic values. Then results obtained
for both configurations (with small and large radial tip gaps) are presented
and analyzed in a second section. Finally the paper focuses on off-design
operating conditions. The interest is to point out the effect of the tip gap
dimension on the tip leakage flow features and on the compressor stability.
As a consequence, useful information is expected for the design of the next
engine generation, thanks to a better quantification and prediction of the tip
gap deterioration effects.

2 Methodology

2.1 Compressor Test Case

The test case used for this study is a slightly transonic multistage compressor,
designed for studying aerothermal and aerodynamic effects. The configuration
is representative of a high pressure compressor core of a modern gas turbine
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Table 1. Blade number of the compressor rows

IGV R1 S1 R2 S2 R3 S3

Number of blades 32 64 96 80 112 80 128

Fig. 1. Axial view of the investigated multistage compressor

and is installed on a 2.05 MW test facility equipped with wire probes and
Laser Doppler Velocimetry. Measurements have been performed by Ottavy
et al. [OTVA06] and Vouillarmet et al. ([VOP06]) at different operating
points, from chock to stall. This axial compressor is composed of six rows and
one Inlet Guide Vane (IGV). The number of blades of each row is indicated
Table 1 and an axial view of the compressor is shown on Fig. 1. The rotor
blade shape is a forward swept design that promotes both efficiency and
operability.

The nominal rotational speed is 11,500 rpm, corresponding to a relative
tip Mach number at the first stage of 0.92, so the flow is transonic in the first
stage and mainly subsonic in the two other ones. In order to investigate the
specific role of the tip leakage effects, two configurations of the same compres-
sor are tested. The first one is the original version of the compressor (small
radial tip gap) while the second one corresponds to the same compressor af-
ter a deterioration. Thermal constraints are usually more importants for the
last stages. To represent this phenomenon, the radial tip gap is increased but
only for the two last rotors. Relative dimensions of the tip gap l, expressed
as a fraction of the blade span H , are indicated Table 2 for each rotor. For
industrial reasons, all the data presented in this paper are normalized with
respect to the maximum experimental value. That means the mass flow is
expressed as a fraction of the experimental chocked mass flow and experi-
mental maximum pressure ratio and efficiency are equal to 1.0. Moreover,
experimental data are available only for the original configuration with the
smallest radial tip gaps.

2.2 Numerical Method

The flow solver used is the elsA software that solves the Reynolds-Averaged
Navier-Stokes equations using a cell centered approach on multi-block struc-
tured meshes [CV08]. Convective fluxes are computed thanks to a third order
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Table 2. Radial tip gaps for both configurations

Blade row Configuration 1 Configuration 2

R1 l/H=1.2% l/H=1.2%
R2 l/H=1.7% l/H=2.5%
R3 l/H=2.1% l/H=2.7%
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Fig. 2. Comparison of the wake model with experiments (compressor inlet, total
pressure)

Roe scheme with a Harten entropic correction [Roe81] and diffusive fluxes
are computed with a 2nd order centered scheme. A second order Dual Time
Stepping (DTS) method is considered for the time integration [Jam91]. The
time marching for the inner loop is performed by an efficient implicit time
integration scheme, based on the backward Euler scheme and a scalar LU-
SSOR method [YJ87]. Convergence acceleration techniques such as local time
stepping method are also used. To reach a converged state, the number of
sub-iterations for the inner loop is defined to obtain at least two orders of
reduction for the residuals magnitude. The turbulent viscosity is computed
with the two equations model of Wilcox [Wil88] based on a k−ω formulation
and the flow is assumed to be fully turbulent since the Reynolds number
based on chord is around 106.

For practical reasons of CPU resources, the whole experimental domain can
not be simulated. First the IGV is not represented but is taken into account
by means of an analytical model. The hypothesis is that the flow distortion
generated by the IGV is mainly induced by the presence of wakes. This
behavior is modeled according to the self similarity law of Lakshminarayana
and Davino [LD79] that describes the spatial evolution of a wake with a
simple Gaussian function (Eq. 1). Experimental data obtained at the nominal
operating point are then used to fit the model constants as the azimuthal wake
extension L and the total pressure deficit δpwake. A comparison of the model
with experiments is presented Fig. 2. As it can be shown, the wake model
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is able to reproduce the main features of the inlet flow, especially at mid-
span. These differences observed near the hub are due to a recirculating high
temperature flow in the facility that is not considered by the analytical law.
Finally, the wake model is used to define the upstream injection condition
through the values of total pressure Pt, total temperature Tt and velocity
direction α.

Pt(θ) = Pt0

{
1− δPwakeexp

[
−α

(
θ

L/2

)2
]}

(1)

Pt0 : reference total pressure
δPwake : total pressure deficit

α : form factor (α = 0.693)
θ : azimuthal coordinate
L : wake extension

Second, it is assumed that a good description of the deterministic stresses
is the most important parameter to compute correctly the aerodynamical
stability limit [GBL05], meaning the duct length has no real impact on the
surge line position. Indeed only a part of the inlet and outlet ducts is modeled.
However a sufficient distance is considered between the boundary conditions
and the blade rows to avoid numerical reflexion problems. A particular feature
of the present compressor is that a periodicity between the different blade
rows exist. Thus only a 2π/16 sector periodicity can be considered (22.5
degrees) to represent all the rotor-stator interactions. The main limitation is
that no tangential wavelength greater than a sixteenth of the circumference
can develop. Indeed, the numerical model is not able to compute a realistic
unstable phenomenon (rotating stall or surge).

The flow domain is discretized with a multi-block approach, using an O-H
meshing strategy for each passage of the compressor. A view of the mesh
is presented Fig. 3. The typical dimensions of a blade passage mesh are 85,
33 and 57 points, respectively in the axial, tangential and radial directions.
An O-H mesh with 13 points in the radial direction is used to discretize the
radial tip gap. To obtain a good balance between CPU cost and precision,
a wall law approach is applied [GH01] with a fixed wall cell size that cor-
responds to a mean normalized wall distance y+ of 20. The same meshing
strategy is used for both studied configurations, leading to a total nodes num-
ber of 8.4 millions to discretize the three stages. The number of mesh points
and the normalized wall distance y+ are kept constant but the dimension of
the mesh cells inside the tip leakage is thus slightly increased in the case of
the large tip gap. A standard condition of spatial periodicity is considered for
the lateral boundaries and a sliding mesh condition with non abutting points
is applied at the rotor/stator interface. The main advantage of this approach
is to be conservative in the case of plane interfaces (which is roughly the case
here). Moreover this boundary condition is optimized in terms of time and
memory requirements since only 2D interpolation coefficients are needed. To
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Fig. 3. View of the whole mesh at mid-span and details near the leading and
trailing edges (1 point over 2)

model the outlet duct, a throttle condition is coupled with a simplified radial
equilibrium. Then the characteristic of the compressor is described from the
choked point to the stall inception point, simply by increasing the value of
the throttle parameter λ.

2.3 Numerical Model Validation and Results

The numerical model is used to perform unsteady calculations thanks to 4
processors of a NEC SX8 supercomputer (corresponding to a 128 Gflops peak
power). The numerical simulation shows that a periodic state is reached after
one compressor rotation at choked conditions while more than four rotations
are needed for a near stall operating point. A validation of the numerical
model is then obtained by a comparison of the numerical data with exper-
imental measurements. The total-to-total pressure ratio and the polytropic
efficiency are plotted on Fig. 4 with respect to the mass flow. Experimental
data are indicated only for the small tip gap version while numerical data
are shown both for small and large tip clearance cases. All data are time
and space averaged. The first thing is to evaluate the capacity of the model
to compute the surge line position. Nevertheless an assumption is necessary
to estimate the stability of an operating point, since the experimental time
needed to obtain instabilities can be very important (more than hundreds of
rotor revolutions), and thus can not be simulated for practical reason of time.
For a given operating point, up to four rotations are simulated. If a periodic
state is reached at the end of this time, the computed point is assumed to be
stable. The comparison with the experimental measurements shows that the
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compressor operability, defined as the difference between the chocked mass
flow and the last stable operating point mass flow, is correctly estimated by
the simulation (relative error is less than 1.5%). The numerical model is also
able to represent correctly the pressure and efficiency evolutions with respect
to the mass flow. The chocked mass flow is only a little bit over estimated
(+0.6%) and the stability limit is slightly under predicted (-0.7%). These
small differences are probably due to the coarse mesh used that is not suf-
ficient to compute the smallest details of the flow. Another approximation
is the inlet boundary condition that has been fitted only for the nominal
operating point, meaning that the inlet flow characteristics are possibly not
properly modeled far from the nominal conditions. However, this short com-
parison validates the numerical model and shows clearly that the mean flow
characteristics are accurately simulated in this three-stage compressor.

An investigation of the differences between small and large tip clearance
cases indicate that an increase of the tip gap leads to a reduction of the
maximum pressure ratio Pimax (by 2.9%) and the maximum efficiency (by
1.1%). At nominal operating point, mass flow, pressure ratio and efficiency
are slightly decreased (respectively -1%, -0.4% and -0.5%). These differences
tend to increase when the mass flow is reduced while no impact is observed
at choked flow conditions. But the main effect of larger tip clearance is to
reduce strongly the compressor operability (by about 20%). The reasons of
this dramatic performance drop are deeper investigated in the next section,
with a particular attention for the tip leakage flow phenomena.

3 Flow Analysis

The flow analysis focuses on the mechanisms leading to a reduction of the
operability when the tip gap dimension is increased. Many previous works
have suggested that the most destabilizing effects are induced by the tip
leakage flows [CGTA93] [Hoy96]. Indeed the present study focuses mainly on
the mechanisms near the casing that potentially lead to a loss of stability.

3.1 Investigation of the Small Tip Clearance Case

Figure 5 shows an instantaneous flow field of axial velocity at near stall oper-
ating point, corresponding to a normalized mass flow φ of 0.949. The interest
is to show how the flow reacts when the balance between the momentum
of the main flow and the tip leakage flow is reduced. At the investigated
operating point, no sign of massive separations is highlighted, meaning the
compressor operates in stable conditions. However, regions of low axial mo-
mentum are observed near the casing, mainly due to the tip leakage flow. A
high intensity vortex develops near the leading edge of each rotor blade and
is driven by the main flow in the channel. As a consequence of the low static
pressure in the vortex core, it tends to capture all the low kinetic energy
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Fig. 4. Comparison of the experimental and numerical compressor performances
(up: pressure ratio, down: efficiency)

material of the near region around it. Indeed the trajectory of this vortex
is correlated with the deficit of axial momentum in the channel. A second
small intensity vortex is also observed along the rotor suction side. This is a
consequence of the tip clearance jet flow that emerges from the blade suction
side. The interaction between the tip leakage boundary layer and the suction
side boundary layer induces the development of a high helicity region just
under the tip leakage jet, near the blade suction side. This tip leakage vortex
is then also associated with a local loss of kinetic energy and flow blockage.
But this secondary flow, induced by the tip clearance, is found to be small
with respect to the vortex that develop near the leading edge. This tip flow
topology shown here has already been observed in the literature [GMB07]
and is close to the model proposed by Kang et al. [KHC93]. Althought the
same phenomena exists for each of the three rotor rows, it is clear that the
largest region of low axial velocity develops in the rotor of the last stage.
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Compared with the other rows, the last rotor exhibits the lowest pressure
ratio but also the highest relative tip clearance (lgap/H=2.1%). So, in this
case the larger relative tip gap induces a higher momentum tip leakage flow
that is not balanced by the lower pressure gradient. As a consequence, a
stronger flow deviation and axial velocity deficit is observed in the last rotor,
compared to the two first stages.

Another mechanism that explains the development of low axial momentum
regions is the high incidence on the rotor leading edge and the reduction
of the main flow axial momentum that occur at off-design conditions. This
phenomenon generates a high pressure gradient that tends to increase the tip
leakage momentum and to push the tip clearance flow upstream the rotor.
As a consequence, the location of the blocked flow region at partial mass flow
is closer to the leading edge than at nominal operating conditions. At this
point, the behavior of the flow in the rotor passages has also a large effect on
the stator flow. In fact, the result of the strong flow incidence at the rotor
exit is an increase of potential effects, leading to a deficit of axial momentum
in the rotor-stator inter row region. This mechanism is particularly observed
in the last stator and tends to generate a coupling with the tip leakage flow.
An increase of the flow unsteadiness is also detected when the flow travels
towards to the compressor exit. Between the first rotor and the last stator
the mass flow oscillation has been increased by more than a factor three. It
is mainly due to the periodic coupling between wakes, potential effects and
tip vortices.

This part shows clearly that the most limiting phenomenon for operability
is the low axial momentum region induced by the tip leakage flow of the third
rotor. This flow is responsible for an increase of the flow angle at the rotor
leading edge and also at following stator leading edge. At the lowest mass
flow, a major separation of the boundary layer occurs on the last stage rows
and reversed flows lead to a complete loss of aerodynamic stability.

Fig. 5. Instantaneous axial velocity flow field, partial mass flow operating point
(small tip gap configuration, h/H=94%)
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3.2 Investigation of the Large Tip Clearance Case

To point out the flow differences between the two configurations, it has been
chosen to compare the same operating point rather than a given mass flow. It
means that aerodynamic conditions like flow angle and pressure ratio are not
identical for both cases. But the outlet boundary condition that models the
flow at the exit is the same, i.e. the throttle position is fixed. This choice has
been done to simulate the behavior of the compressors in the same system.
As previously, an axial velocity flow field is used to identify the blocked
flow regions at partial mass flow (φ = 0.925) and is shown Fig. 6. The flow
topology is basically the same than for the small tip gap configuration. The
main difference observed is an increase of the tip leakage flow momentum for
rotors 2 and 3.

It has been shown in the previous section that the impact of larger tip
gap increases when the mass flow is reduced. At partial mass flow, the flow
blockage near the casing of the two last rotors leads to a dramatic drop in
terms of mass flow, reducing also the main flow momentum. The consequence
is that the tip leakage vortex tends to move closer to the rotor leading edge.
Moreover, the large tip gap configuration leads to an increase by +90% of
the blocked section in the last stage. Another point of interest is the high
unsteadiness of the flow, especially in the last stage. As shown Fig. 6, the
instantaneous flow is similar for all passages for a given row of the two first
stages. However, important differences are noticed in the passages of the
third stage. In fact, the rotor-stator interactions generate coupled unsteady
rotating waves. These structures have a large influence dowstream and are
responsible for a variation of the tip leakage vortex position. The flow angle
at the stator leading edge is also periodically increased and an unsteady
separation occurs in the stator.

Fig. 6. Instantaneous axial velocity flow field, partial mass flow operating point
(large gap configuration, h/H=94%)
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This section points out that an increase of the tip gap induces the de-
velopment of large low momentum areas near the casing. Moreover, the last
stage is largely affected by the unsteady flow generated by the rotor-stator
interactions of the previous stages.

Finally, this work shows that the row with the largest tip gap has always
the most destabilizing effect (the third rotor in the present case). Moreover
a coupling between the rotor and adjacent stator is observed, especially at
partial mass flow. The flow of the last stages also impacts upstream rows and
this interaction leads to a complex system for which the contribution of each
row can not be separated from the contribution of the other rows.

4 Conclusion

A numerical simulation has been presented to investigate the flow in a mul-
tistage axial compressor. The comparison between the numerical results and
the experimental data has shown the model is able to compute correctly the
main characteristics of the flow, like pressure ratio and efficiency. Moreover,
the stability limit and the choked line position are well estimated by un-
steady calculations. Then two configurations of the compressor have been
investigated in order to point out the effect of a tip gap deterioration. The
results analysis shows clearly that an increase of the radial tip gap has a
destabilizing effect on the rotor flow. At partial mass flow, an increase of
+30% of the last rotor tip gap leads to an increase of +90% of the flow
blockage. This behavior points out the mismatching of the last rotor when
the tip gap dimension is modified. In this condition the compressor operabil-
ity is reduced by -20% compared to the reference case and a large decrease
of pressure ratio and efficiency is also observed. This study also show that a
complex interaction exists between the different blade rows. At partial mass
flow these interactions tend to increase in terms of magnitude and the flow
in the last stages becomes highly unsteady. In this case, a good understand-
ing of the flow can be obtained only by the simulation of the whole system.
Finally, the present paper points out the most destabilizing flow regions and
highlights the rows that have to be controlled to obtain the best benefit on
pressure ratio, efficiency and operability.
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Abstract. CFD investigations are carried out to study the heat flux and
temperature distribution in the calandria using a 3-Dimensional RANS code.
Internal flow computations and experimental studies are carried out for a
calandria embedded with a matrix of tubes working together as a reactor.
Numerical investigations are carried on the Calandria reactor vessel with
horizontal inlets and outlets located on top and the bottom to study the
flow pattern and the associated temperature distribution. The computations
have been carried out to simulate fluid flow and convective heat transfer for
assigned near-to working conditions with different moderator injection rates
and reacting heat fluxes. The results of computations provide an estimate
of the tolerance bands for safe working limits for the heat dissipation at
different working conditions by virtue of prediction of the hot spots in the
calandria. The isothermal CFD results are validated by a set of experiments
on a specially designed scaled model conducted over a range of flows and
simulation parameters. The comparison of CFD results with experiments
show good agreement.

Keywords: Calandria, Reactor, Complex flow, RANS.

1 Introduction

The present world demands an environmental friendly power generation for
which Nuclear power plant is a suitable alternative. The nuclear power is
associated with a scare regarding its safety during operation, hence there
is need to analyze flow pattern and heat transfer in Calandria or any heat
exchanger used in these systems.

A numerical simulation is a very useful tool to compute the distributions
of thermal and hydraulic flows in the complex geometry. However, the CFD
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results need to be supplemented by experimental data in order to validate
the different models approaches in obtaining the solution.

CFD results are validated with results of specially conducted experiments
which have further provided optimum operating parameters for numerical
simulation for better understanding of the working of nuclear reactor.

2 Calendria Model and Mesh Generation

The nature of flow pattern in Calandria has significant effect on safe operation
of reactor vessel in PHWR’s. Hence to get an insight into the problem of flow
in calandria vessel, laboratory experiments have been conducted. Aprototype
of the Calandria for experimental study and a Calandria model for numeri-
cal simulation have been designed. It is also necessary to ensure Geometric
similarity, Kinematic similarity and Dynamic similarity between the model
and prototype to understand flow patterns. Since the flow is axis-symmetric
the analysis is carried out only for half portion. A 3-D view of the Calandria
model is shown in Fig.1(a) [Raj89, IAE02].

Fig.1(b) shows the computational mesh for analysis of the fluid dynam-
ics and heat transfer characteristics inside the calandria model. In the core
region, 69 fuel channels with 21mm of square pitch are simulated so it is
possible to observe the flow behaviors around the channels. The total cell
number is about 205, 205 consisting of structured meshes and to save the
calculation time.

(a) (b)

Fig. 1. (a) 3-D view of the Calandria model. (b) Structured mesh model.

3 Governing Equations and Boundary Condition

A 3D-RANS code having upwinding implicit scheme and k − ω approach
for turbulence is used for the numerical solution. The Reynolds-Averaged
Navier-Stokes Equations are solved for steady, compressible viscous flow. The
governing equations used are the conventional standard sets that include:

Continuity equation:
∂U j

∂xj
= 0 (1)
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Momentum equation:
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Energy equation:
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The boundary conditions and initial conditions used include (a) no slip, im-
permeable and adiabatic walls; (b) At inlet and outlet ports, mass flow rate
conditions based on incoming and outgoing incompressible fluid are imposed.
The mass flow rate at inlet and outlet are chosen to be equal. Diminishing
residual criteria of the variables is used for the convergence with a limit of
RMS residuals falling below 10−4.

4 Results of Experimental and Computational Analysis

It can be seen from Fig.2 and Fig.3 that numerically simulated results match
very well with experimental data [RKR03, MSH06]. Steady state observation
shows that flow patterns are linearly proportional to the injection of veloc-
ities. It can be seen that streamlines and velocity distribution match in the
experimental data. It is observe that fuel channels in the vessels enhance the
mixing and diffuses the strong circulation zones. 3D-RANS code with various
turbulence models has been used for computations. It is found that K − ω
model perform better than other models when compared with experimental
results.

4.1 Computational Results

Computations for isothermal and non-isothermal cases are made to under-
stand the basic flow physics and convective heat transfer in the calandria.
The flow structure and temperature distribution have been captured spa-
tially. The non- isothermal analysis is made with an assumption that the fuel

Fig. 2. Streamline plot comparision
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Fig. 3. Vector plot comparision

(a) (b)

Fig. 4. (a) Isothermal flow pattern for Re = 1.69 × 107, with fuel channels. (b)
Non-isothermal flow pattern for Re = 1.69 × 107, with fuel channels.

(a) (b)

Fig. 5. (a) Temperature distribution at Re = 1.69 × 107 with 300MW thermal
dissipation. (b) Temperature distribution at Re = 1.69×107 with 1200MW thermal
dissipation.

channel surfaces are giving out uniform heat flux. It is observed that the flow
pattern and the velocity profiles Fig4(a) and Fig.4(b). This observation turns
out to be strengthened with the observation that the temperature distribu-
tion patterns remaining nearly unchanged at different heat dissipation levels
Figs.5(a) and 5(b). It is found that the inlet velocity and heat load are the
major parameters affecting on the formation of flow patterns. Fig.6(a) and
Fig.6(b) shows the effect of inlet velocity on pipe wall temperature and Heat
load on pipe wall temperature.
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(a) (b)

Fig. 6. (a) Effect of inlet velocity on pipe wall temperature. (b) Effect of Heat load
on pipewall temperature.

(a) (b)

Fig. 7. (a) Model of the Calandria fabricated with Acrylic material. (b) Different
parts of the experimental set-up-with calandria model.

4.2 Experimental Results

The developed model constructed by transparent acrylic material for the
Experimental study [Raj89] is shown in Fig.7(a). Fig.7(b) shows the Different
parts of the experimental set-up with Calandria model. A series of photograph
of the steady state flow were taken in the range of flow rate 0.03562 kg/s of
water that correspond to the fluid velocities (at injection) of 1.3 m/s and bulk
Reynolds number of 3.965 × 105 respectively. Fig.8 shows the Photographs
taken with different speed of strobe.

Fig. 8. Photographs taken with different speed of strobe
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5 Conclusions

CFD analysis is carried out to study the mass flux and temperature dis-
tribution in the calandria using CFX-10 as an analysis tool. Internal flow
computations are carried out for a calandria embedded with a matrix of
tubes carrying nuclear reacting media. Increase in Reynolds number as mass
flow rate is increased, does not have a significant change in the structure of
the flow pattern. This is an important input to heat transfer studies to be
carried out that indicates the forced convection dominating the heat trans-
fer. The results of computation provide an estimate of the tolerance bands of
safe working limits for the heat dissipation for different working conditions,
by virtue of locating the hot spots in the calandria. The work assumes signif-
icance for preliminary design considerations of the reactors and for detailed
and critical parametric analysis that prove to be expensive without CFD
tools.
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Abstract. This paper describes an investigation of the mechanisms produc-
ing thrust for an airfoil performing a pitching or heaving motion in a low
Reynolds-number flow (Re = 1000, based on chord length) by analysis of
numerically obtained flow fields and forces on the airfoil. For heaving motion
the dependence on reduced frequency and non-dimensional heaving amplitude
are examined. For pitching motion the reduced frequency and the center of
rotation are varied. The vortex generated by the leading edge is found to be
determinant for thrust by heaving motion. Pitching propulsion is shown to
be an effect of coupled acceleration and inclination of the airfoil.

Keywords: Flapping wing propulsion, Low Reynolds number, Heaving
wing, Pitching wing.

1 Introduction

At low Reynolds numbers conventional wings produce relatively small lift
and substantial drag. However, large insects and small birds realize high lift
combined with flapping propulsion and great agility at the same low Reynolds
numbers. These characteristics make flapping flight very attractive for micro
air vehicles (MAVs), but equally so for aircraft designed for planetary research
on Mars. Due to the low density of the Martian atmosphere, an aircraft of
practical dimensions would encounter the same low Reynolds number.

The aerodynamics for flapping flight at these low Reynolds numbers is
however not yet well understood and it is not clear how thrust is generated
exactly [PJ06]. 3D Flapping flight of MAVs is described by many parame-
ters (angular amplitudes, frequency, phase shifts) which make it difficult to
determine which parameters govern the flow field.
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(a) Heaving motion (b) Pitching motion

Fig. 1. Parameters for both oscillating motions

Therefore this research concerns analysis of basic motions. Thrust gen-
eration by a simple heaving airfoil (Fig. 1a) and a purely pitching airfoil
(Fig. 1b) are examined, to detemine the variation with the parameters ξ,
k and h independently. The results is helpful in obtaining insight in more
complex cases.

For heaving motion the varied parameters are reduced frequency k =
2πfc
U∞
∈ (0.2, 4) and nondimensional amplitude h chordlength h ∈ (0.125, 2.5).

For pitching motion the reduced frequency k ∈ (0.2, 6), the pitching ampli-
tude α0 ∈ (10◦, 30◦) and the center of rotation (between leading edge (LE)
and trailing edge (TE), expressed by ξ ∈ (0, 1)) are varied.

2 Computational Method

Flow fields for these cases are obtained using a computational method based
on one used for a variety of CFD studies, most recently [Oya07]. Besides the
flow fields, the time history of thrust/drag of the airfoil, divided in a friction
and pressure part, is used to analyze the results.

The governing equations are the Navier Stokes equations for incom-
pressible flow. These were solved using a pseudo two-dimensional, pseudo-
compressibility method. The convective terms are evaluated by Roe’s scheme,
while MUSCL interpolation based on the primitive variables is used to eval-
uate the fluxes at the grid interface. The viscous terms are discretisized by
a second order central difference scheme. Time integration is carried out by
means of a first-order lower-upper symmetric Gauss-Seidel (LU-SGS) implicit
time integration scheme. Laminar flow of a Newtonian fluid is assumed.

3 Test Case

The computations were carried out using a C-shaped grid with 100 cells in
radial and 268 in tangential direction. For every motion, 6000 time steps
covering 3 cycles were simulated, the last cycle being used for analysis.
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Accuracy was checked using a grid with doubled resolution. However, this
showed better conservation of vortices and earlier flow separation. This caused
only minor changes in far as thrust generating phenomena or the comparison
of different cases are concerned. The absolute value of the thrust coefficient
did however change up to 0.5 in some cases.

The range of design variables is representative for insects and some small
birds and it is comparable with previous research focussing on insects, small
birds and MAV development.

4 Heaving Motion

Fig. 2. Time-averaged thrust coefficient
CT,av for different values of k and h

Figure 2 shows the dependance of
CT,av on the parameters k and h.
For k > 1 and h < 2, thrust
increases strongly as the value of
the parameters increase. In these
cases thrust can be explained by one
mechanism. For lower values of k,
the airfoil does not shed the strong
vortices needed to propell the wing.
For higher values of h however, the
structure of the flowfield is lost due
to the the excessive motion of the
airfoil.

Heaving motion generates thrust
when a vortex is generated at the LE and stays close to the airfoil, as shown
in Fig. 3. Examination of the flow fields shows that such a vortex causes low
pressure near the nose of the airfoil, generating thrust by suction. This vortex
also induces a strong flow opposite to the free stream. This flow causes friction
in upstream direction, which again is thrust. Both phenomena generate thrust
of a similar order of magnitude. For comparison, the development with time
of thrust due to pressure and friction is included in Fig. 3.

Figure 3a shows an airfoil simultaneously propelled by a LE vortex and
hindered by a vortex shed at the TE. In Fig. 3b the effect of the LE vortex is
maximal. Figure 3c–d show how the vortex travels along the airfoil. First the
thrust by pressure decreases, as the vortex still induces a thrust-generating
flow. Later the vortex travels around the TE and merges with the trailing
edge vortex generated at that moment, which causes drag.

Vortices generated at the TE have the exact opposite effect of LE vor-
tices, but since TE vortices travel away from the airfoil, their influence is
smaller.
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Fig. 3. Plunging airfoil propelled by a LE vortex (k = 2, h = 1)

5 Pitching Motion

Usually pitching around the LE is favorable for thrust, as seen in Fig. 4. For
pitching around the LE (ξ = 0), as for the heaving motion, higher values of
k give more thrust. k = 4 is the first value for which positive thrust is found.
Similar to h, higher values of α0 cause more thrust as well.

In the case of k = 0.2 and k = 1, pitching around the TE (ξ = 1) delivers
more thrust. This seems to match the findings of heaving motion, for which
thrust was generated by vortices at the moving LE. For higher values of k
new mechanisms have to be found.

For pitching motion the time history of the thrust/drag shows relatively lit-
tle influence of friction. At lowest frequencies, the airfoil shows a quasi-steady
behavior, for which drag depends mostly on the momentary inclination of the
airfoil, i.e. increasing inclination gives an increase in drag. As the frequency
increases, the free stream velocity loses influence compared to the influence of
the pressure difference over the airfoil opposing the pitching motion. When the

(a) All values of k (b) Lower values of k

Fig. 4. Time-averaged thrust coefficient CT,av for different values of ξ and k
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(a) k = 1, α0 = 30◦ (b) k = 4, α0 = 30◦

Fig. 5. Time history of thrust for pitching around either LE or TE

airfoil is horizontal at k = nπ, this does not cause any horizontal force. Since
the airfoil does not move at kt = nπ + 1

2π, the influence of pressure on the air-
foil due to the pitching motion is largest at kt = 1

2nπ + 1
4π. This can already

be seen at k = 1, as Fig. 5a shows. This effect gives thrust in a certain part of
the cycle, but drag in another part of the cycle. Even though this effect stays
dominant in the pressure thrust as a function of time, it does not give thrust
on average, which however can be observed for higher values of k.

At even higher frequencies the average thrust for pitching around the LE is
understood to be an effect of inertia of the fluid around the airfoil, as shown
in Fig. 5b and schematically in Fig. 6.

When the airfoil rotates around the LE, it is accelerating upward when
at maximum angle attack. Due to inertia of the fluid around the airfoil, the
pressure on the top side of the airfoil in higher, which causes thrust. When the
angle of attack is negative, the same effect still produces thrust. For pitching
around the TE the effect is opposite however, and only drag is produced.

The effect of vortices on the pressure on a pitching airfoil is smaller than
on a heaving airfoil. As seen in Fig. 7a, for pitching around the leading edge,
this is because the leading edge is not moving, and therefore little vorticity
is shed. Figure 7b shows how pitching around the trailing edge does generate
a large LE vortex, but this vortex is relatively far away from the airfoil and
has little influence on the pressure on the wing surface.
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(a) (b)

Fig. 6. At maximum angle of attack an airfoil is either: (a) propelled by positive
vertical acceleration when pitching around the LE or (b) hindered by negative
vertical acceleration when pitching around the TE

(a) k = 1, α0 = 30◦ (b) k = 4, α0 = 30◦

Fig. 7. In comparison with heaving, vortices play a smaller role for pitching motion

6 Summary and Further Research

The above identifies and explains the contributions of heaving and pitching
to the thrust generated by an airfoil. It must however be realized that these
phenomena are discussed on a qualitative basis. For engineering purposes
quantitative analysis of more accurate simulations is required. These could
include a wider range of parameters. The (symmetric) problems at hand did
not allow an investigation of the effect of oscillation on the lift of the airfoil.
For application in aviation this would be of great importance.
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1   Introduction 

In the resent years, water deterioration by pollution in a stagnant sea area like a 
semi-enclosed bay occurs mainly due to the lack of water exchange with the open 
sea. Komatsu et al. [KYG97] suggested to use unidirectional residual currents 
generated by asymmetrical structures which are put on the sea bottom in order to 
activate substance transport in a tidal field. In addition, Komatsu et al. [KSK01] 
also proposed to apply this method to control sediment transport in wave fields. 
Moreover, Kawano et al. [KHF06] proposed the specific pipe called One-Way 
Pipe, which can generate residual currents in a wave field by a number of asym-
metrical structures set inside the pipe. It is expected to activate water exchange 
with the open sea by putting a series of One-Way Pipes from the inside end of the 
bay to the baymouth.  

Oscillatory flows with plural asymmetrical structures are computed in order 
to estimate the effectiveness of the methods using the asymmetrical structures in 
a wave field. Oshikawa et al. [OSK04] performed a laboratory experiment in a 
wave tank with a number of asymmetrical structures to examine the characteris-
tics of residual currents. They investigated the effects of three-dimensional 
asymmetrical structures on the residual currents by using quarter spheres. In 
addition, they discussed the effects of some parameters, such as the Keulegan-
Carpenter number and the space between asymmetrical structures. However, 
their results have not been verified with a wide range of conditions because  
it was difficult to set optional experimental conditions in the physical experi-
ments. Therefore, we performed numerical simulations which could provide 
ideal conditions. 
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2   Computational Method 

The vertical two-dimensional numerical simulation based on the Reynolds-
averaged Navier-Stokes equations (:RANS) and the k-ε turbulent model is used to 
simulate oscillatory flows around the structures. At the top of the computational 
domain, the free slip boundary is set for the flow velocity, and the zero normal 
gradient condition is used for the pressure. The velocity components and pressures 
at the left side and the right side open boundaries are based on the analytical solu-
tions which are sinusoidal functions for an oscillatory flow. The numerical solver 
originally based on the CADMAS-SURF code [CDI01] is the same as that used in 
the study by Rusdin et al. [ROH07]. 

Computational conditions are decided in consideration with the laboratory ex-
periments by Oshikawa et al. [OSK04]. In the simulation 12 quarter-cylinder 
shaped structures are set longitudinally at the bottom of the computational domain, 
and cases with different in-line spaces between the structures are compared under 
some flow conditions which are given by the Keulegan-Carpenter number 
(KC=U0k/T), the Reynolds number (Re=U0k/ν) and water depth relative to the 
size of the structure, h/k. U0, T, h and ν denote the amplitude of the x-directional 
oscillating velocity at the water surface, an oscillatory period, a water depth and a 
coefficient of kinematic viscosity, respectively. The definitions of k and s can be 
found in Fig. 1, where k is the height of the structures and s is the longitudinal 
distance between the structures. In this study, h (=30.0cm), k (=2.1cm) and ν 
(=0.01cm2/s) are constant. 

 
Fig. 1. Shape of the asymmetrical structures and definitions of s and k 

3   The Effects of the Asymmetrical Structures 

In this case, the positive residual currents and the negative residual hydrodynamic 
force are produced near the asymmetrical structures. In this study, the residual 
current is defined as the Eulerian velocity averaged over one period of an oscilla-
tory flow, and the residual hydrodynamic force is calculated by averaging hydro-
dynamic force on one structure over the same period. In the case of KC=9.9, 
Re=4351 and s/k=4, the time series of the normalized horizontal velocity at the 
open boundary, uo/U0, and that between two structures, u/U0 at x/k=0, and the 
normalized horizontal hydrodynamic force on the middle structure of the compu-
tational domain, F*, are drawn in Fig. 2, where the hydrodynamic force are nor-
malized by 0.5ρkU0

2 and ρ denotes the density of fluid. The vertical position of 
the velocity measured is taken at the height of the structure, z/k=1. There is the 
large difference between the velocities in the range from t/T=0.58 to 1.14 (=0.14) 
because the flow passes from the vertical edge side to the circular one for the each 
structure in the time. The difference creates a residual current near the structures 
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Fig. 2. Time series of the horizontal hydrodynamic force and velocities 

because the residual current of uo is perfectly 0. In this case, the normalized resid-
ual current, u*/U0, is 0.20. Similarly, residual hydrodynamic force, f*, is generated 
by the structures as the absolute value of the negative peak of F* is larger than that 
of the positive one. In this case f* is -0.042. On the sign, a negative residual hy-
drodynamic force corresponds to a positive residual current. 

The computational results are considerably reliable. In the case of KC=9.9, 
Re=4351 and s/k=2.5, the comparison of dimensionless horizontal residual cur-
rents u*/U0 at x/k=0 between the computational results and the experimental ones 
[OSK04] are shown in Fig. 3. The vertical profile of u*/U0 in the computation is 
quite similar to that in the experiment. Especially the maximum value of u*/U0 in 
the simulation almost agrees with that in the experiment. In addition, in such a 
small s/k, negative residual currents are found near the bottom from the simulation 
as the indication by Oshikawa et al. [OSK04].  

The residual currents are significantly influenced by KC. Fig. 4 presents the 
vertical profiles of u*/U0 at x/k=0 for various KC in the case of Re=4351 and 
s/k=10. Although the asymmetrical structures produce positive residual currents 
near the bottom in all cases, the vertical profiles remarkably depend on KC. The 
maximum value of u*/U0 in each vertical profile varies with the KC. In addition, 
the zero crossing location of each vertical profile increases with KC. 

 

 

Fig. 3. Comparison of vertical profiles of the horizontal residual currents between the computa-
tional results and the experimental ones [OSK04] 
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Fig. 4. Vertical profiles of u*/U0 for Re=4351 and s/k=10 with various KC 

4   The Effects of the Space between the Structures 

Fig. 5 shows the velocity vectors and the streamlines of the residual currents 
normalized by U0 in cases of s/k=2 and 4, for KC=9.9 and Re=4351. Both cases 
indicate that the positive horizontal residual currents are produced near the struc-
tures until z/k=3 in the case of s/k=2 and z/k=4 in the case of s/k=4. However, 
there is the obvious difference on the number of eddies. Only one eddy is gener-
ated between a sequence of two structures in the case of s/k=2 while three eddies 
are generated in the case of s/k=4. 

The amplitude of the horizontal hydrodynamic force on the middle structure in-
creases with s/k in the conditions of 2<s/k<8. The time series of dimensionless 
horizontal hydrodynamic force F* for KC=9.9 and Re=4351 with various s/k are 
given in Fig. 6. As a reference, the case with only one structure set in the compu-
tational domain is included, which corresponds to the infinite s/k. The figure 
shows that the amplitude of F* becomes larger with KC up to s/k=8. However, F* 
does not vary so much in the cases where s/k>8 as the results in the cases of s/k=8 
and s/k=12 are almost the same as that of the single structure. 

The horizontal residual velocity is remarkably affected up to a few times the struc-
ture height. The dimensionless horizontal residual currents u*/U0 at x/k=0 in  
the each case of s/k=2, 6, 10, 16 with KC=9.9 and Re=4351 are illustrated in Fig. 7. 
The maximum u*/U0 are found in the case of s/k=10. In the small space with s/k=2, the 
negative residual currents are generated near the bottom as mentioned above. However,  

 

   
Fig. 5. Vectors and streamlines of the residual currents. The left figure illustrates the case 
with s/k=2 and the right one illustrates the case with s/k=4. 
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Fig. 6. Time series of F* with different s/k for KC=9.87 and Re=4351 

 

Fig. 7. Vertical profiles of u*/U0 at x/k=0 for KC=9.9 and Re=4351 

 

Fig. 8. Representative horizontal residual velocity for different s/k  and KC 

there is little difference between the vertical profiles in the range where z/k is larger 
than about 3. This value is correspondent to each zero crossing position except for the 
one for the negative u*/U0 in the small s/k. 

The horizontal residual currents around the structures are relatively large in the 
conditions of 6<s/k<10. It is extremely important to determine the most effective s/k 
for practical use of the methods, e.g. the One-Way Pipe. In this research, a local aver-
aged horizontal velocity u*

a, which is a representative residual velocity around the 
structures, is used to estimate an appropriate s/k. u*

a is vertically averaged up to the 
three times k from the bottom, and the length horizontally averaged over is correspon-
dent to the two times s in the middle of the computational domain. Therefore, the size 
of the area for spatial averaging of u* is different for each case of s/k. Fig. 8 shows u*a 
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/U0 in the cases of Re=4351. The u*
a /U0 significantly increases with KC in the condi-

tions of 4.9<KC<19.7, however the difference of u*
a /U0 between KC=19.7 and 

KC=29.6 in each s/k is relatively small. The s/k where u*
a/U0 takes each maximum 

value depends on KC. The case with small KC (KC=4.9) has the maximum u*
a /U0 at 

s/k=4, while the case with large KC (KC=29.6) has the maximum u*
a /U0 at s/k=10 and 

has the minimum at the s/k=4. Therefore, s/k should be practically taken to be from 6 
to 10 depending on KC because u*a/U0 is relatively large in the conditions of 6<s/k<10 
with any KC.  

5   Conclusions 

The plural asymmetrical structures put in a wave field can produce a unidirectional re-
sidual current in any space between the structures. The oscillatory flows with a series of 
quarter-cylinder shaped structures were investigated by using the numerical simulation. 
The computational results considerably agreed with the experimental ones by Oshikawa 
et al. [OSK04]. 

The horizontal unidirectional residual currents around the structures are relatively 
large in the range where the in-line space between the structures relative to their height, 
s/k, is approximately from 6 to 10. The residual currents are affected not only by s/k but 
also by flow conditions, especially the Keulegan-Carpenter number KC. Therefore, each 
asymmetrical structure should be practically set so that s/k corresponds to values from 6 
to 10 in consideration with KC corresponding to dominant waves in a sea. 
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1 Introduction

Practical applications have motivated various extensions of the Muscl finite-
volume method to general unstructured meshes and the Muscl approach is
at the heart of many solvers for compressible gas dynamics. On unstructured
grids, many stability results rely explicitly on slope limiters, see for example
the maximum principle in [1] and the convergence results in [2, 5]. Limiters
are non-linear methods in the sense that they give non-linear schemes even
when they are applied to linear equations. Their importance lies mainly in
applications to non-linear gas dynamics involving steep gradients and shocks.
However, in order to analyze the properties of a numerical scheme, it remains
important to study its behaviour in the case of the linear advection equation.
In the absence of slope limiters, the spatial discretization of the linear ad-
vection equation with constant coefficients results in a linear semi-discrete
equation.

The purpose of the present work is a theoretical and numerical analysis
of this semi-discrete equation in order to examine the influence of the grid
type, the reconstruction method and the stencil size on the linear stability of
the Muscl scheme on unstructured grids. The goal is to identify the slope
reconstruction methods and the stencil sizes that lead to stable discretiza-
tions of linear advection. In applications to compressible gas dynamics, these
methods can be expected to be more robust and accurate than schemes that
are stabilized only by slope limiters. The present study is motivated by nu-
merical experiments in three-dimensional applications to internal flows and
aerothermochemistry with the package Cedre developed by Onera. We re-
fer to [3, 4] for more details.
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2 Slope Reconstruction on General Unstructured
Meshes

This section presents a general approach to slope reconstruction on unstruc-
tured grids. Throughout this paper the boundary conditions are assumed to
be periodic. We consider a general unstructured grid of a cube Ω ⊆ Rd con-
sisting of N general polyhedra Tα with barycenter xα and d-volume |Tα|. The
face Aαβ , with barycenter xαβ , has a normal vector nαβ oriented from cell
Tα to Tβ . The length of nαβ equals the surface |Aαβ |. The set of the cell in-
dices of the direct neighbors of cell Tα is denoted Vα. Furthermore, we define
hαβ = xβ − xα for all cells Tα and Tβ and kαβ = xαβ − xα for all adjacent
cells Tα and Tβ . Whenever two cells have no common interface, nαβ � 0
and kαβ � 0. In addition, nαα � 0, kαα � 0 and hαα � 0. This allows to
drop the neighborhood in all sums and to write

∑
β instead of

∑
β ∈Vα

. The
reconstruction of a slope σα in each cell Tα allows to compute second order
accurate values

uαβ = uα + σα · kαβ (1)

at the barycenter xαβ of the cell interface Aαβ . The most general linear slope
reconstruction method can be written as

u �→ σα (u) =
∑

β

sαβ (uβ − uα) (2)

where the sαβ are coefficient vectors in cell Tα and sαβ � 0 by definition if
cell Tβ is not in the reconstruction stencil of cell Tα. Second order accuracy
requires that (2) reproduce the slope of polynomials of degree one. This is
equivalent to the following consistency condition for the coefficients sαβ

σ =
∑

β

sαβ (hαβ · σ) for allσ ∈ Rd . (3)

Let m be the number of cells in the reconstruction stencil of cell Tα and Wα �
{β1, β2, . . . , βm} the cell indices in that stencil. On cell Tα, the unknown
vectors sαβ , β ∈ Wα , form the columns of a d × m matrix Sα. Similarly,
the vectors hαβ , β ∈ Wα , form the rows of the m × d matrix Hα. Now
the consistency condition (3) can be written as the matrix equation with
unknown Sα

SαHα = Id×d . (4)

The least-squares slope coincides with the pseudo-inverse of Hα that is also
the minimum Frobenius norm solution of (4), see [3]. It is given by

Sls
α =

(
Ht

αHα

)−1
Ht

α .
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Another method is based on the well-known Green Theorem and results in

Sgr
α =

(
N t

αHα

)−1
N t

α

where the matrix Nα has the row vectors

n′
αβ =

‖aαβ‖
‖hαβ‖

nαβ

and aαβ is the orthogonal projection of kαβ on hαβ , see [3].

3 Stability Analysis of the Muscl Scheme

The application of the Muscl scheme to the linear advection equation
∂tu (x, t) + c ·∇u (x, t) = 0 with periodic boundary condition results in a
linear dynamical system ( method of lines )

duα (t)
dt

=
∑

β

Jαβuβ (t) ; 1 ≤ α ≤ N. (5)

The definition sα �
∑

β sαβ allows to write the Muscl operator J in (5) as

Jαβ = − |Tα|−1

{∑
γ

(c · nαγ)+ δαβ + (c · nαβ)− + (6)

+
∑

γ

(nαγ · c)+ kαγ · sαβ −
∑

γ

(nαγ · c)+ kαγ · sα δαβ −

−
∑

γ

(nγα · c)+ kγα · sγβ + (nβα · c)+ kβα · sβ

}
.

The time derivative of the quadratic energy function of (5) can be written as
a sum

d
dt

E (t) =
N∑

α=1

|Tα|
d
dt

(
|uα (t)|2

)
=

N∑
α=1

Φα (u) (7)

where

Φα (u) =
∑

β

(c · nαβ)+

⎡
⎢⎣− (uβ − uα)2︸ ︷︷ ︸

I

+ (8)

+ 2
∑

γ

(uβ − uα) r
(α)
βγ (uγ − uα)

︸ ︷︷ ︸
II

⎤
⎥⎥⎥⎥⎦ .
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Note that the first term is always non-positive whereas the second term can
be positive. The elements r

(α)
βγ � kαβ · sαγ in the second part of (8) form the

entries of a local geometric matrix Rα attached to the cell Tα. If Kα is the
matrix whose rows are the vectors kαβ for β ∈ Vα then Rα = KαSα. The
dimensionless operator Rα is invariant under scaling of the grid and defines
the linear mapping Rα : (uγ − uα)γ∈Wα

�→ (uαβ − uα)β∈Vα
where uαβ is

defined by (1). We summarize the main results of our study, see [3, 4], as
follows.

Theorem 1 (Stability of the First Order Finite Volume Scheme).
If all reconstruction coefficients sαγ are zero then d

dtE (t) ≤ 0 on arbitrary
polyhedral meshes regardless of the velocity c and the space dimension d. ��

Theorem 1 and (8) suggest to choose reconstruction coefficients that minimize
an appropriate matrix norm of Rα = KαSα under the constraint (4).

Theorem 2 (Minimization Property of the Least-squares Recon-
struction). The least-squares reconstruction minimizes each singular value
of KαSα and therefore all unitarily invariant matrix norms, in particular the
Spectral, Frobenius, and the Trace norms among the matrices satisfying (4).

For the least squares reconstruction, the influence of the stencil size on the
matrix Rα is characterized by

Theorem 3 (Influence of the Stencil Size on the Reconstruction
Matrix). Let S̃α be the least-squares slope reconstruction matrix. If cells
are added to the reconstruction stencil, then the singular values as well as
all unitarily invariant matrix norms of Rα = KαS̃α are non-increasing. Fur-
thermore, if {β1, . . . , βk} are the indices of the newly added cells and if the
family of vectors {hαβ1 , . . . ,hαβk

} has full rank d then all unitarily invariant
matrix norms as well as all strictly positive singular values of Rα = KαS̃α

are strictly decreasing.

Theorems 2 and 3 allow the following practical conclusions that have been
tested numerically in Sect. 4. First, the least-squares reconstruction should
provide better stability than alternative reconstruction methods. Second,
larger stencil sizes should increase the linear stability of the Muscl scheme.

4 Numerical Computation of Spectra of Muscl
Operators

This section presents the numerical computations of spectra of (6) on the
unit square and the unit cube. The purpose of these calculations is to look
for a correlation between the values of Rα and the appearance of unsta-
ble eigenmodes and to test the conclusions at the end of Sect. 3. The test
cases include different grid types, reconstruction methods and stencil sizes.
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Fig. 1. Spectra of the operator (6) for a tetrahedral grid : Least-squares reconstruc-
tion on the first and second neighborhood. For the former, two unstable eigenmodes
are visible on the right of the imaginary axis.

A program computes for each test case the matrix of (6) and its spectral ab-
scissa, defined by ωJ = max {� (λ)|λ ∈ σ (J)} as well as the spectral norm
of Rα = KαSα for each cell Tα. The numerical computations reveal a strong
correlation between the values of Rα and the existence of unstable eigenval-
ues λ with � (λ) > 0. The latter appear only on grids with cells where the
spectral norm of Rα approaches or exceeds 1. Recall that the matrix Rα is
dimensionless and scaling invariant. The case where the largest values of Rα

have been observed is the first neighborhood slope reconstruction in three
dimensions on tetrahedra and prisms. For this case, the least-squares as well
as the Green slope produce a small number of unstable eigenmodes. For sec-
ond neighborhood stencils, the second order accurate slope can also produce
unstable modes on tetrahedra that appear together with values of ‖Rα‖ > 1.
For all other cases, the values of ‖Rα‖ are smaller than 1 and no unstable
modes occur.

5 Applications to Compressible Gas Dynamics

The conclusions of Sect. 3 have been used to enhance the solver Cedre. How-
ever, for an industrial software like Cedre that handles large unstructured
grids it is better to avoid large reconstruction stencils. We have therefore
adopted a new method that can be implemented by means of the first neigh-
borhood connectivity. In a first step, the algorithm computes in each cell
a slope using the least-squares reconstruction on the first neighborhood. In
a second step, the algorithm takes a weighted average of these slopes over
the first neighbors of each cell. Numerical computations of spectra for the
operator (6) show that this leads to a stable Muscl discretization of linear
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Fig. 2. Entropy for the flow over a deep 3D cavity, see [6]

advection. The method has recently been tested with Cedre on unstruc-
tured three-dimensional grids for the subsonic flow over a deep cavity and for
a supersonic jet [4]. In the case of the cavity, the new slope reconstruction
is stable without any slope limitation on tetrahedral grids. Previously, this
was only the case for simulations on structured grids [6]. In the case of the
jet, slope limiting is necessary only inside the nozzle and this leads to much
better results [4]. In previous computations, structured blocks had to be used
inside the tetrahedral grid in order to obtain good results [7].
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Abstract. Time accurate simulations are performed to analyze the effects
of the exhaust plumes generated by the Space Shuttle’s Solid Rocket Boost-
ers (SRBs) on the Mobile Launch Platform (MLP) and flame trench. The
subsequent ignition overpressure (IOP) waves are generated by the interac-
tion of the plume with the trench. These IOP waves travel from the flame
trench to the launch vehicle, and may cause stability problems during take-
off. Computed results for one configuration of the Space Shuttle (STS-1) and
three MLP configurations for a single SRB (used to represent Ares-Ix) are
compared.

1 Introduction

The purpose of this study is to characterize the ignition overpressure phe-
nomenon during takeoff of new and existing launch vehicles. During ignition
of the rocket propulsion system, transient pressure waves are initiated by the
interaction of the exhaust plume with the flame trench. These ignition over-
pressure waves are generated during the initial buildup of thrust, in which
mass is suddenly injected into the confined volume of the flame trench un-
der the launch platform. The additional mass displaces the air within the
trench causing a piston-like action and produces compression waves which
travel up and down the trench. The traveling compression waves, along with
their reflections, generate a series of strong pressure waves which travel back
through the inlet of the trench towards the launch vehicle, where they may
affect the stability of the vehicle during takeoff. For more details on the ig-
nition overpressure phenomenon see Jones [1]. In order to assess the effects
of the ignition overpressure waves on new and existing launch vehicles, time
accurate simulations of the flame trench are performed for the Space Shut-
tle configuration and various MLP configurations with a single SRB, used to
represent a preliminary design for Ares Ix. The SRB nozzle conditions are im-
pulsively started with full thrust conditions (physically these conditions are
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achieved in approximately 0.3 seconds) and it is observed that IOP waves ob-
tained from the Shuttle simulation correlate well with STS-1 flight data (the
water suppression system was not implemented during the STS-1 launch),
Ryan et al [2]. The impulsive start conditions are used consistently through-
out the simulations in order to assess the magnitude of the IOP waves. CFD
simulations for the single SRB are performed for each configuration and a
trend analysis of the IOP behavior is assessed.

2 Computational Model

The computational geometry for the launch site simulations includes the
flame trench, the surrounding ground terrain, the Mobile Launch Platform,
two plume deflectors, and the launch vehicle. Launch vehicles used in the
simulations include a simplified Space Shuttle configuration with one external
tank (ET) and two SRBs, and a preliminary Ares-Ix configuration consisting
of one SRB rocket. The MLP for the Space Shuttle configuration contains
two openings for the SRB plumes. For the single SRB configuration, various
MLP options were investigated including either one of two openings, and
with one or two deflectors. In order to provide high fidelity simulations of the
plumes, various support structures in the MLP opening are modeled in the
computational geometry and grid systems.

Structured viscous overset grid systems were built to model the different
launch site configurations described above. A grid generation script based on
the Chimera Grid Tools (CGT) script library, see Chan [3], was developed
to create the various grid systems. The overset grid and scripting approach
are particularly well-suited for this problem since they facilitate easy modifi-
cations to the grids to accommodate different options for the launch vehicle,
MLP and deflectors. The Space Shuttle grid system contains 129 grids and

Fig. 1. Overset grid system of Shuttle, MLP, and flame trench
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92 million grid points, see Figure 1. Grid systems for the single SRB with
various MLP options contain 92 to 120 grids, and 73 to 87 million grid points.

3 OVERFLOW Solver

The CFD code OVERFLOW developed at NASA, see Buning [4], is used in
simulating the exhaust plume iteraction with the flame trench. OVERFLOW
is an implicit structured overset Reynolds Averaged Navier Stokes (RANS)
solver. For the results reported here second-order centeral differencing with
explicit artificial dissipation was used along with dual time stepping and the
Spalart-Allmaras one equation turbulence model. Physical time steps on the
order of 10−5 seconds and 20 to 40 subiterations per time step of the di-
agonalized implicit scheme were chosen to accurately represent the pressure
waves and converge the numerical solution. The subiteration procedure con-
sists of a right hand side evaluation followed by inversion of the diagonalized
form of the approximate factored left hand side operator. The solver is made
parallel through domain decomposition and uses the MPI message passing
standard. The reported results were run on the Columbia supercomputer, at
NASA Ames Research Center, on 128 processors. The overall simulation of
two seconds of physical time required several weeks of wall clock time.

4 Two-SRB Results

In order to validate the geometric model and computational procedure, the
IOP waves genenerated during ignition of STS-1 (without the water suppres-
sion system) was simulated first. The physics of the IOP phenomenon for
this configuration has been well analyzed and documented as in Ryan et al
[2]. Instaneous pressure contours of the IOP waves along with temperature
contours of the exhaust jets are displayed in Figure 2. From these contour

Fig. 2. Instantaneous IOP waves (left) and temperature contours (right) for the
Shuttle configuration
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Fig. 3. STS-1 IOP comparison between flight data, Ryan [2] (left) and CFD pre-
diction (right)

plots it is observed that large pressure waves are reflected from the trench,
travel back towards the SRBs, and along the sides of the launch vehicle. Ad-
ditionally, complicated vortical structures are observed as the plume enters
the trench. In Figure 3 the pressure at a point on the launch vehicle is plotted
versus time, where the recorded flight data is on the left and the current CFD
prediction is on the right. Good agreement between the peak pressure levels
is observed, qualitative agreement is also good provided the acoustic noise is
removed from the flight data.

5 Single SRB Results

As a result of the good comparison between the predicted CFD results and
the recorded flight data for the two SRB scenario, the computational model
was modified to study the effects that different MLP configurations have on
the IOP waves for a single rocket (represented here by a modified SRB).
The purpose of this study is to analyze the IOP phenomenon for three MLP
configurations. These include an unmodified MLP with the unused hole kept
open and the deflector,located below the hole and directing flow into the
trench, is retained, a configuration with the hole kept open and the associated
deflector is removed, and a configuration where the entire unused hole is
closed. Figure 4 shows pressure contours on a cutting plane at two different
times for the three different configurations. From the images it is observed
that in each configuration the IOP waves with the peak values are reflected
from its own exhaust hole. In Figure 5 the unsteady pressure at a point on the
SRB is plotted versus time for each of the three configurations as well as the
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Fig. 4. Instantaneous IOP waves at two different times for a single SRB with MLP
configured with open hole and deflector (top), open hole and no deflector adjact to
hole (middle), and closed hole with no deflector (bottom)

results from the STS-1 simulation. Comparing the predicted pressure peaks
with the STS-1 data, it is observed that similar IOP behavior is generated by
all three configurations, and none of the configurations lead to significantly
larger peak pressures than those experienced by STS-1 (when the IOP water
supression system is excluded from the model).
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Fig. 5. Comparison of predicted IOP waves on inner side of SRB for STS-1 and
single SRB using three MLP configurations

6 Summary

Time-accurate CFD simulations of the launch pad flame trench were pre-
sented using the Shuttle configuration and three different MLP configurations
for a single SRB. The predicted IOP waves compared well with flight data for
the Shuttle configuration. Computations for the single SRB showed similar
IOP patterns for each MLP configuration and the STS-1 results. Addition of
the water suppresion system will likely reduce the IOP effects. Including the
suppresion system into the CFD model requires the addition of multiphase
capabilities and is the subject of future study.
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Despites the progress made in CFD over the years, the methods still need im-
provement because the computed flow problems are becoming more and more
complex. One of the way to improve methods is to increase accuracy. In this
paper, we present a numerical scheme that can handle unstructured meshes,
have a very compact stencil (hence easy to parallelize) and is non oscillatory.
This paper presents the third order version of the method, but a priori any
order of accuracy can be achieved. This goals can also be achieved in principle
with the Discontinous Galerkin schemes; but our method is a non DG one. It
uses conformal finite elements, hence enabling a considerable decrease of de-
grees of freedom, especially in 3D, with respects to the DG schemes. We first
sketch design principles, then describe the scheme for the Euler and Navier
Stokes equations. Two and three dimensional examples are given.

We are looking for the solutions of a steady conservation law inside a given
domain Ω ∈ Rd, d = 1, 2, 3:

−→∇ · −→F (u) = 0, in Ω with boundary conditions. (1)

with u : Rd −→ Rm and
−→F = (f1, · · · , fd) : Rm −→ (Rm)d, a given non-

linear flux. We consider either the Euler Equations:
−→F =

−→F adv for perfect
fluids, or the Navier-Stokes Equations with a constant viscosity and Prandlt
number

−→F =
−→F adv − −→F diff for viscous fluids. The x, y, z Jacobians of these

fluxes with respect to the conservative variables are written Ai = ∂fi

∂u . If n
is a vector, we define the matrix Kn =

∑d
i=1 Aini. We consider wall, inflow

and outflow boundary conditions.

1 Description of the Scheme

The continuous domain Ω is approximated by an unstructured conformal
mesh Mh with triangles in 2D and tets in 3D. The extension to quads/hex
is straightforward. The parameter h is a characteristic mesh size, e.g. say the
largest element diameter.
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1.1 Numerical Approximation, Degrees of Freedom

In the present case (third order), the degrees of freedom are localized at the
vertices of the mesh and the mid–points of the edges (N = 6 in 2D, 10 in
3D). We denote them generically by σ. The Pk continuous Lagrangian basis
function associated to the DoF σ is ϕσ. It is a continuous function that is
second degree polynomial on each element. For any degree or freedom σ′, it
satisfies ϕσ(σ′) = δσσ′ where δσσ′ is the Kronecker symbol. Note that ϕσ is
zero except on the triangles that share σ. We approximate a solution by its
Pk Lagrange interpolation uh =

∑
σ∈Mh

uσϕσ.

1.2 Residual Computation and Distribution

The driving idea of a Residual Distribution Scheme is to approximate equa-
tion (1) at each degree of freedom σ by a relation of the form∑

T∈Mh,σ∈T

ΦT
σ = 0 (2)

such that the residuals ΦT
σ satisfy the following design principle:

• Conservation:∑
σ∈T

ΦT
σ = ΦT :=

∫
T

−→∇ · −→F (u)dx =
∫

∂T

−→F (u) · ndl

where n is the outward unit vector normal to the boundary ∂T . The
integral is evaluated by mean of a third order accurate quadrature formula
over the edges/faces of ∂T .

• The scheme (2) defines a numerical solution denoted by uh that is oscil-
lation free and third order accurate when the exact one is smooth.

In practice, we start from a first order scheme, say the following Lax Friedrichs
one:

ΦT,L
i =

1
N

(
ΦT + αT

∑
σ′∈T

(uσ − uσ′)
)

where αT is larger that the maximum spectral radii of the matrices Kn

scaled by the lenght/area of ∂T . This produces a stable and (very) dissi-
pative scheme. We then construct a set of residuals that produces a third
order accurate solution. Following [4], we know when third order accuracy is
met, the solution of (2) satisfies ΦT

i = O(hd+2), where d is the spatial dimen-
sion. Since the integration rule over ∂T is third order accurate, the condition
on the residual is achieved thankx to a set of uniformly bounded matrices βT

σ

such that

ΦT
σ = βT

σ ΦT with βT
σ =

max(xσ , 0)∑
σ′∈T max(xσ′ , 0)

, xσ =
ΦT,L

σ

ΦT
. (3)
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Again, the conservation constraint is met, and one can show (see [2] for
details) that the solution of (2) with these residual preserves a local maximum
principle. In the case of the Euler equations, this method is applied on the
characteristic variables and going back to the conservative ones, enables to
define a set of matrices βT

σ that have formaly the same properties.
In practice, (2) is solved by the following iterative relaxation method

un+1
σ − un

σ = ωσ

∑
T∈Mh,σ∈T

ΦT
σ (un

h) (4)

or better by its linearised implicit version. The boundary conditions are
weakly imposed. Details can be found in [2].

2 Numerical Simulations for the Non Viscous Problem

Let us first consider the scalar transport problem

−→
λ · −→∇u = 0,

−→
λ = (−y, x)T . u = g, on the inflow boundary (5)

We solve this problem on [0; 1]2, taking for g a C2 compactly supported func-
tion. We obtain the result of Figure 1-(a). The isolines indicate the existence
of “wiggles”, they are not an indication of a stability problem but the evi-
dence of a convergence problem: we are not solving (2) but an approxiamtion
of it, because the scheme (4) is not converging. This can be clearly seen on
the upper curve of 1-(c). Our scheme is not dissipative enough.

A cure to this problem is obtained by adding a stabilization term coming
from SUPG formulation. We add to (3) the term

DT
σ = hθ (uh)

∫
T

(λ ·∇u) (λ ·∇ϕσ)dx, λ =
∂
−→F

∂u
(6)

The parameter θ is chosen to be approximately 1 in the smooth regions of
the solution and 0 in the non smooth ones. Anyway, a good choice is still
θ = 1 : the new term do not kill the non oscillatory behavior of the scheme.
More fancy choices help in solving very strong shocks, see [1, 2] for details.
The practical computation of (6) is explored in [3]. This formulation can be
extended immediately to the system case. As we can see on 1–(b) and (c),
the use of this term helps tremendously to reach full convergence and obtain
a much nicer solution.

Then we present solutions of our high order methods on a transonic inviscid
NACA problem: Ma = 0.8, α = 2◦. On Fig. 2 are represented both 2nd and
3rd order simulations. The isolines are much smoother for the third order
solution and we can notice that the shocks are also better represented.
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Fig. 1. Solutions and convergence histories for problem (5). (a): Formulation (2)–
(3), (b): Formulation (2)–(3) with (6) (θ = 1). (c): convergence history

2nd order, Mach Number Isolines 3rd order, Mach Number Isolines

Fig. 2. 2nd and 3rd order simulations on a Naca0012. Ma=0.8, α = 2◦

3 Navier-Stokes Problems

We are now interested in simulation of Navier-Stokes problems. This section
presents our current numerical strategy. We see the Navier Stokes equations
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Fig. 4. Viscous NACA 00012 problem : Ma = 0.5, α = 0◦, Re = 500

as the Euler equations plus a dissipation term. The discretisation of the Euler
term has already been described. The dissipative term is approximated by
a simple Galerkin approximation. The contribution of the diffusive term to
the DoF σ is: Vσ = −

∫
Ω

−−→∇ϕσ ·
−→F diffdx which is splitted as the sum (with

few terms) of the integrals on the elements T where ϕσ is not identicaly zero.
This term should be evaluated by an exact Gaussian integral quadrature but
it is rather expensive. In order to simplify this, we also use the following
decomposition per component of the diffusive flux:

−→F diff
i (x) =

d∑
j=1

(Kij · U,j) (x) = Kij(x) ·
∑
k∈T

Uk (ϕk),j (x).

Then one can rewrite the Galerkin formulation into a ratherless costly form:
Vσ =

∑
σ∈Di

∑
σ∈T MikUk where Di is the support of ϕσ.
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This formulation has been used on several viscous problems. The first one
is the well–known Blasius problem, which is well solved by the 3rd order
scheme as can be seen on 3.

We have also computed viscous NACA 00012 problems: Ma = 0.5, α = 0◦,
Re = 500. As α = 0◦, we should have a good estimation of grid convergence
by representing the lift coefficient with respect to the grid characteristic size
h. That is done on Figure 4. The scheme has actually a good behaviour on the
coarser mesh, but the finer the grid, the worse the convergence rate becomes.
This observation has been done on several cases. A cure to this problem is
under investigation.

4 Conclusion

We have presented the current state of our third order Residual Distribu-
tion scheme for hyperbolic and viscous problems. It has been illustrated by
several standard test cases. 3D problems are presented in [2]. The results are
satisfactory but still need improvement in the viscous case.
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Three-dimensional direct numerical simulations are performed for the spatially-
developing plane mixing layer at convective Mach number 1.2. The shocks are gen-
erated by organized vortex structures and turbulent motions after the breakdown of
large structures into small vortices. A simple and effective criterion based on di-
lation is used for shock identification. The 3-D view of shocks are obtained. It is
shown that the origin of most of shocks in the mixing layer is closely bound up with
vortices. Different types of shocks are illustrated based on their different generation
mechanisms.

1 Introduction

In high-speed mixing layers, the structure of turbulence is strongly affected by
compressibility. The occurrence of shocks has been shown when convective mach
number is higher than 0.7 in two-dimensional simulations [L89]. However, in sim-
ulations of three-dimensional compressible mixing layers, shocks will not be cap-
tured until the convective mach number reaches a higher value of 1.2 [VG95, KS02,
FL06]. In experimental investigations the existence of shocks has been confirmed
by powerful visualization and measurements techniques [P95, RMH02]. In most of
previous work, numerical simulations are done in a temporal frame. In this paper
we report the occurrence of shocks in a spatially developing compressible mixing
layer at Mc � 1�2 (Mach number of upper layer and lower layer is 4.8 and 2.4
respectively).

2 Basic Equations, Initial Conditions and Numerical Methods

The physical model used is the full Navier-Stokes equation. The law of state for per-
fect gases is used to relate the state variables. The Prandtl number is set to 0.75, and
the nondimensional viscosity has a power law dependence on the nondimensional
temperature as� � T 0�768.

The latest developed high-order high-resolution hybrid scheme 7P7Om2-WENO
(r=5) [ZYHS07] is used for spatial discretization of the convective flux. Actually, the
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switch for WENO schemes does not turn on since no shocks with strong intensity
occur in the simulation. For viscous flux terms, the explicit central eighth-order
scheme is adopted. The time integration is performed by means of a eight-stage,
fourth-order, strong-stability-preserving Rung-Kutta scheme [SR03]. The code is
validated by comparing the computed results for a 2-D time-developing mixing-
layer with Ref. [SR90].

In the simulation, periodic boundary condition is imposed in the spanwise di-
rection (z), non-reflecting boundary conditionsare implemented in the normal
direction (y) and the outflow boundary. At the inflow boundary the mixing layer
is periodically strongly forced by a pair of most unstable oblique waves of equal
amplitudes (the amplitude is 0.2 relative to the mean profile) from linear stability
analysis. Here, the unperturbed inflow profile is a computed solution of the com-
pressible boundary-layer equations [SR90]. Our simulations are executed in the do-
main [0� 16L1] � [�L2�2� L2�2] � [0� L3], whereL1 � 2��� � 22�61� L2 � 100� L3 �

2��� � 12�57. The� and� correspond to the streamwise and spanwise wavenum-
ber of the most unstable oblique mode from linear stability analysis [SR90]. The
Reynolds number used in this simulation is 300. The vorticity thickness of the un-
perturbed inflow profile and the velocity of the upper layer are used as the charac-
teristic length and velocity respectively. Several mesh sizes were used up to obtain
independency of the solution. For the present study the mesh size is 720� 251� 50,
which is fine enough to compute all relevant scales.

3 Computational Results

3.1 Visualization of Shocks

To our knowledge, shocks in three-dimensional compressible mixing layer were first
captured by Vreman et al. [VG95]. However, until recently, no general criterion has
been established for shock identification. In most investigations, shocks are shown
in two-dimensional slices, which can besomewhat misleading because the shape of
the shock surface may be highly three-dimensional. In the present paper, as Vreman
et al. did in Ref. [VG95], we locate the shock using iso-surfaces of dilation� � u. In
the computation, shocks usually have a thickness of about three grids. So they can
be shown as three-dimensional flakes. In the center of the shock body, the dilation
attains a peak value, and the iso-surface of some higher value (higher value means
lower compressibility due to that the dilation in the shock body is negative) will
organize as a coat covering the shock, from which we can easily get the three-
dimensional shape of the shock. If an appropriate value for the iso-surface is used,
the strength of the shock can be obtained quantitatively. For more clear information
about the shock, the Rankine-Hugoniot relations should be used.

In Fig. 1 (top view) and Fig. 2 (3-D view), vortex structures are shown using the
iso-surface of swirl strength of 0.007 with gray color, from which we can see the
full developing process of instability, formation of� vortices and hairpin vortices.
The large vortex structures finally break into small vortex structures and the flow
turns into turbulence.
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We locate shocks using the iso-surface of��u � �0�04 with black color, which are
shown in Fig. 3. We can see that these black iso-surfaces do construct many bodies of
flake. Density and pressure can be extracted from the two sides of the flakes to check
if they are satisfied with Rankine-Hugoniot relations. After the check, we conclude
that these iso-surfaces do locate the shocks. From Fig. 3, it can be seen that shocks
are abundant in three different domain of the mixing layer. Domain A is not far from
the inflow boundary.� vortices start to form in this domain. Domain B is close to
but in front of the transition region, in which large vortices with high vorticity are
abundant. The third domain C is the turbulence region of the mixing layer.

Fig. 1. Vortex structures (top view), visualized by the iso-surface of swirl strength of 0.007

Fig. 2. Vortex structures (3-D view), visualized by the iso-surface of swirl strength of 0.007

Fig. 3. Shocks in the mixing layer (3-D view), visualized by the iso-surface of� � u � �0�04

Fig. 4. Illustration for bluff-body shocks (side view)
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Fig. 5. Illustration for bluff-body shocks (3-D view)

Fig. 6. Illustration for bluff-body shocks in domain A,� � u � �0�02 (side view)

Fig. 7. Illustration for counter-rotating-vortices shocks (top view)

3.2 Categorization of Shocks

Shocks in the supersonic mixing layer is abundant and complex, however, based on
the generation mechanism, we can basically classify them into three types.

For the first type, let we see Fig. 4 (side view) and focus our attention on shocks
a� b� c, andd in domain B. It is clearly that their formation mechanism shows good
agreement with the scenario of flow around a bluff body. This type of shocks has
been founded in previous experiments and numerical simulations (see [RMH02] and
[FL06]). Here the “bluff bodies” are several pairs of inclined streamwise vortices.
Shocks of this type usually show up outside of the mixing layer. Note that in Fig.
4 the shocks are illustrated by the iso-surface of dilation of�0�04, their strength
is relatively weak in comparison to the shocks in the interior of the mixing layer,
which can be visualized by�0�075 and even much lower values. The maximum
value of the ratio of the pressure before and behind shocksa� b� c, andd is about
1�32. In domain A, there also exist shocks of this type (see Fig. 6), in which�

vortices work as bluff bodies. The shocks (shocksi to n) on the upside of the mixing
layer are relatively weaker than those on the underside, they do not show up until
the dilation is set to�0�02. On the upside, The maximum value of the pressure ratio
when crossing the shock is only about 1�25. It is may because that� vortices move
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Fig. 8. Illustration for counter-rotating-vortices shocks (3-D view)

Fig. 9. Illustration for turbulence shocks

a bit faster than the mean velocity of the upper and lower layers’ fluids. We will call
this type of shocks bluff-body shock in the rest of the paper.

Shocks of the second type are the strongest shocks in the mixing layer. They
reside in the interior of the mixing layer. In Fig. 7 (top view), we can see that a
shock, namede, is located between two legs of a hairpin vortex. These two legs
are indeed a pair of counter-rotating vortices. They induce the fluid between them
to accelerate to a relatively high velocity, then shocke occures since the velocity
of the fluid has to be reduced in order to reach the high pressure domain between
large structures. In Fig. 7, there are another two shocksf andh, they are actually
different parts of a same shock due to the periodicity in directionz. See Fig. 8,
another view of these shocks, it can be clearly seen that the shock bodye is not a
flat but a curved plane. Moreover, its shape is strongly confined by the creator, the
vortices nearby. Shocks of this type are very strong. Actually, the strongest shocks
in the simulation belongs to this type, they reside in domain B, a region just before
the flow’s breakdown to turbulence. The maximum value of the pressure ratio when
crossing the shock is about 3�2. Shocks of this type also appearance in domain A,
where the corresponding counter-rotating vortices are legs of� vortices. We will call
this type of shocks counter-rotating-vortices shock (CRV shock for short) in the rest
of the paper.

Shocks of the third type are located only in domain C, which is the region of
turbulence. Transition to turbulence occurs between domain B and C. We find no
shocks in the transition region. So shocks in domain C are not the remains of those
in domain B. Indeed, they are brand-new, generated by the vortices in turbulence.
Surprisingly, these shocks have almost the same shape and orientation, which is not
consistent with the results of the time-developing simulations [VG95, KS02]. Most
shocks in this domain have a flat slender-strip body and is sloped about 40o

� 50o

with respect to the flow direction. They basically have no spanwise structures (see
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Fig. 3 and Fig. 9). Clearly, it can be seenthat all these shocks are generated by
counter-rotating vortices and that those vortices have almost the same orientation
with the shocks. We conjecture that simulations with higher Reynolds number and
more periods in spanwise direction may obtain more complex shocks in this do-
main. So the generation and the behavior of shocks in turbulence need more careful
analysis in the future. We can call shocks of this type turbulence shocks later on.

4 Conclusion

In this paper we report the occurrence of shocks in a spatially developing com-
pressible mixing layer atMc � 1�2. Shocks are visualized using the iso-surfaces of
dilation. It is proven that this method is very effective. We can obtain the 3-D shape
of the shock conveniently. It is shown that the origin of most of shocks in the mixing
layer is closely bound up with vortices. Classification of these shocks is attempted.
Based on their generation mechanisms, we categorize them into three main types:
bluff-body shocks, CRV shocks and turbulence shocks.
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1 Introduction

Propellers used for MAVs(Micro Air Vehicles), UAVs(Unmanned Aerial Vehicles)
and HAAs(High Altitude Airships) operate at low Reynolds number. Thus, the
momentum-blade element theory[1] which is widely used in the aerodynamic design
and calculation of propellers is restricted.Numerical simulations based on Euler/N-
S equations are very effective in the study of detailed information of flow around
propellers[2], especially useful in aerodynamic optimizations of propellers.

Based on this point, a new numerical method is developed to simulate the aero-
dynamic performance of propellers at low Reynolds number using RANS equations
coupled with Baldwin-Lomax algebraic turbulence model. The improved LU-SGS
scheme is utilized for time integral. When the yaw angle is zero, the fluid is quasi-
steady in rotary frame fixed to propellers. So, only one of the blades is modeled, and
the influence of other blades is accounted for using periodic boundary conditions.
The influence of hub and blade roots is neglected.

Chimera-grid methodology is used to effectively capture the viscous effect near
the propeller blade and implement the periodic boundary conditions[3]. In order to
improve the efficiency, RANS equations are solved on blade grid and Euler equations
are solved on background grid. The numerical results agree well with the experimen-
tal data that proves the new method introduced is valid.

2 Governing Equations

In rotary frame fixed to propellers, and the governing equations can be written as
follows[3]:

∂

∂t

�

Ω

Wdv +
�

∂Ω

H • ndS − β
�

∂Ω

Hv • ndS +
�

Ω

Gdv = 0 (1)

,



where,W = (ρ, ρu, ρv, ρw, ρE, ρH). H, Hv and G are inviscid flux, viscous flux and
Coriolis force flux, respectively. RANS equations are solved on propeller grid, herein
β = 1 and Euler equations are solved on background grid, herein β = 0

3 Numerical Method

Assume Qi, j,k, Qvi, j,k and Gi, j,k indicate inviscid flux term, viscous flux term and
Coriolis force flux term. Eq. (1) can be discretized as follows by adding dissipative
term Di, j,k :

Ωi, j,k
d
dt

Wi, j,k +Qi, j,k − βQvi, j,k +Gi, j,k − Di, j,k (2)

Replace the time derivative in Eq. (2) with a first-order forward difference. Then,
Viscous flux and Coriolis force flux are discretized with explicit scheme. An implicit
form is reached:

Ωi, j,k
∆Wi, j,k

∆t
+Qm+1

i, j,k − βQvm
i, j,k +Gm

i, j,k − Dm
i, j,k (3)

where, ∆Wi, j,k =Wm+1
i, j,k −Wm

i, j,k
Then, linearize the inviscid flux and ignore the second-order and higher-order

terms, we obtain:

Qm+1
i, j,k = Qm

i, j,k + (A∆W)i+ 1
2 , j,k
− (A∆W)i− 1

2 , j,k

+(B∆W)i, j+ 1
2 ,k
− (B∆W)i, j− 1

2 ,k

+(C∆W)i, j,k+ 1
2
− (C∆W)i, j,k− 1

2
(4)

where, A is Jacobian matrix that normal to the grid surface in ξ direction, which is
defined as A = ∂(H•n)

∂W . The definitions of B and C are similar. Then Eq. (3) can be
written as follows:

Ωi, j,k
∆Wi, j,k

∆t
+ (A∆W)i+ 1

2 , j,k
− (A∆W)i− 1

2 , j,k
+ (B∆W)i, j+ 1

2 ,k
− (B∆W)i, j− 1

2 ,k

+(C∆W)i, j,k+ 1
2
− (C∆W)i, j,k− 1

2
= RHSm

i, j,k (5)

where, RHSm
i, j,k = −(Qm

i, j,k − βQvm
i, j,k +Gi, j,k − Dm

i, j,k)
Jacobian matrices are split as follows and an improved LU-SGS scheme is

achieved[4]:
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A± =
A ± [αrA +

γµ

ρPr (ξ2x + ξ
2
y + ξ

2
z )]I

2

B± =
B ± [αrB +

γµ

ρPr (η2
x + η

2
y + η

2
z )]I

2

C± =
C ± [αrC +

γµ

ρPr (ζ2
x + ζ

2
y + ζ

2
z )]I

2

(6)

where, α is a constant no less than 1.0 and 1.01 is used in this paper. rA, rB and rC

are spectral radius of Jacobian matrices. γ = 1.4 is the ratio of specific heats. µ is
coefficient of viscous. ρ is density. Pr is Prandtl number.

The influence of spectral radius of viscous Jacobian matrices is considered in
above method, so stability can be maintained even over much larger values of time
step ∆t. For quasi-steady fluid in this paper, we let ∆t −→ infinity.

Finally, an improved LU-SGS scheme is achieved as follows:

(L + D)D−1(D + U)∆Wi, j,k = RHSi, j,k (7)

where,

L = −(A+i−1, j,k + B+i, j−1,k + C+i, j−1,k)

D = [α(rA + rB + rC) +
γµ

ρPr
S ]I

U = −(A−i+1, j,k + B−i, j+1,k + C−i, j+1,k)

S = (ξ2x + ξ
2
y + ξ

2
z + η

2
x + η

2
y + η

2
z + ζ

2
x + ζ

2
y + ζ

2
z )

Then, the sweep process is similar to the basic LU-SGS scheme.

4 Grid System and Boundary Conditions

The grid system consists of two chimera grids: the blade grid and the background
grid. Where, the blade grid has a C-H topology and contains 741741 points(169 ×
57×77) : 169 points on the chordwise direction (129 points on the blade surface), and
77 points in the spanwise direction (57 points on the blade surface) and 57 points in
the direction orthogonal to the blade surface. The blade surface grid in the spanwise
direction is almost regular, with a slight clustering at blade tip. The background grid
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has an O-H topology and contains 1087669 points (121 × 89 × 101): 121 points on
the rotational direction, and 89 points on the wind direction and 101 points on the
radial direction. For the case of two blades, the computational domain is restricted
to one 180 degrees azimuthal sector. Trilinear interpolation method is used for the
connection between the overset grids. An distance decreasing method is used for
searching hole points and donor cells[5].The sketch map of Chimera-grids is shown
in Figure 1, and the blade surface grid is shown in Figure 2.

Boundary conditions: non-slip boundary condition is applied on blade surface.
Periodic boundary conditions are used on rotationally symmetric surfaces.

5 Numerical Results and Analysis

A study on the comparison between the common used five-step Runge-Kutta time
stepping scheme and the improved LU-SGS scheme is made when the wind speed is
13m/s, the advanced ratio is 0.81, and the Reynolds number is 2.7×105 (based on the
chord length at the relative radius equate to 0.75). Comparison of convergent history
between the two schemes is shown in Figure 3. Obviously, it converges much faster
and better by using the improved LU-SGS scheme than that of five-step Runge-Kutta
time stepping scheme. Therefore, all the studies made in this paper are based on the
improved LU-SGS scheme.

Then, the flow around the propeller is simulated when the wind speed is 15m/s,
the advanced ratio is 0.74, and the Reynolds number is 3.3 × 105. The convergent
history of thrust coefficient and efficiency is shown in Figure 4 and the vorticity iso-
surface is shown in Figure 5. Several observations can be made. First, well defined
vortical structures are shed from the blade tips.In additional, the vortical wake is
plotted at the end of the 1213rd iteration when the solution is convergent and the
aerodynamic forces which satisfy the engineering precision are obtained.It will con-
tinue to develop as the computation is continued for more iterations. However, for
some other cases, the vortices are diffused. This may be due to the grid quality and
numerical dissipation which need to be studied further.

Fig. 1. Sketch map of chimera grids Fig. 2. Blade surface grid
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The above cases show high efficiency of the improved LU-SGS scheme and ca-
pability of vortex capturing. These conclusions ensure the high effectiveness and
precision. Then, a series of advanced ratios J are calculated when the wind speed is
13m/s. The Reynolds number varies between 2.7 × 105 and 8.0 × 105 . Comparisons
between the calculation and experimental data of thrust coefficients, power coeffi-
cients, efficiencies and torques are shown in Figures 6-9. The numerical results agree
well with the experiment data proves the new method.

J

C
T

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.06

0.08

0.1

0.12

0.14

0.16

EXP
CAL

V0 = 13m/s

Fig. 6. Comparison of efficiencies between
calculation and experimental data

J

C
p

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.06

0.07

0.08

0.09 EXP.
CAL

V0 = 13 m/s

Fig. 7. Comparison of torques between
calculation and experimental data

Calculation of Aerodynamic Performance of Propellers 287



6 Concluding Remarks

A new numerical simulation method has been developed to calculate the aerody-
namic performance of propellers at low Reynolds number using RANS equations
coupled with Baldwin-Lomax algebraic turbulence model. The improved LU-SGS
scheme is utilized for time integral which converges faster and better than the com-
mon used five-step Runge-Kutta time stepping scheme. Chimera-grid methodology
is used to effectively and precisely capture the vortical wake. The numerical results
agree well with the experiment data. Therefore, it can be used as a reference in the
design of propellers at low Reynolds number.
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1   Introduction 

To effective operation of scramjet combustion chamber, the full mixing of air and 
fuel as well as mixture ignition and stable burning have to be organized. The whole 
physical problem is very complex and depends on numerous factors. 
Implementation of fuel supply in supersonic flow is one of the most important 
problems since it governs the state of fuel-air mixing and the quantity of enriched 
mixture to come into the ignition region. At the same time, to stabilize combustion, 
the fuel-air mixing within the flameholding region must be appropriate and 
controllable over a wide range of operating conditions. 

In order to promote engine performance, fuel and air must be properly mixed in 
the near field of fuel injection. One of the simplest ways is to use the backward 
facing step (BFS). Generating a recirculation zone, BFS provide hot mixture into 
the flow and, under the certain temperature and mixture concentration conditions 
serves as a flame holder.  

This approach provides sustained combustion but has a disadvantage of 
relatively high stagnation pressure losses. In recent years, a cavity flame holder 
has been investigated and found to significantly improve mixing efficiency with 
significantly lower pressure losses [GBM01]. The present work focuses on the 
fundamental investigations of flowfield in channel with BFS / open cavity with 
different injection schemes, based on the use of sonic gas (fuel) jets. 

2   Problem Statement and Flow Condition 

In the paper, turbulent supersonic flows in a model combustion chamber are 
studied experimentally and numerically. The experiments were performed at 
ITAM SB RAS in the IT-302M hotshot wind tunnel with arc heating. Contoured 
nozzles were manufactured for Mach numbers M∞=2, 2.5, 3 and used in the 
present tests. In real conditions, incoming Mach numbers before the expansion 
region were a little bit lower then designed values because of a thick boundary 
layer on channel walls. The test conditions and variation of flow parameters 
during the test time operation are listed in Table 1. Here P0 and T0 stand for 
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Table 1. Incoming flow condition 

M∝ P0, MPa T0, K Re1,106/m P∝, kPa δ, mm 

2 2÷0.62 2000÷1420 40÷20 192 3.8 

2.33 2.7÷0.94 2300÷1850 30÷10 138 5.6 

2.8 4.0÷1.35 2700÷2000 20÷6 134 5.9 

 
stagnation pressure and temperature and Re1 is a Reynolds number per m. Since 
main flow parameters were changing during experimental runs in hot short wind 
tunnel, some intermediate values were chosen for computations. Chosen for 
specific computation values of static pressure P∝ and boundary layer thickness 
before the expansion are also shown in a Table 1.  

Installation of injectors, pressure taps, thermocouples, and gas sampling for 
measurements were available in the bottom wall of channel. At the tests, pressure 
distributions along the channel wall and flow visualization were obtained under 
various flow conditions and fuel injector positions. 

The chamber geometry varies by changing the flame-holding configuration 
from BFS to cavity, and also by varying L/d, δ/h ratios and θ value, where d  is a 
channel width, h is a cavity depth/step height, L  is a cavity length, θ  is an angle 
of the cavity aft ramp and δ is a boundary layer thickness before the expansion. 
The flows are investigated experimentally and numerically with / without taking 
into account the mass supply into the supersonic turbulent boundary layer.  

3   Method of Computation 

The computations were conducted with the help of in-house computer code for 
solving non-stationary averaged Navier-Stokes equations complemented with the 
two-equation k-ω turbulence model [Wil93]. For a temporal approximation, a 
four-step finite-difference scheme of splitting according spatial variables was used 
[BF96]. At each fractional step the finite-difference scheme was realized by scalar 
sweeps. The TVD-scheme of Flux Vector Splitting by van Leer of the third order 
of accuracy has been used for the approximation of convective terms. The viscous 
 

 

Fig. 1. Primary computational grid for a cavity problem 
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terms have been approximated with the central finite-difference relations of 
second order of accuracy. 

The calculation domain did not include the whole model but the part of it 
contacted directly to the expansion part. The regular quadrangular grid condensed 
toward the rigid walls was composed in the computation domain. The most of 
computations were performed on a grid consisted of 500×350 nodes. In the Fig. 1, 
a grid pattern for a channel with a cavity with every fifth grid line is shown.  

The inlet (left) section of the computational domain was chosen downstream 
from the laminar/turbulent transition region and far upstream from the expansion 
corner. The profiles of all the gas-dynamical and turbulent parameters were obtained 
from boundary-layer computations and specified at the entrance of computational 
domain. To resolve a laminar sublayer, total number of grid points there were about 
10 and the condition y1

+≤1 was kept for incoming turbulent boundary layers.  
At rigid surface no-slip velocity and temperature conditions of two types were 

specified. The first type was the adiabatic temperature condition 0=∂
∂

walln
T , 

and the second type was constant temperature T⏐wall=Tw.. Since the flow was 
supersonic at the outlet, extrapolation conditions were used there. The waves 
reflected from the top channel wall didn’t come to the region of interest, so, to 
decrease the number of grid points, the inviscid reflection conditions were 
prescribed at the top boundary.  

4   Test Computations 

Previously, the computer code was successfully applied for modeling the Shock 
Wave /Boundary Layer Interactions in such configurations as impinging shock 
wave [FFS01], inlets [BFGF04], etc. 

To verify the code for flows with jet injection, some test computations were 
conducted. First, a problem of air injection into a still gas has been investigated. It 
is known that in case of supersonic under-expanded jets, a multi-barrel structure of 
the flow arises. The calculations for the case of jet Mach number 1 and pressure 
ratio of the jet and the ambient media 3.5 performed in a frame of laminar Navier-
Stokes equations have reproduced this multi-barrel structure. Comparison of the 
Mach number distribution along the symmetry axis resulted from the present 
calculations and the empiric relation [DL84] is presented in Fig. 2, a. Satisfactory 
agreement on both Mach distribution and size of the barrel is observed. 

Numerical simulation of the sonic air injection normal to the supersonic M∞=6, 
Re1=21.1 106 1/m flow along the flat plate has been carried out under the 
condition of Sterrett et al [SBAR67] experiments. Parameters of the primary  
 

Table 2. Parameters of the primary and secondary flows 

Parameter Primary flow Jet 

Total pressure, MPa 2.16 0.73 

Static temperature, K 57.7 250 
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(freestream) and secondary (injected) flows are presented in Table 2. Regular 
rectangular grid has toward the wall and near jet slot refinement. The jet axis 
locates at x=0 and jet slot is 1.37 mm width with 20 grid points. Initially, 
computation grid consists of 200 grid points in streamwise, 150 nodes in normal 
directions and is extended during the calculation process both in x and y directions 
due to the flow evolution.  

The flowfield realized in this case has a complex structure including shock 
waves, supersonic and subsonic zones and strong separation. In Fig. 2, b, Mach 
number contours for this problem is demonstrated. Front of the leading shock 
wave is influenced by both an essential boundary layer separation and shock 
arising due to the jet presence. Computed wave structure agrees qualitatively with 
that described in the experiments [SBAR67]. 
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Fig. 2. Mach number distribution along the axis for a sonic jet into a still air (a) and Mach 
number contours for a normal sonic jet into M=6 flow (b) 

5   Numerical Results  

The code was applied to model the supersonic flow in channel with BFS and 
cavity at M∞=2, 2.33 and 2.8 without fuel injection. The first case to report is 
M∞=2 with adiabatic and cold wall temperature Tw varying from 300K to 1200K. 
The calculations have shown that temperature factor influences significantly on all 
flow parameters in the recirculation zone.  

Temperature flowfields presented in Fig. 3 for case of adiabatic (a) cold wall 
(b) conditions together with streamlines demonstrate that the highest temperature 
occurs in the reattachment region. Temperature in the recirculation zone is much 
lower for Tw=500 K than that for adiabatic condition. Significant reconstruction in 
the streamlines pictures can be seen. Under adiabatic conditions (Fig. 4, a), a 
three-vortex configuration is formed in the separation zone with the small 
clockwise vortex in the inner corner, rather big counter clockwise middle vortex 
with temperature of about 1000K and the clockwise vortex adjusted to the external 
flow. With Tw decreasing, the first vortex disappears, the second vortex reduces in 
sizes and the third external vortex grows (Fig. 4, b). These results are of great 
importance for hot-shot wind tunnel for which cold wall temperature condition is 
typical. As the present computations have shown, cold wall temperature 
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conditions may cause decreasing temperature in the recirculation zone and yhen 
lead to the fuel ignition delay or suppressing. 

In Fig. 4 the pressure distributions along the surface are presented for channel 
with BFS at M∞=2.33 (a) and 2.8 (b) under cold wall conditions: Tw=300. Here the 
x-axis is directed along the wall, point x/h=0 corresponds to the expansion corner, 
point x/h=1 is the internal compression corner. Pressure is normalized by it value 
before the expansion. Comparison of the results demonstrates reasonable 
agreement.  

The computations of flow in channel with a cavity were performed under the 
same experimental conditions and on the grid presented in Fig. 1. The numerical 
results are in qualitative agreement with the experimental data. But the computations 
have revealed the necessity of the primary grid adaptation to resolve all the flow 
features. Special attempts should be applied to model unsteady behavior of a flow 
over an open cavity.  

 
Fig. 3. Temperature fields and streamlines in vicinity of BFS at M∞=2 under adiabatic (a) 
and cold wall Tw=500 (b) conditions 
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Fig. 4. Experimental and computed static pressure distributions along BFS surface at 
M∞=2.33 (a) and 2.8 (b) 
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6   Conclusions and Future Work 

Turbulent supersonic flows in a plane channel with an abrupt expansion are studied 
numerically on the basis of RANS model supplemented with turbulent model by 
Wilcox. Numerical procedure and in-house code were tested on flows with Shock 
wave/Turbulent boundary layer interaction and sonic jet injection into still and 
supersonic flow. Results of numerical simulation of high-enthalpy turbulent 
supersonic flows are presented conducted under conditions of experiments in the 
hot–shot wind tunnel. Influence of incoming Mach number, temperature factors and 
channel geometry on flowstructure is investigated.  

Further work plan includes the simulation of sonic jet injection to a channel 
with BFS and cavity. Different scheme of the fuel supply will be studied 
numerically. The particle traces of the gas injected into the main flow will be 
constructed and residence time in the recirculation zone will be evaluated. Grid 
adaptation to the peculiarity of a complex flowstructure will be performed.  
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1 Introduction

Dense gases are single-phase vapors whose properties deviate significantly
from the ideal gas law, operating at temperatures and pressures of the order
of magnitude of the critical ones. Bethe-Zel’dovich-Thompson (BZT) fluids,
which can be commercially available heat transfer fluids, form a particular
class of dense gases for which nonclassical gasdynamic behaviors are theo-
retically predicted: they display a Fundamental Derivative of Gasdynamics

Γ = 1+
ρ

c

(
∂c

∂ρ

)
S

, with ρ the fluid density, c the sound speed, and S the en-

tropy, that becomes negative in a range of thermodynamic conditions above
the liquid/vapor coexistence curve. In that case, the compression shocks of
the perfect gas theory violate the entropy inequality and are therefore in-
admissible. Such non-classical phenomena have several practical outcomes:
prominent among them is an active research effort to reduce losses caused
by wave drag and shock/boundary layer interactions in turbomachines and
nozzles, with particular application to Organic Rankine Cycles (ORCs). The
complexity of setting up experimental studies with such dense gases [1] has
motivated the development of numerical tools to analyze their performance,
assess their interest and define their optimal conditions of use. This study
deals with the extension to dense gas flow computations of a low-cost pre-
conditioned implicit scheme previousy developed for perfect gas flows [2].

2 Governing Equations and Thermodynamical Model

Let us first focus on the 3D Euler equations written in conservative form:

∂W

∂t
+ ∇ · FE = 0, (1)

where W = (ρ, ρu, ρv, ρw, ρE)T is the vector of conservative variables and
FE = (fE(W ), gE(W ), hE(W )). Alternatively, the system can be expressed



296 P.M. Congedo, P. Cinnella, and C. Corre

in quasi-linear form using entropic variables V = (p, u, v, w, S), with dS =
dp− c2 dρ:

∂V

∂t
+ Ae ∂V

∂x
+ Be ∂V

∂y
+ Ce ∂V

∂z
= 0, (2)

where the entropic Jacobian matrices are such that Ae = dfE

dV , Be = dgE

dV ,
Ce = dhE

dV . The condition number of system (1) or (2) is defined as the ratio of
the largest to the smallest eigenvalue of the system; a high condition number
translates into a poor convergence to a steady-state when time-marching is
applied to solve the system. Since the eigenvalues of the Euler system are
given by λ1 = V · κ− c = Vκ − c, λ2,3,4 = Vκ and λ5 = Vκ + c where V is the
local velocity vector and κ an arbitrary unit vector, the condition number
for (1) or (2) becomes large when the local Mach number goes to zero or is
close to unity. A better efficiency for these flow conditions can be recovered
by solving, instead of (2):

P−1
e

∂V

∂t
+ Ae ∂V

∂x
+ Be ∂V

∂y
+ Ce ∂V

∂z
= 0, (3)

where the preconditioning matrix P−1
e is the one proposed by Turkel [3]:

Pe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2 0 0 0 0
− αu

ρa2
1 0 0 0

− αv

ρa2
0 1 0 0

−αw

ρa2
0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

with β2 and α free parameters to be chosen so as to minimize the condition
number of the preconditioned system (3). The eigenvalues of the precondi-
tioned system are λ̃1 = Ṽ · κ− c̃ = Ṽκ − c̃, λ̃2,3,4 = Vκ, λ̃5 = Ṽκ + c̃ with the
preconditioned local velocity and speed of sound respectively given by:

Ṽκ = 1
2 z Vκ , c̃ = 1

2

√
z2V 2

κ + 4β2(c2 − V 2
κ ) (5)

where z = 1 − α + β2. If α, β are chosen such that α = 1 + β2 and β2 =
M2/(1 −M2), then the condition number grows as O(1/

√
1−M2) instead

of O(1/(1 − M2)) when the local Mach number M → 1− [3], yielding an
improved convergence for transonic flows.

If the preconditioning is applied to the conservative form of the Euler
system, the system to solve reads:

P−1
c

∂W

∂t
+ ∇ · FE(W ) = 0 , (6)

with Pc =
(

∂W

∂V

)
Pe

(
∂V

∂W

)
. In this study, Martin-Hou’s (MAH) thermal

equation of state (EOS) is used to model the dense gas thermodynamic be-
haviour: it relies on a 5 virial expansion terms to describe the relationship
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between pressure, density and temperature p = p(ρ, T ). It is complemented
with a caloric EOS linking internal energy with density and temperature
e = e(ρ, T ) (see for instance [4] for more details). Combining both EOS, it
is formally possible to express p as p(ρ, e) or p = Π(W ) (see also [5]). The

matrices
∂V

∂w
,

∂w

∂V
can then be written in terms of the partial derivatives of

Π with respect to density and total energy: Πρ, ΠρE . The preconditioning
matrix Pc is derived from these expressions and definition (4); it takes the
form Pc = I + (β2 − 1)Qc, with Qc displaying the following properties: i)
Q2

c = Qc, ii) the product of Qc with a column vector X is easily computed as

(β2 − 1)Qc X = χ

⎛
⎜⎜⎜⎜⎜⎜⎝

(β2 − 1)
uζ
vζ
wζ

(β2 − 1)
(

c2 −Πρ

ΠρE

)
+ q2ζ

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

with χ =
ΠρE

c2

(
Πρ

ΠρE
X(1) − uX(2) − vX(3) − wX(4) + X(5)

)
and ζ = β2 −

1− α. This relationship generalizes the one given in [3] for perfect gases and
will be used in the next section when deriving a low-cost implicit discretiza-
tion for (6). The partial derivatives Πρ and ΠρE are given by:

ΠρE =
1

ρCv

(
∂p

∂T

)
ρ

, Πρ =
(

∂p

∂ρ

)
T

+ ΠρE

(
V 2

2
− e− ρ

(
∂e

∂ρ

)
T

)

where
(

∂p

∂T

)
ρ

,
(

∂p

∂ρ

)
T

and
(

∂e

∂ρ

)
T

are readily obtained from MAH thermal

and caloric EOS.

3 Space and Time Discretization

The integral form of the preconditioned system (6) is discretized on a general
unstructured grid using a standard finite volume approach expressed as:

(P−1
c )n

i

∆Wn
i

∆tni
= − 1
|Ωi|

∑
k

(
HE

i,k

)n
Si,k = −Rn

i , (8)

where n is the time step counter, ∆(·)n = (·)n+1 − (·)n, |Ωi| is the volume of
the ith control cell and index i, k on the numerical fluxHE refers to the center
of the kth interface of the ith grid cell with surface Si,k. The numerical flux
approximating the normal physical flux FE ·n through a face is computed as:

HE
i,k = HE(WL

i,k, WR
i,k)

where W
L/R
i,k are linearly reconstructed states in the cells i and o(i, k) sharing

the interface i, k. The numerical flux formula used in the present study is
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the modified HLLC scheme proposed in [6]; it relies on characteristic speeds
which are computed from the preconditioned eigenvalues defined by (5). A
fast convergence to steady state is obtained by coupling the above explicit
scheme with a simple implicit stage, based on a first-order Rusanov numerical
flux adapted to take into account the preconditioning matrix applied to the
Euler system:

Dn
i ∆Wn

i +
∑

k

(
∆FE

o(i,k)

)n

· ni,k σi,k −
∑

k

Cn
i,k∆Wn

o(i,k) = −Rn
i (9)

where σi,k = Si,k

2|Ωi| and the coefficients Cn
i,k and Dn

i are defined by:

Cn
i,k =

(
P−1

c ρ̃E
⊥
)n
i,k

σi,k , Dn
i =

(
P −1

c

∆t

)n

i
+
∑

k Cn
i,k

with ρ̃E
⊥ = |Ṽn|+ c̃. Scheme (9) can be rewritten as:

∆Wn
i = (Dn

i )−1 RHSc + (Dn
i )−1 (P−1

c )n
i RHSd (10)

where the contributions to the right-hand-side are split into:

RHSc = −Rn
i −

∑
k

(
∆F E

o(i,k)

)n · ni,k σi,k , RHSd =
∑

k(ρ̃E
⊥)i,k σi,k ∆W n

o(i,k)

and Dn
i = an

i

(
P−1

c

)n
i
, with the scalar coefficient a defined by an

i = 1
∆tn

i
+∑

k σi,k(ρ̃E
⊥)n

i,k. Taking advantage of the properties i) and ii) for Qc, the
implicit scheme is computed using the following simple form:

∆Wn
i =

1
an

i

[RHSc + RHSd] + φ

⎛
⎜⎜⎜⎜⎜⎜⎝

(β2 − 1)
uζ
vζ
wζ

(β2 − 1)
(

c2 −Πρ

ΠρE

)
+ q2ζ

⎞
⎟⎟⎟⎟⎟⎟⎠

n

i

(11)

with

φ =
ΠρE

c2

(
Πρ

ΠρE
RHS(1)

c − u RHS(2)
c − v RHS(3)

c − w RHS(4)
c + RHS(5)

c

)
.

The extra-cost induced by the preconditioning is thus reduced to the inex-
pensive computation of the product between φ and the column vector in
(11). For practical purpose, this implicit stage is solved using a Point-Jacobi
relaxation.

4 Numerical Results

The scheme defined by (11) with an explicit stage based on the HLLC scheme
is used for computing the inviscid flow of a dense gas (PP10) at M∞ = 0.84
and 3.06 degrees of incidence over the ONERA M6 wing. The thermodynamic
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Fig. 1. 3D inviscid computation of a dense gas flow over the ONERA M6 wing.
Solution and convergence history without and with preconditioning (residual and
lift coefficient evolution)

conditions are such that p∞/pc = 1.00, ρ∞/ρc = 0.752, corresponding to
Γ∞ = 0.461 which implies significant BZT effects. The flow is computed on a
coarse grid made of 48000 hexahedral cells and the scheme is applied either
with no preconditioning (β2 = 1) or with Turkel preconditioning where β2

has been bounded using the following formula [7]:

β2 = min

(
max

(
M2

1−M2
, M2

∞

)
, 1
)

(12)

with α = 1 + β2. The implicit treatment (11) is applied with ∆t → ∞ and
14 Point-Jacobi subiterations. The non-preconditioned and preconditioned
schemes yield almost the same steady solution; the computed Mach contours
with the preconditioned solver are presented in Fig.1: large regions of the
flow display Mach number values close to unity which means β2 as computed
by (12) remains below unity in many grid cells, making the preconditioning
effective. The use of such preconditioning yields a higher convergence rate



300 P.M. Congedo, P. Cinnella, and C. Corre

X

Y

0 2

-2

-1

0

1

2

Mach

0.87
0.79
0.71
0.62
0.54
0.46
0.37
0.29
0.21
0.12
0.04

Iterations

R
es

id
ua

l

0 1000 2000 3000
10-6

10-5

10-4

10-3

10-2

10-1

100

No preconditioning
With preconditioning

Fig. 2. 2D laminar computation of a dense gas flow over the NACA0012 airfoil.
Solution and convergence history without and with preconditioning

which, taking into account the modest overcost (a few %) induced by the
preconditioning thanks to the use of (11), translates into a 50% reduction
of the computational cost for reaching a steady-state. Though not detailed
here for lack of space, the implicit treatment (11) has been extended to the
Navier-Stokes equations. The laminar flow at M∞ = 0.85, Re = 1000 and 10
degrees of incidence over the NACA0012 airfoil is computed for PP10 with
p∞/pc = 1.008, ρ∞/ρc = 0.676 on a grid made of 6400 triangular cells. The
convergence history displayed in Fig.2 demonstrates the net efficiency gain
offered by preconditioning for the dense gas flows under study holds in the
viscous case.
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1 Introduction

Although computational fluid dynamics (CFD) has achieved a substantial
amount of attention in the recent years, it is still far from being a matur-
ing subject for simulation of unsteady flows around geometrically complex
and largely moving and deforming bodies. Such flows are often encountered
at various important engineering problems such as flutter, store separation,
oscillating and flapping wings. The flow simulation for these problems poses
a variety of challenges for computational methods. Firstly, a robust mesh
deformation technique is necessary for maintaining a suitable descritization
of the evolving computational domain. In addition, an appropriate numer-
ical algorithm is required to integrate the governing equations in time and
space. Therefore, in order to develop an efficient unsteady flow solver, both
mesh deformation and flow solution aspects must be considered, as well as
the interaction between these two areas.

In this paper, a dual-time implicit upwind scheme for solving unsteady
inviscid compressible flowfield around pitching airfoils and wings using un-
structured moving meshes is presented. The Arbitrary Lagrangian-Eulerian
form of the Euler equations is discretized in real time based on the efficient up-
wind AUSM+ scheme. The present solution procedure provides a robust and
accurate flow solver for computing unsteady compressible flowfeild around
moving complex geometries.

2 Mesh Movement Strategy

Unstructured grid methods have the potential to handle complex geome-
tries. Furthermore, the ability to adapt unstructured grids near regions of
computational interest with large gradients has added to its popularity. How-
ever, developing a robust grid movement strategy for unstructured grids,
which maintains the same nodal connectivity and that is computationally
efficient, is still an active area of research in CFD.
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Linear spring analogy is the oldest and simplest strategy to deform the
unstructured mesh points. The linear spring analogy proposed by Batina
[Bat90] has been widely used, due primarily to simplicity of implementation
and computational efficiency. In this method, each edge of the grid is modeled
as a linear tension spring which stiffness is proportional to the inverse of the
edge length. Thus, for the edge connecting the nodes i and j, the stiffness
Cij of the spring is Cij = 1/l2ij.

When the boundaries of a computational domain perform movements, the
following equations for the interior nodes displacements are solved iteratively
until all the forces are in equilibrium

∆xn+1
i =

∑
j Cij∆xn

j∑
j Cij

, ∆yn+1
i =

∑
j Cij∆yn

j∑
j Cij

, ∆zn+1
i =

∑
j Cij∆zn

j∑
j Cij

, (1)

where j is the notation for all nodes connected to node i. Indeed, we seek
for a position of node i in which the summations of the images of all the
forces acting on it in x, y and z directions tend to zero. The above equations
require only a few Jacobi iterations to achieve an acceptable level of accuracy,
therefore, this method is computationally efficient.

From Eq. 1, it is obvious that the behavior of a network of springs can not
be modeled, because there is no interaction between the x, y and z coordi-
nates. To overcome this deficiency, Burg [Bur04] proposed a new formulation
for the forces acting on the nodes which can model the behavior of a network
of springs

Fij = [F i
x, F i

y, F i
z , F j

x , F j
y , F j

z ]T =
[
RijCijRT

ij

]
qij = Kijqij (2)

in which the displacement matrix qij , and the rotation matrix Rij , are

qij = [∆xi, ∆yi, ∆zi, ∆xj , ∆yj, ∆zj ]
T (3)

Rij = [− cos θ sin Φ,− sin θ sinΦ,− cosΦ, cos θ sin Φ, sin θ sin Φ, cosΦ]T (4)

In this formulaion, when a displacement in a direction is applied to node j,
then it results in a displacement in all directions for node i.

Both representations of the linear spring analogy, however, may produce
grids with negative volume elements. In other words, nodes cross-over the
faces. Herein, similar to Singh’s work [SNB95], to maintain the quality of
grids near moving surface, the nodes outside a certain distance from the
moving body are allowed to rotate while rigidly moving the points attached
to and near the object in motion.

3 Solution Algorithm

Governing Equations

The governing equations are the three-dimensional time-dependent compress-
ible Euler equations in the non-dimensional conservative form. The compu-
tational domain consists of unstructured tetrahedral cells. The integral form
of these equations over the control volume Ω with the boundary ∂Ω are
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∂

∂t

∫∫∫
Ω

QdV +
∫∫
©
∂Ω

F (Q) .n̂ dS = 0 (5)

where

Q =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦ , F (Q) .n̂ = (U.n̂)

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρH

⎤
⎥⎥⎥⎥⎦+ p

⎡
⎢⎢⎢⎢⎣

0
n̂x

n̂y

n̂z

xtn̂x + ytn̂y + ztn̂z

⎤
⎥⎥⎥⎥⎦ (6)

Here, Q denotes the solution vector of conservative variables, F (Q) is the
inviscid flux vector, V is the cell volume, and n̂ dS is the vector element of
a surface area with outward unit normal vector n̂ (n̂x, n̂y, n̂z). In addition, p,
ρ, E and H denote the pressure, density, total energy per unit volume and
total enthalpy per unit mass, respectively. Also, (u, v, w) are the Cartesian
velocity components, and the normal velocity component, U.n̂, is

U.n̂ = (u − xt)n̂x + (v − yt)n̂y + (w − zt)n̂z (7)

This formulation is called Arbitrary Lagrangian-Eulerian form of the Euler
equations that can be used for moving grid problems.

Spatial Discretization

By applying Eq. 5 independently to each tetrahedral cell, the following set
of ordinary differential equations is obtained

d

dt
(QjVj) + R(Q) = 0, where R(Q) =

4∑
k=1

Fk.n̂ dSk (8)

Here, R(Q) is the steady residual of cell j, Fk, is the flux vector through the
face k of cell j, and dSk is the area of face k. In the present work, the AUSM+
scheme is used to compute the flux vector Fk in Eq. 8. In this scheme, the
flux vector at a cell interface is given by

Fk =

⎧⎨
⎩

ρL ã Mk ΦL + g pk if Mk ≥ 0

ρR ãMk ΦR + g pk else
(9)

where

g = [0, n̂x, n̂y, n̂z, xtn̂x + ytn̂y + ztn̂z]
T

, Φ = [1, u, v, w, H ]T (10)

Also, the interface Mach number Mk and the interface pressure pk are eval-
uated using the weighted averages of the left and right states. In Eq. 9, ã
is the numerical speed of sound. Details of the formulation of the AUSM+
scheme used can be found in [CL03] and [HA07]. The higher order accuracy
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of the flow variables at each cell face is computed by the MUSCL formulation
[Van79].

At the moving body surface, the flow tangency boundary condition is used
for the inviscid flow. This is implemented by eliminating the convective fluxes
across the faces of the mesh which lie on the wing surfaces. The treatment
of the far-field boundary condition is based on the one-dimensional Reimann
invariants normal to the far-field boundary

Implicit Time Integration

For unsteady calculations, a dual-time second-order implicit scheme is used
as follows

V n+1
j

∂Qn+1
j

∂τ
+ R∗(Qn+1

j ) = 0 (11)

R∗(Qn+1
j ) =

3 V n+1
j Qn+1

j

2∆t
−

2 V n
j Qn

j

∆t
+

V n−1
j Qn−1

j

2∆t
+ Rj(Qn+1) (12)

where τ is the fictitious pseudo-time and the residual R∗ is the unsteady
solution of Eq. 8. Eq. 11 can be solved by using an efficient time-marching
method designed to solve steady-state problems, utilizing the acceleration
techniques. In the present study, the local pseudo-time stepping and residual
smoothing are used to accelerate the convergence rate of the solution.

The Geometric Conservation Law (GCL) is applied to avoid the numerical
errors due to the analytical calculation of the cell volumes [Ili98].

4 Results and Discussion

To validate the solution algorithm, the unsteady transonic flow at M∞ = 0.8
around a rectangular half-span pitching wing is studied. The wing has the
NACA 64A010 airfoil section and a complete aspect ratio of 4 which subjected
to a forced, sinusiodal pitching motion (α = 1.0◦ sin(ωt) and κ = ωc/2U∞ =
0.135 ). The unstructured grid over this wing is shown in Fig. 1 that contains

Y
X

Z

Fig. 1. Unstructured grids around NACA 64A010 rectangular wing
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Fig. 2. Mean surface pressure coefficient distributions over the NACA 64A010 wing
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Fig. 3. Real and imaginary parts of unsteady pressure coefficient over the wing
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Fig. 4. Comparison of lift coefficient for unsteady flow around the wing

49359 nodes and 235510 tetrahedral elements. For this harmonic case, it
is possible to decompose the pressure coefficient history computed in time
domain as follows

Cp(t) = Cpm + CpRe sin(ωt) + CpIm cos(ωt) (13)

where Cpm is the mean surface pressure coefficient, and CpRe and CpIm are
the real and imaginary parts of the surface pressure coefficient which can be
computed by the following relation
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Re
Im {Cp} =

2
α(t2 − t1)

∫ t2

t1

Cp(τ)
{

sin
cos (ωτ)

}
dτ (14)

The time-accurate calculations are performed for four cycles which presented
in Figs. 2 and 3 and the results are compared with the numerical solution
by Sigh [SNB95] and the experimental data by Mabey [MWP88]. In Fig. 2
the computed mean surface pressure coefficient distributions in two different
sections of wing (77% and 94% semispan) are compared with the available
results which shows good agreement. In Fig. 3, the computed real and imag-
inary parts of the surface pressure coefficient distributions at the desired
sections are presented. It is found that the unsteady results for the first cycle
is not accurate for the harmonic solution. The calculated results for cycles
2-4 are nearly the same and agree well with the available results. In Fig. 4,
the variation of the lift coefficient vs. the angle of attack of the wing is shown
which is in agreement with the results by Singh [SNB95]. The present solution
procedure provides a robust and accurate flow solver for computing unsteady
three-dimensional compressible flowfeild around moving complex geometries.
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Manuel D. Salas1 and Harold L. Atkins2

1 NASA Langley Research Center
m.d.salas@nasa.gov

2 NASA Langley Research Center
harold.l.atkins@nasa.gov

Summary. The current use of functionals to evaluate order-of-convergence
of a numerical scheme can lead to incorrect values. The problem comes about
because of interplay between the errors from the evaluation of the functional,
e.g., quadrature error, and from the numerical scheme discretization. Alter-
native procedures for deducing the order-property of a scheme are presented.
The problem is studied within the context of the inviscid supersonic flow over
a blunt body; however, the problem and solutions presented are not unique
to this example.

Keywords: Code verification, grid convergence, supersonic blunt-body, drag
functional.

1 Introduction

Computational Aerodynamicists conduct most of their grid convergence stud-
ies by studying the behavior of solution functionals, e.g., drag, lift and mo-
ment coefficients, as the computational grids are refined. Functionals are used
for several reasons: first, their accurate evaluation is of intrinsic value; and
second, they provide a means of determining convergence properties of a nu-
merical scheme without looking directly at hundreds of thousands of field
point values. Ideally, an error measure should be used to examine order-
properties of grid convergence studies; however, exact solutions are usually
not available for flows of practical interest. Therefore, estimating convergence
properties using functionals is frequently the only course of action available.

However, there are some subtle problems associated with the use of func-
tionals for grid convergence studies, and if these problems are not recognized
and resolved, the results that follow from the use of functionals can be very
misleading. It is the purpose of this paper to expose these problems, and
where possible, suggest solutions.

There are many aspects of a numerical order-properties analysis that must
be done correctly in order for the analysis to be reliable. Paramount among
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these are: that grid refinements must be uniform, preferably with grids se-
quences that are hierarchical; and the iterative methods used to solve the
discrete equations on a given grid must be sufficiently converged, preferably
with residuals reduced several orders of magnitude below the solution error.
Of course, this is complicated by the fact that the errors are not known a
priori.

The problems that are associated with the use of functionals for the study
of grid convergence rates are illustrated with numerical results from the com-
putation of a blunt-body in an inviscid supersonic stream. However, it should
be emphasized that the problems discussed are not unique to the blunt-body
problem, indeed they are not unique to fluid mechanics, and may occur in
any grid convergence study involving functionals. The particular case studied
is the Mach 6 flow of an inviscid gas over a circular cylinder. In the numerical
implementation the problem is solved as a time dependent problem with the
bow shock wave fitted as a boundary of the flow. By fitting the shock, the
numerical scheme acts only on a smooth flow region. Thus, the computation
is limited to the layer bounded by the bow shock, the circular cylinder, the
symmetry line, and a supersonic outflow boundary imposed at some θ = θmax,
see Fig. 1.

The physical plane is transformed to a computational plane where N and
M mesh points are uniformly distributed between the body and the shock
and between the symmetry line and the outflow line, respectively. The pre-
dictor/corrector MacCormack scheme [1] is used for the numerical integration
of the Euler equations.

Table 1 shows results obtained with a series of grids. The number of mesh
points corresponding to each kth grid are Nk = 3 × 2k and Mk = 5 × 2k.
Columns 2 and 3 display the inviscid drag coefficient computed with the
trapezoidal rule (TR) and with Simpson’s rule (SR). The drag coefficient
order-of-convergence is given by

Fig. 1. Supersonic blunt-body flow field, showing isobars, M∞ = 6
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Table 1. M∞ = 6 cases investigated. For the three finest grids the trapezoidal rule
(TR) computed drag is not monotone and for both quadrature rules the computed
drag exhibits super-convergence.

k Cd (TR) Cd (SR) p(TR) p(SR)

1 1.8755919 1.8767669 1.92 1.90
2 1.8706109 1.8709412 2.73 2.58
3 1.8692925 1.8693766 4.03 3.25
4 1.8690942 1.8691147 — —
5 1.8690821 1.8690872
6 1.8690859 1.8690872

pk = log2

[
Cd,k − Cd,k+1

Cd,k+1 − Cd,k+2

]
, (1)

and is shown in the last two columns. The order-of convergence for k = 3
for TR and SR shows a large discrepancy and both results are significantly
greater than the formal order of the scheme which is second order. For k = 4,
the drag coefficient is not monotone and the order-of-convergence evaluation
fails. (Note that the order-of-convergence for grid k depends on the solutions
from grids k, k + 1, and k + 2).

To establish that there is reason to suspect these results, consider the be-
havior of the error norm in total temperature. For this problem in the steady
state, the total enthalpy, and hence the total temperature, is constant. The L2

and L∞ norms of the total temperature error are shown in Fig. 2. The order-
of-convergence based on the L2 and L∞ norms is 2.03 and 1.84, respectively.
These are in fairly good agreement with the formal order of the scheme. Why
then is the order-of-convergence of the drag functional misbehaving?

Fig. 2. L2 and L∞ of total temperature error for entire shock layer, based on
results from grids k = 3, 4, 5, with hk = 1/

√
NkMk
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2 Order-Of-Convergence of Functionals

To answer the last question, first consider the following question: If the sur-
face pressure converges with order p, what should the expected order-of-
convergence of the drag-functional be? To this end, let the computed sur-
face pressure, Pc, normalized by the free stream pressure, P∞, be given by
Pc/P∞ = Pe/P∞ + α(θ)hp, where Pe is the exact surface pressure. The sec-
tional drag coefficient is defined by

Cd =
∫ θmax

0

(Pc/P∞ − 1) b(θ) cos(θ)dθ/
(

1
2γM2

∞Aref
)

(2)

where γ is the ratio of specific heats, M∞ is the free stream Mach num-
ber, b(θ) is the body radius, and Aref is a reference surface area, here taken
as the projected plan-form area. Therefore, Cd = Cd,e+ Γhp where Γ is a
constant and Cd,e is the exact value of the drag coefficient; therefore, the
drag-functional should converge with order p.

3 The Problem with Quadrature

If it is assumed that the pressure order-of-convergence behaves like the total
temperature order-of-convergence, then the result just obtained for drag is
not consistent with the results of Table 1. The problem lies in the numerical
integration of (2). The integration is approximated by a quadrature taken
over M equally spaced intervals on the surface of the cylinder, i.e.

∫ θmax

0 fdθ ≈∑M+1
1 aifi. The quadrature has a leading error of order hq. It is easy to show

that Cd = Cd,e+βqh
q + Γhp + O(hq+p), where βq is a constant and q equals

2 for TR and 4 for SR. Using this relation for Cd in (1) we find

p̄ = p + log2

{
2p−2βq [1− 2q] + hp−qΓ [1− 2p]

22(p−2)βq [1− 2q] + hp−qΓ [1− 2p]

}
, (3)

where h is the coarse grid spacing. Here p̄ is the computed order-of-convergence
and the log2-term is an error brought about by the interplay between the
quadrature error and algorithmic error. In the limit h→ 0, the p̄ behavior is
given by p̄ → q if p ≥ q, and p̄ → p if p < q. However, in a computation h
will always be finite and having p < q is not a guarantee that the log2-term
will be small.

4 How to Eliminate the Quadrature Error

A solution to the quadrature problem can be found by studying (1). Consider
the numerator. The numerator is the difference between the drag coefficients
of the medium (k+1) and coarse (k) grids. The medium grid has a quadrature
error of order (h/2)2, while the coarse grid has a quadrature error of order h2.
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These errors do not cancel out and their interplay with the algorithmic error
causes some (not all) of the problems in the results of Table 1. The solution
is to implement the quadrature in such a way that the quadrature errors of
the medium and coarse grids cancel. To do this, evaluate both the medium
and coarse grid quadratures using an h interval, i.e., use only every other
point of the medium grid. The same idea is applied to the denominator by
evaluating both the medium and fine grid quadratures using an h/2 interval.

5 Higher-Order Algorithmic Error Model

The actual algorithmic error in any numerical solution on any given grid con-
tains a full hierarchy of errors that are unknown, but are generally assumed
to be of the form Cd,k = Cd,ex +

∑∞
n=p αnhn

k , where p is the unknown ac-
tual order of the numerical method. The standard method for deducing order
properties from grid convergence, described earlier, is obtained by fitting a
single error mode of the form Cd,k = Cd,ex + αhp

k to the actual error. For
sufficiently small h, the actual error is dominated by the lowest order term,
and the single mode model provides an accurate prediction of the order-of-
convergence. However, for larger h above this asymptotic region, multiple
error modes are competing, and their projection onto a single mode can be
erroneous. Consider then a two-mode error model:

Cd,k = Cd,ex + α1h
p
k + α2h

p+1
k . (4)

For thismodel, using a sequence of four grids (k throughk+3),wherehk+1/hk =
hk+2/hk+1 = hk+3/hk+2 = 1/2, we find the order-of-convergence to be

p = log2

⎡
⎣3∆k+1

4∆k+2
±

√(
3∆k+1

4∆k+2

)2

− ∆k

2∆k+2

⎤
⎦ , (5)

where ∆i = Cd,i−Cd,i+1. The “+” sign is the appropriate choice when in or
near the asymptotic region. It is important to monitor the ratio

α2hk

α1
=

4(1− 2p)
(1 − 2p+1)

(∆k − 2p∆k+1)
(2p+1∆k+1 −∆k)

. (6)

Table 2. Drag order-of-convergence using higher order method and coarse grid
interval, k = 3, for quadrature rules

k Cd (TR) Cd (SR) p(TR) p(SR)

3 1.8692925 1.8693766 1.674 1.681
4 1.8690328 1.8691145
5 1.8690056 1.8690872
6 1.8690056 1.8690871
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When the magnitude of this ratio is less than one, the one-mode error model
is valid. With a two-mode error model and eliminating the quadrature error
as previously described, we obtain the results listed in Table 2. For more
details see [2].

6 Conclusions and Recommendations

With the increased reliance in both science and engineering on the numerical
solution of partial differential equations, the subject of code verification has
become increasingly significant. An important element of code verification is
the study of grid convergence. Most studies today of this subject have been
at best superficial and in many cases painfully inadequate. This paper is an
attempt to reverse this trend by first highlighting a series of problems that ex-
ist in the standard order-of-convergence analysis, particularly as it relates to
the evaluation of functionals, and second by providing a number of solutions
and workarounds to these problems. It is important to distinguish between
a code verification effort and an effort to determine if a particular solution
to a specific problem is sufficiently accurate for some intended use. The two
tasks are very different. A rigorous grid convergence and order-of-convergence
study can aid in determining if an algorithm has been implemented correctly.
However, such a rigorous study requires grids of the same family and grid
refinements that are uniform, preferably with grids sequences that are nested.
In the second task, limited time and resources often lead to compromising one
or more attributes of a rigorous study. While non-uniform mesh refinement
may lead to some improvement in the solution, order-of-convergence proper-
ties computed from non-uniform refinements or ill-converged solutions sets
are meaningless. Whenever possible, error norms should be used to establish
the order-of-convergence. The higher order analysis developed in Sect. 5 is
the best way to evaluate if the asymptotic range has been reached or if more
levels of grid refinement are needed to reach it. It should be part of any rig-
orous grid convergence study. Reference [2] provides a more in depth study
of these issues.
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Summary. The accuracy of the stabilized finite element solution of incom-
pressible flow problems with higher Reynolds numbers is studied. We use a
modification of the Galerkin Least Squares Method called semiGLS. A poste-
riori error estimates are used as the principal tool for the accuracy analysis.
The problem of singularities is considered. Numerical results are presented.
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1 Introduction

It is well known that finite element method (FEM) in its standard form (e.g.
the mixed FEM version) suffers from numerical oscillations and other in-
stabilities when applied to problems of flows with high Reynolds numbers.
Stabilization techniques for FEM are commonly accepted tools for solving
these problems. However, when applying the stabilization technique we ob-
serve quite significant loss of accuracy in the solution, cf. e.g. [BNŠ06Sw],
where the semiGLS method was discussed. In this paper we focus primarily
on the analysis of accuracy of the semiGLS method. We make use of a pos-
teriori error estimates of the finite element solution in order to trace the loss
of accuracy of the stabilized algorithm.

2 Mixed FEM Formulation

Let Ω be an open bounded domain in R2 filled with an incompressible viscous
fluid. Steady flow is governed by the following Navier-Stokes system,

(u · ∇)u− ν∆u +∇p = f in Ω, (1)

∇ · u = 0 in Ω, (2)
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with appropriate conditions on the boundary Γ . Here u is the vector of
flow velocity, p is the pressure normalized by the density, ν is the kinematic
viscosity, f is the density of volume forces.

Using the variational formulation of problem (1)–(2) and mixed FEM,
we come to the discrete weak steady Navier-Stokes problem. We work with
Taylor-Hood finite elements P2P1 and/or Q2Q1 on triangles or quadrilaterals,
respectively. These satisfy the Babuška-Brezzi condition.

3 SemiGLS Stabilized Formulation

We recall the semiGLS stabilization technique, which was described in
[BNŠ06Sw] as a modification of Galerkin Least Squares method, proposed
by [HFH89]. Applying this stabilization to the momentum equation (1) and
adding the continuity equation (2), we introduce the stabilized problem:

Find uh ∈ Vgh and ph ∈ Qh satisfying ∀vh ∈ Vh, ∀ψh ∈ Qh,

∫
Ω

(
(uh · ∇)uh · vh + ν∇uh : ∇vh + ψh∇ · uh − ph∇ · vh

)
dΩ

+
N∑

K=1

∫
TK

[(uh · ∇)uh − ν∆uh +∇ph] · τ [(uh · ∇)vh − ν∆vh + ∇ψh] dΩ

=
∫

Ω

f · vhdΩ +
N∑

K=1

∫
TK

f · τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ,

Here uh = (uh1, uh2), Vgh, Qh, Vh are proper finite element spaces, and τ is
a positive stabilization parameter, cf. [BNŠ06Sw] where the potential of the
semiGLS method was demonstrated also on practical problems.

Although stabilization terms should vanish in the limit for h → 0 (the
exact solution) satisfying the formal consistency, the approximate solution
does not reach this limit. So these terms remain present in the practically
solved equations and modify them slightly. We take this as the substantial
source of the loss of accuracy.

4 A Posteriori Error Estimates

For evaluating the achieved accuracy of the approximate solution, we use
the following error estimator that represents the relative error on the finite
element TK ,

R2(u1h, u2h, ph, TK) =
|Ω| E2(u1h, u2h, ph, TK)
|TK |‖(u1h, u2h, ph)‖2V,Ω

. (3)

This is based on the following a posteriori error estimates that were derived
and tested for Taylor-Hood elements in [BNS03],
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‖(eu1 , eu2 , ep)‖2V,TK
≤ E2(u1h, u2h, ph, TK), (4)

where

• (u1, u2, p) denotes the exact solution
• (u1h, u2h, ph) denotes the approximate solution computed by FEM
• (eu1 , eu2 , ep) = (u1−u1h, u2−u2h, p−ph) denotes the error of approximate

solution
• ‖u1h, u2h, ph‖2V,Ω = ‖u1h‖21,Ω + ‖u2h‖21,Ω + ‖ph‖20,Ω where
• ‖u1h‖1,Ω,‖u2h‖1,Ω mean Sobolev H1(Ω) norms
• ‖ph‖0,Ω means the L2(Ω) norm
• |Ω|, |TK |mean the area of the domain Ω, and the element TK , respectively

The term on the right hand side of the inequality (4) is evaluated as

E2(u1h, u2h, ph, TK) = C
[
h2

K

∫
TK

(
r2
1(u1h, u2h, ph) + r2

2(u1h, u2h, ph)
)
dΩ

+
∫

TK

r2
3(u1h, u2h, ph)dΩ

]
,

where r1(u1h, u2h, ph), r2(u1h, u2h, ph) are residuals of the momentum equation
(1), r3(u1h, u2h, ph) is the residual of the continuity equation (2), see [BNŠ06Gh].

The constant C is a delicate task in a posteriori error estimates. We refer
to [BNS03], where we show its derivation for the case of non-stabilized finite
element method. In this paper we work with the error in a relative sense:
using the above estimator we are able to show the relative error on finite
elements, and so reveal the distribution of the error in the solution domain.
This is important especially for flows with high Reynolds number.

5 Numerical Results and Accuracy Analysis

5.1 Steady Flow in Lid Driven Cavity

Comparison of a posteriori error estimates for the problem of the lid driven
cavity at Reynolds number 10,000 is presented in Figure 1. The mesh is
uniform, 64 × 64 elements. In the plots, AEE is an abbreviation for a pos-
teriori error estimator. We compare solution without stabilization (left) to
the solution by semiGLS (right). In both cases, highest errors are at upper
corners which is caused by the presence of singularities in the exact solution
at these two corners. The a posteriori error estimates confirm these singu-
larities. On the other hand on Figure 1 we can observe the well-known fact
that we pay for stabilization by the loss of accuracy. The inaccuracy of the
stabilized solution is spread on the whole domain. We can also observe the
“leading role” of pressure in the inaccuracy: where the pressure has higher
gradients there the inaccuracy of the stabilized solution is higher, cf. Fig. 2.
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Fig. 1. A posteriori errors on elements, cavity problem, Re = 10,000, without
stabilization (left) and by semiGLS method (right)

Fig. 2. Pressure contours, cavity problem, Re = 10,000, without stabilization

5.2 Steady Flow in Channel with Sudden Extension of Diameter

In Figure 3, we give results for a channel with abrupt changes of diameter.
Here again, the exact solution attains singularities in the two nonconvex
corners. But here the mesh is refined in the vicinity of these nonconvex corners
which restrains the influence of the singularity on the finite element solution;
the algorithm for designing properly refined mesh was described in [BNŠ05].

There is also a straightforward way to evaluate the loss of accuracy. It is
based on comparison of discrete norms of approximate solutions obtained with
and without stabilization, see [BNŠ06Sw]. In Table 1 we show the differences of
solutions obtained by the semiGLS method from those obtained by the Newton
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Fig. 3. A posteriori errors in the channel: mixed method without stabilization
(top) and semiGLS method (bottom), Re = 1,000

Table 1. Differences between solutions obtained with and without stabilization

64×64 128×128 channel
δuh1 [%] 39.07 21.42 0.0718
δuh2 [%] 49.12 22.24 2.7202
δph [%] 137.10 42.82 0.5139

method: first two columns for cavity, third column for the channel. We can
observe again that in the case of the channel, where the mesh is adjusted to
the singularities near corners, the differences are much lower.

Let us note that the calculations for our analysis were done for quite low
Reynolds numbers. The reason is in the existence of steady solution for com-
parison of errors with stabilized solutions. The results of semiGLS stabi-
lization on problems with much higher Reynolds numbers are given e.g. in
[BNŠ06Sw].

6 Conclusion

The loss of accuracy is inherited in the stabilized method and could be hardly
suppressed. However, using the new approach presented in this paper, we can
evaluate its distribution and therefore get the idea about its effect.

In Figures 1, 3 we can observe, that the error can spread to a larger area
when using semiGLS. Similar behaviour was observed also for other stabi-
lization techniques, such as SUPG method. However, one should note that
the precision of the stabilized solution is much higher in case of the channel
on Figure 3 where the mesh is refined towards the singulalarity, compared to
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the case of cavity on Figure 1 where the mesh is uniform regardless of the
singularities in upper corners.

Although a posteriori error estimates give important information on the
distribution of the error, still the problem of accuracy in the stabilized FEM
deserves more complex analysis.
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Summary. A new adaptive algorithm for computing turbulent flows past
high–lift devices is proposed. The adaptive algorithm is based on a recently
developed residual error estimator, which is capable of detecting sources of
error. The error estimator can be effectively employed in the absence of dis-
continuous flow features for both refinement and derefinement. The new adap-
tation algorithm is employed within a RANS framework to study the physics
of flow past a three–element take–off configuration.

1 Introduction

Flow past multi–element airfoils is quite complex due to the presence of
boundary layer transition, separation and reattachment, wake–boundary
layer and shock–boundary layer interactions and unsteadiness at higher an-
gles of attack. Accurate predictions of lift and drag are critically dependent
on how well the flow features are resolved and therefore on the computational
mesh employed. Mesh generation for multi–element airfoils is a formidable
task and no single mesh is optimal over the large range of angles of attack
typically encountered by such configurations. Adaptive meshes offer a viable
and economical alternative to handle these problems. The key to success of
any adaptive algorithm are the sensors that can detect the error. Error es-
timators are a natural choice as sensors because of their ability to provide
reasonable estimates of the error in the domain that can be used to design
a “termination criterion” for adaptation. A residual error estimator referred
to as �–parameter, developed by the authors [1] is particularly attractive
because of its ability to detect error sources in addition to providing a crite-
rion to decide on the sufficiency of grid resolution. The residual estimator is
inexpensive, works well in regions devoid of discontinuities and limiters and
can be used effectively for both refinement and derefinement for flows past
high–lift configurations.
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2 Residual Error Estimation

In this section, we briefly discuss the residual error estimation for steady–state
fluid flow problems. Consider the governing conservation equations expressed
in an integral form over a finite volume Ωi bounded by surface Γi,

Ii [U ] =
1
Ωi

∮
Γi

F · dΓ = 0 (1)

The discrete approximation to the above equation reads,

δ1
i [u] = 0 (2)

In Eq.(1), U represents the exact solution and F = F (U) represents the
flux vector, while in Eq.(2) δ1

i represents a discrete approximation to Ii and
u is the numerical solution. The fundamental idea in the design of the �–
parameter is to exploit the imbalance that would arise if the exact operator,
I operated on the numerical solution, u. We then have,

Ii [u] = R1
i [u] (3)

However, in working with a discretised domain, an estimate of this error can
be obtained using another discrete operator δ2

i approximating I.

δ2
i [u] = R1

i [u] + R2
i [u] (4)

If R1 ∼ O(hm) and R2 ∼ O(hn), the necessary condition for the �–
parameter to be an estimate of the local truncation error is m < n. In the
present procedure, a linear reconstruction (m=1) is employed to obtain the
solution while a quadratic reconstruction (n=2) with a three–point Gaussian
quadrature for flux integration, is used to estimate the errors.

The �–parameter is computed as the RMS value of the continuity, mo-
mentum and energy residuals. The residual estimation procedure is generic
and can be applied to any system of equations.

3 Adaptation Algorithm

The success of any AMR algorithm is critically dependent on the criterion em-
ployed for refinement/derefinement. We develop a new isotropic h–refinement
algorithm purely based on the residual error estimator in the present work.
The refinement/derefinement criterion hinges on the following hypothesis.

Hypothesis. For a grid lp at any level p (p ≥ 1), the volumes which continue
to remain at the initial level (p=0), have the lowest values of the �–parameter.

Furthermore, the residual estimate can be related to the characteristic
length scale for each cell as � = X(h) h, where X(h) is the “Dissipation
Function” and depends on the solution derivatives. Such a representation is
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more general and accounts for the non–integral nature of the slope of the
error curve. The readers are referred to [1] for a detailed discussion.

We define a threshold value of the parameter, �∗ = 1
2 (||�||1 + ||�||∞), the

norms being taken over a stencil comprising of cells at initial (or base) level
and where limiters are not operational. For every cell at grid level l, we then
calculate the dissipation function X l , ‘cell threshold length’ h∗ and threshold
dissipation function X∗ (using values at levels l and (l − 1)) as below.

X l =
�l

hl
h∗ =

�∗

X∗ X∗ = 2×X l −X l−1

It must be emphasised that while the threshold value of the �–parameter
is a global quantity, the threshold length scale is local to every cell in the
domain. The refinement/derefinement criterion are given as follows.

Refinement criterion. A volume c on a grid lp (p≥1) is flagged for refine-
ment iff the characteristic length scale hc associated with the volume satisfies
hc > h∗

c .

Derefinement criterion. A volume c on a grid lp (p≥1) is flagged for
derefinement iff the characteristic length scale hc associated with the volume
satisfies 2× hc ≤ h∗

c .

On the base level grid l0, it is however necessary to have a separate refinement
criterion. This is achieved by flagging a fixed percentage of cells where the �–
parameter is maximum. It must be emphasised that it is desirable to refine a
larger percentage of volumes to begin with, in order to detect flow features, as
the derefinement criterion will subsequently remove the over–adapted regions
automatically. In addition to the above basic criterion, a series of smoothing
rounds are necessary to ensure good grid quality.

4 Grid and Solution Methodology

The starting grid is a hybrid mesh comprising of 50666 volumes. On this
initial grid, quadrilateral cells used for filling the viscous wall layers are care-
fully generated to resolve the laminar sublayer. These cells are therefore not
included in the refinement/derefinement procedure. Nevertheless, refinement
of these cells in order to satisfy the smoothness criterion of atmost one hang-
ing node for a given edge is permitted. The rest of the computational domain
are filled with triangles. The first grid spacing off the wall is 5×10−6 and the
farfield is set at 150 chords. In this sense, a good initial grid is a prerequisite
for a meaningful adaptive strategy.

The in–house developed flow solver HIFUN–2D based on cell–centered fi-
nite volume framework is used for steady–state computations. Inviscid fluxes
are computed using the Roe’s flux difference splitting scheme [2], while the
viscous fluxes are computed using diamond path reconstruction [9]. Solution
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monotonicity is enforced using the Venkatakrishnan limiter [3] and implicit
time–stepping based on Symmetric Gauss-Seidel (SGS) relaxation is em-
ployed for convergence acceleration [5]. A point vortex correction is employed
at the farfield boundary, while wall fluxes are computed based on pressure ex-
trapolation. Turbulence is modelled using the one–equation Spalart–Allmaras
model [4]. The flow equations are solved in a decoupled manner from the tur-
bulence model equations. A point–transition strategy [8], which zeroes out
the turbulence production term is employed for transition specification.

5 Numerical Simulations

The proposed adaptive strategy is employed to investigate the lift character-
istics and drag polar of the three–element NHLP airfoil, typical of a take–
off configuration. The freestream conditions correspond to a Mach number
of 0.197 and Reynolds number of 3.52 million. In the computations per-
formed in this work, transition is set at 12.5% chord on both surfaces of
the main element, while the slat and flap are run “fully turbulent”. Two
levels of refinement/derefinement are performed at eight angles of attack
(viz. 12o,16o,18o,20o,22o,23o,24o and 25o). The number of volumes on the
final level adapted grid is approximately 4,10,000 for all angles of attack.
Fig.1 shows the initial and adapted meshes for α=20o. The mach contours
on these grids are shown in Fig.2. It is evident that the wakes and the
confluent boundary layer are captured accurately on the adapted meshes.
The adaptive strategy leads to better predictions of the wake deficit (Fig.3)

Fig. 1. Initial hybrid mesh (Top) and Adapted mesh at final level (Bottom) close
to the slat (Left) and close to the flap (Right) (α = 20o)
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Fig. 2. Mach contours on the final level adapted grid: Full view (Left), close to
slat (Center) and close to flap (Right) (α = 20o). Contour levels are 0:0.01:1.03

Fig. 3. Total pressure coefficient profiles at x/c = 0.35 (Left) and x/c=1.215 (Right)
for α=20o

Fig. 4. CL–α curve (Left) and Drag polar (Right)

and consequently the lift characteristics and drag polar (Fig.4). Table 1 shows
the comparison of CL,max and stall angle with experiments and other com-
putations. Though the slope of the lift curve in the linear regime is in good
agreement with experiments [6], maximum lift and stall angle are overpre-
dicted, consistent with other computations [7]. Grid adaptation is seen to
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Table 1. Comparison of stall angle and maximum lift coefficient

CL,max Stall angle
Experiment [6] 4.16 21.7o

Present(HIFUN–2D) 4.27 24.0o

CFL3D [7] 4.32 24.0o

significantly improve the drag predictions, while the predictions of lift char-
acteristics show only marginal improvement.

6 Conclusion

A new adaptive algorithm based on the residual error estimator is developed
to handle flow past high–lift configurations. Application of the strategy to the
NHLP test case amply demonstrate that the adaptive algorithm does well to
predict the stall angle, maximum lift and drag polar with reasonable accu-
racy. The present work demonstrates that the adaptive algorithm can indeed
be employed as a cheap yet effective engineering tool for high–lift computa-
tions. The adaptive strategy in conjunction with advances in transition and
turbulence modelling is expected to be employed for realistic predictions of
high–lift configurations in the near future.
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Abstract In this work a vortex method is used to simulate and control an
incompressible two-dimensional transitional flow over a backward-facing step.
Two different control strategies are implemented to modify the shedding, the
recirculation zone behind the step and the transport in the channel. The first
technique consists in using a pulsing inlet velocity and the second one is based
on local oscillating jets implemented on the step vertical wall. The influence of
these controls on the flow behavior is carefuly investigated. Both, open-loop
and closed-loop active control approaches are performed.

Context and im of the tudy

The aim of the present work is to develop two different active control strategies
to manipulate the flow characteristics inside a backward-facing step channel
with a transitional flow regime: 1) using pulsed inlet velocities, with open and
closed-loop frequency choices; 2) implementing two jets to the vertical step
wall with open-loop or closed-loop action into the lower and upper levels of
the step. This work follows the primary results obtained by the authors in a
previous paper for laminar flows [3]. Here, the impact of the control on several
flow characteristics like vorticity, energy, fluctuations, velocity gradients etc.
is carefully analysed. Reynolds numbers are Re = 500 and Re = 2000.

Active Control of ransitional Channel ows
with ulsed and ynthetic ets sing ortex

Keywords Vortex method, closed and open-loop active control, backward-
facing step.
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2 Numerical cheme

The numerical simulations are performed using a Vortex-In-Cell method [2].
In VIC calculations, an Eulerian grid is implemented in order to compute
efficiently the velocity field on the Lagrangian particles. The goal is to ob-
tain a fast computation of the particle velocities in regular bounded domains.
Here, fast Poisson solvers enable fast velocity evaluations. Compared with
pure finite-difference methods, VIC methods offer the advantage of a robust
and accurate treatment of the convective part of equations with time steps not
constrained by convective CFL conditions [1]. The simulations are validated,
comparing them to existing experimental and numerical literature and grid
convergence analysis ensured. Appropriate sets of space and time numerical
parameters are selected in order to achieve accurate control strategies [4].

3 Control trategies

The control is performed either by taking an oscillating inlet velocity u(t) =
(uin(t), 0)T , instead of the uncontrolled uniform velocity boundary condition
simulation (Fig. 1, Control1), or by two small jets implemented on the upper
and lower parts of the step (Fig. 1, Control2). Both, open and closed-loop
controls are used and compared. The open loop studies are performed for a
wide range of parameters to get the most efficient ones. These values are then
compared to the closed-loop control to verify its efficiency.

��
��
��
��

��
��
��
��

Sensor

Control2

Control1

x

y

Fig. 1. Control devices on the step geometry

The control effect is focused on the vortex shedding, transport phenomena
and the step recirculation zone behavior. One of the main targets is to reduce
the recirculation area and length, then to decrease the trapped particles and to
improve the transport of vortices [5]. In order to quantify this control, several
time dependent fonctionals are studied [4]. These functionals are the recircu-
lation area length Lr(t), the total enstrophy in the domain that measures the

S

S
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vorticity of the flowfield and the near wall recirculation area intensity that
corresponds to the level of shear forces.

4 Numerical esults

4.1 First ontrol ype

The first control (Fig. 1, Control1) is achieved oscillating the inlet velocity
profile uin(t) = 1.0 + A cos(2 π f t). The frequency f and the amplitude A
of this oscillating flow are obtained either by an extensive parametric study
(open-loop control OLC) or implementing the dominant frequencies of the
vorticity formation and transport in the pulsing flow as the reference value
(closed-loop control CLC).

For the open-loop control an extremum value for each time-averaged func-
tional for a frequency nearly equal to the basic fundamental frequency of the
flow, namely f ≈ 0.14 is achieved (see Fig. 2). On the other hand, the effi-
ciency of the control almost linearly increases with the increasing values of
the amplitude until a ”plateau”.

The closed-loop control consists in using the fundamental frequencies of
flow shedding or transport in order to fit the oscillation frequency. The fre-
quency measuring sensors may be implemented on the wall (non-intrusive
sensors) or inside the flow field (intrusive sensors). The main advantage of
the closed-loop control is that the control frequency is taken directly from
the principal flow frequencies and avoids the heuristic trial and error ap-
proaches with high computational cost needed for open-loop methods. In the
non-intrusive closed-loop control the quantity ∂2u/∂y2 is connected to the
wall tangent pressure gradient. The closed-loop control consists in taking
uin(t) = 1.0 + M

(
∂2u/∂y2(t)

)
Sn

, where Sn is a point on the bottom wall
(see the location of the sensor on Fig. 1), and M = 2.5.10−3 is chosen to make
vary the inlet velocity in the same range as for the open loop case.

The results show that the closed-loop control is efficient since each ob-
tained functional value as well as average and instantaneous fields are close to
the best results achieved by the open-loop control. As the figure 3 shows the
averaged recirculation zones are remarquably reduced and concentrated in a
small area behind the step using this closed-loop control.

These results are then compared to those obtained using intrusive sensor.
More precisely, we now induce at the entry of the domain the velocity :

uin(t) = 1.0 + M (uSi
(t) − uSi

) ,

R

C T
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Recirculation area lenght Lr Enstrophy

Near-wall recirculation area intensity

f f

f

Fig. 2. Value of the functionals. Top left : Recirculation area lenght. Top right :
Enstrophy. Bottom left : Near-wall recirculation intensity. In dashed-blue line : The
value corresponding to uncontrolled flow.

Fig. 3. Mean streamlines for uncontrolled (up) and non-intrusive CLC (down)
regimes

where uSi
(t) is the horizontal velocity at a given point inside the flow, uSi

its time-averaged value recorded during an uncontrolled simulation, and M
a parameter chosen to tune the amplitude of the signal (which has to be
the same as in the non intrusive case). It shows the higher efficiency of the
intrusive control compared to non intrusive one : the time-averaged value Lr

is respectively equal to 2.71 in the non intrusive case and 2.38 in the intrusive
one (4.51 for the uncontrolled flow). Indeed, in the intrusive configuration the
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sensors are placed inside the flow that is less perturbated by the wall effects.
This can be understood by looking at the value of uin(t) in both cases (see
Fig. 4).
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Fig. 4. Signal of uin(t) for closed-loop control : with non intrusive sensor (top) and
with intrusive sensor (bottom)

4.2 Second ontrol ype

In the second type of control, two small jets are implemented on the upper
and lower parts of the vertical step (Figure 1, Control2). The main target of
this approach is to influence directly the vortex shedding and the recircula-
tion zone: the upper jet changes the shedding dynamics and the lower one
perturbates and pushes away the recirculation zone. The actuators placed in
the close vicinity of the bottom and the top of the step, blow or expell an
horizontal flow inside the flow.

In this study, different possibilities as steady open-loop, active open-loop
and active closed-loop actuators are applied to this configuration and their
efficiency is verified. The inlet velocity is taken equal to unity; uju and ujb

correspond to the uniform jet velocities respectively on the top and the bot-
tom of the step. Then, the oscillation, according to the control technique, is
imposed to these velocities. Moreover, the computations are performed with
both pulsed and synthetic jets. In the first case, in both devices the jet varies
between 0 and |2A|, with a negative jet in the upper side of the step and a
positive one in the lower part. In the second, the jet varies between −A and A
and there is no absolutely positive or negative device, even they never coincide
to each other.
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For this kind of control, as the figure 5 shows, the best closed-loop re-
sults are achieved, taking (uju, ujb) = (−1.0, 0.5) as the initial conditions and
implementing the pulsed jets. A lot of detailed results are available in [4].

Fig. 5. Mean streamlines for uncontrolled (up) and CLC with pulsed step jets
(down) regimes

5 Conclusion

In this work, both open and closed-loop control methods were applied to con-
trol a backward-facing step flow using a Vortex-In-Cell method. Two control
configurations the first one correponding to a pulsing inlet flow and the sec-
ond one to jets introduced into the lower and upper parts of the step were
studied, . The first strategy showed that the natural fundamental frequency
of the flow offers the characteristic value to tune the pulsing frequency. The
control is therefore based on this value whatever the used devices. We also
observed the efficiency of implementing the intrusive sensors. For the second
strategy, the best control is achieved with a high velocity negative upper jet
compared to a positive bottom jet. This result was also true for oscillating
jets. It was verified that an automatic closed-loop approach can provide a
control as efficient as the best open-loop control.
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In the last years much effort was focused on inverse identification problems for
models of hydrodynamics and heat transfer [AT90, GHS91, AM94, GHS93,
IR98, Ale98, LI00, Ded07]. In these problems the unknown densities of bound-
ary or distributed sources, the coefficients of model differential equations or
boundary conditions are recovered from additional information on the solu-
tion to the original boundary value problem. Importantly, inverse problems
can be reduced to corresponding extremum problems by choosing a suitable
minimized cost functional that adequately describes the inverse problem in
question [Ale01, Ale07a, Ale07b]. As a result, both control and inverse prob-
lems can be analyzed by applying a unified approach based on the constrained
optimization theory in Hilbert or Banach spaces.

In this paper extremum problems for the stationary model of heat con-
vection in a viscous incompressible heat-conducting fluid are considered. We
formulate theorems about solvability of these problems, the validity of the
Lagrange principle for them and a regularity condition for a Lagrange mul-
tiplier. Finally we discuss some results of numerical experiments.

1 Statement of the Direct Boundary Problem

Let Ω be a bounded domain in the space Rm, m = 2, 3 with Lipschitz bound-
ary Γ . We consider the boundary value problem for the stationary Navier-
Stokes equations

− ν∆u + (u · ∇)u + ∇p = f , div u = 0 in Ω, u = g on Γ (1)

which describes the steady flow of the viscous incompressible fluid through the
domain Ω. Here u and p denote the velocity and pressure fields respectively,
f is a given body force, ν is the kinematic viscosity coefficient, g is a given
vector-function on Γ . The density constant is taken to be 1. In the case where
thermal effects are essential we have to add the heat transfer equation

− λ∆T + u · ∇T = f in Ω (2)
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together with the boundary conditions

T = ψ on ΓD, ∂T/∂n = χ on ΓN (3)

to the system (1). Here λ is the thermal conductivity coefficient, ψ is a given
function on a part ΓD of Γ , χ is a function given on another part ΓN = Γ \ΓD

of Γ , n is the unit outer normal and the body force f in (1) is defined by f =
−GβT , where G is the gravitational acceleration vector, β is the volumetric
thermal expansion coefficient. We shall refer to problem (1) as Problem 1 and
to (1)–(3) with f = −GβT as Problem 2.

We will make use of Sobolev spaces. In particularly we need the function
spaces H1(Ω), H1(Ω), L2(Ω), H1/2(Γ ), H1/2(ΓD) and their subspaces

T = {θ ∈ H1(Ω) : θ|ΓD = 0}, L2
0(Ω) = {r ∈ L2(Ω) :

∫
Ω

rdΩ = 0},

H1
0(Ω) = {v ∈ H1(Ω) : v|Γ = 0}.

The inner products and norms in L2(Ω) or L2(ΓN ) are denoted by (·, ·), ‖ · ‖
or (·, ·)ΓN , ‖ · ‖ΓN . The norm in H1(Ω) and H1(Ω) is denoted by ‖ · ‖1.

We assume that
(i) Ω is a bounded domain in R3 with a Lipschitz boundary Γ ∈ C0,1

consisting of N connected components Γi, where i = 1, 2, .., N ; the open
segments ΓD and ΓN of Γ obey the conditions ΓD ∈ C0,1, meas ΓD > 0 and
Γ = ΓD ∪ ΓN .

We set T = {ϕ ∈ H1(Ω) : ϕ|ΓD = 0} , H1
0(Ω) = {v ∈ H1(Ω) : v|Γ = 0},

L2
0(Ω) = {p ∈ L2(Ω) : (p, 1) = 0}, H̃1(Ω) = {v ∈ H1(Ω) : v · n|ΓN =

0, (v,n)Γi = 0, i = 1, 2, . . . , N}, H̃1/2(Γ ) = {v|Γ : v ∈ H̃1(Ω)}. Let in
addition to assumption (i) the following conditions take place:

(ii) f ∈ L2(Ω), ψ ∈ H1/2(ΓD); (iii) g ∈ H̃1/2(Γ ), χ ∈ L2(ΓN ).
The following technical lemma holds (see [AT08]):

Lemma 1. Under conditions (i) there exist constants δi > 0, γi > 0 and
βi > 0 such that

(∇v,∇v) ≥ δ0‖v‖2
1 ∀v ∈ H1

0(Ω), (∇T,∇T ) ≥ δ1‖T ‖2
1 ∀T ∈ T ,

|((u · ∇)v,w)| ≤ γ0‖u‖1‖v‖1‖w‖1 ∀u,v,w ∈ H1(Ω),

|(u · ∇ϕ, η)| ≤ γ1‖u‖1‖ϕ‖1‖η‖1, |(βϕG,v)| ≤ β1‖ϕ‖1‖v‖1. (4)

Let X = H̃1(Ω)×L2
0(Ω)×H1(Ω), Y = H−1(Ω)×L2

0(Ω)× H̃1/2(Γ )×T ∗ ×
H1/2(ΓD). The weak formulation of Problem 2 is given as follows: to seek a
triple (u, p, T ) ∈ X such that

ν(∇u,∇v) + ((u · ∇)u,v) − (p, divv) = −(βTG,v) ∀v ∈ H1
0(Ω),

λ(∇T,∇S) + (u · ∇T, S) = (f, S) + (χ, S)ΓN ∀S ∈ T ,

div u = 0 in Ω, u = g on Γ, T = ψ on ΓD. (5)
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2 Control Problems

Our goal is the study of control problems for the models under consideration.
The problems consist in minimization of certain cost functional depending on
the state and controls. As the cost functionals we choose some of the following
ones:

I1(u) =
1
2

∫
Ω0

|u − ud|2dΩ, I2(u) =
1
2

∫
Ω0

|rotu − ζd|2dΩ.

Here Ω0 is a subdomain of Ω. The functionals J1 and J2 where functions
ud ∈ L2(Ω0) and ζd ∈ L2(Ω0) interpreted as measured velocity and vorticity
fields are used to study the inverse problem for the models in questions. As
the control we choose the function g for Navier-Stokes model and the pair
(g, χ) for heat convection model.

In order to formulate an extremum problem for the model (1)–(3) we
split the set of all data of Problem 2 into two groups: the group of controls
containing the functions g ∈ H1/2(Γ ) and χ ∈ L2(ΓN ) which play the role
of controls and the group of fixed data comprising the invariable functions f
and ψ. We assume that the controls g and χ vary in some convex sets K1 ⊂
H1/2(Γ ) and K2 ⊂ L2(ΓN ). The mathematical statement of the optimal
control problem is as follows: seek a pair (x, u), where x = (u, p, T ) ∈ X , and
u = (g, χ) ∈ K = K1 × K2 such relations (5) are satisfied and

Ji(x, u) = Ii(x) +
µ1

2
‖g‖2

H1/2(Γ ) +
µ2

2
‖χ‖2

ΓN
→ inf . (6)

Here µ1, µ2 ≥ 0 are nonnegative constants.
According to the theory of extremal problems [IT79], we introduce an

element y∗ = (ξ, σ, ζ, θ, ζ1) ∈ Y ∗, to which we refer below as the conjugate
state or Lagrange multiplier.

The following theorems establish sufficient conditions for solvability and
local uniqueness in problem 2 and for solvability and the validity of the
Lagrange principle and the regularity of the Lagrange multiplier. The proofs
of the theorems are simular to those of the corresponding results in [Ale01].

Theorem 1. Under conditions (i)–(iii) problem 2 has for any control (g, χ) ∈
K weak solution (u, p, T ) that satisfies the estimates ‖u‖1 ≤ Mu, ‖p‖ ≤ Mp,
‖T ‖1 ≤ MT where Mu(u), Mp(u) and MT (u) are continuous nondecreasing
functions of the norms of g, f , ψ and χ. If additionally g, f , ψ and χ are
small in the sense that

γ0

δ0ν
Mu(u) +

1
δ0ν

β1γ1

δ1λ
MT (u) < 1, (7)

then the weak solution to problem 2 is unique for any u ∈ K.

Theorem 2. Let in addition to (i), (ii) µ1 > 0, µ2 > 0. Then the control
problem (6) has at least one solution.
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Theorem 3. Let under conditions (i), (ii) (x̂, û) = (û, p̂, T̂ , ĝ, χ̂) be a local
minimizer in problem (6) and let the functional J be continuously differen-
tiable with respect to x at the point x̂ for any element u ∈ K and be convex
with respect to u for every point x ∈ X. Then there exists a nonzero La-
grange multiplier (λ0,y∗) = (λ0, ξ, σ, ζ, θ, ζ1) ∈ R+ × Y ∗ that satisfies the
Euler-Lagrange equation

ν(∇w,∇ξ) + ((û · ∇)w, ξ) + ((w · ∇)û, ξ) + κ(w · ∇T̂ , θ) − (σ, div w)+

〈ζ,w〉Γ + λ0〈J ′
u(x̂, û),w〉 = 0 ∀w ∈ H̃1(Ω), (r, div ξ) = 0 ∀r ∈ L2

0(Ω),

κ[λ(∇τ,∇θ) + λ(α̂τ, θ)ΓN + (û · ∇τ, θ) + 〈ζ1, τ〉ΓD ]+

(βτG, ξ) + λ0〈J ′
T (x̂, û), τ〉 = 0 ∀τ ∈ H1(Ω). (8)

for the conjugate state y∗ and satisfies the minimum principle

〈ζ,g − ĝ〉Γ + κ(χ − χ̂, θ)ΓN ≤ λ0[J(x̂, u) − J(x̂, û)] ∀u ∈ K. (9)

Here 〈ζ, ·〉Γ = 〈ζ, ·〉H̃1/2(Γ )∗×H̃1/2(Γ ), 〈ζ1, ·〉ΓD ≡ 〈ζ1, ·〉H1/2(ΓD)∗×H1/2(ΓD) and
κ is a dimensional parameter. The dimension [κ] is chosen so that the dimen-
sions of the values ξ, σ, θ for the conjugate state coincide with those of the
corresponding values u, p, T of the basic state. Relations (8) together with
inequality (9) and weak statement (5) constitute an optimality system.

Theorem 4. Let the assumptions of Theorem 2 be satisfied and inequality
(7) holds for all u ∈ K. Then any nontrivial Lagrange multiplier satisfying
(8) is regular; i.e. it has the form of (1,y∗) and is uniquely determined.

3 Numerical Analysis

The most interesting question is following: can we minimize “velocity” func-
tionals I1, I2 by “temperature” boundary control χ when the function g is
fixed? Therefore in this section we shall use only one control χ. In addition
we assume that the set K2 coincides with all space L2(ΓN ). Then the mini-
mum will be reached in an internal point of set K and it is possible to replace
the minimum principle (9) with identity (µχ − θ, ψ)ΓN = 0 ∀φ ∈ L2(ΓN ).
Having expressed from this relation χ by formula χ = θ/µ we can eliminate
the control χ from the optimality system. We shall write down the received
relations in the form of the operator equation Φ(u, p, T, ξ, σ, θ) = 0. For its
numerical solution the iterative algorithm based on the Newton’s method is
proposed. This algorithm consists of the following steps:

1. For given (u0, p0, T0, ξ0, σ0, θ0) and supposing un, pn, Tn, ξn, σn and θn

are known, we define ũ, p̃, T̃ , ξ̃, σ̃, θ̃ by solving the following problem

Φ′(un, pn, Tn, ξn, σn, θn)(ũ, p̃, T̃ , ξ̃, σ̃, θ̃) = −Φ(un, pn, Tn, ξn, σn, θn).
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Fig. 1. Streamlines for uncontrolled flow (Re=200)

Fig. 2. Streamlines for controlled flow (Re=200)

2. Then we calculate new guesses un+1, pn+1, Tn+1, ξn+1, σn+1, θn+1 for
u, p, T , ξ, σ, θ as

un+1 = un + ũ, pn+1 = pn + p̃, Tn+1 = Tn + T̃ ,

ξn+1 = ξn + ξ̃, σn+1 = σn + σ̃, θn+1 = θn + θ̃.

3. If the condition ‖Tn+1 − Tn‖ < ε for some sufficiently small number ε
is not satisfied, then we go to step 1.

We used free software Freefem++ (www.freefem.org) for the discretization
of direct boundary-value problems by the finite element method.

The computational experiments showed that if the initial guess is selected
sufficiently close to the exact solution, then the algorithm converges for sev-
eral iterations. The regularization parameter µ2 plays an important role. If its
values are relatively large then we can not obtain small values of functionals
Ji. But, from other side, the very small values of the regularization parameter
can lead to the instability and oscillations in the numerical solution.

We consider the functional J1. Following example is connected with the
vortex reduction in the backward-facing-step channel by means of the “tem-
perature” boundary control χ. The initial flow without controls is the solution
of the nonlinear problem (5) with f = 0, ψ = 0, α = 0, χ = 0 and Reynolds
number Re = 200. The streamlines for this case are shown in Figure 1.

One can see that it is complicated flow with a vortex in the corner. The
desired flow ud is the solution of the linear Stokes equations.

We want to receive the solution u of the nonlinear problem (5) with
Reynolds number Re = 200 closed to desired velocity field ud. For this pur-
pose we solve the extremum problem (6) with the functional J1 and boundary
control χ. The received flow is shown in Figure 2. Similar results have been re-
ceived for the functional J2 in the case of the vorticity minimization (ζd = 0).
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Looking at this flow we can see that in this problem the “temperature” con-
trol χ allows to create a velocity field with desired properties.
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The effects of the friction and radiation dampings on shear instabilities
were analysed using quasi-Direct Numerical Simulation (DNS) of a one-layer
shallow-water model. The initial exponential growth rate of the instabilities
were determined from the simulations over a wide range of conditions. The
merging of eddies and the formation of shocklets were also simulated as non-
linear processes subsequent to the instabilities. The results were correlated
with two dimensionless parameters. One of the parameter is the convective
Froude number Frc which characterizes the radiation damping of flow distur-
bance energy, and correlates an analogous effect in compressible flow that is
dependant on the Mach number. The other dimensionless parameter is the
friction number which correlates the local damping of disturbance energy due
to friction. Details of the linear and nonlinear developments of the instabil-
ities are successfully simulated, and correlated with the two dimensionless
parameters.

1 Introduction

Shear stability is a problem fundamental to understand a variety of processes
in science and engineering. The classical approach to the problem is to im-
pose normal modes of perturbations to the base flow. In this method, the
governing equations of the flow are linearized. The eigenvalues associated
with the modes are determined from the linear equations, so that the sta-
bility or the instability of the shear flow can be assessed. This normal mode
approach (NMA) is based on a linear approximation. Weak nonlinear devel-
opments of shear flow instabilities can be derived at considerable expenses
by perturbation expansion from the linear problem. An alternative approach
to analyzing the shear stability problem is quasi-Direct Numerical Simu-
lation (DNS) of two-dimensional depth-averaged equations of shallow flow.
The method is equally efficient for both the initial linear problem and the
nonlinear development. In shallow water, the surface gravity waves and the
shear instability are components of the same flow, but occupy very different
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widths of the shear flow. These components were accurately determined in the
present quasi-DNS by selecting the correct computational domain. The nu-
merical scheme for the DNS was based on the finite volume formulation with
quadratic upstream interpolation and a total variation diminishing (TVD)
procedure to manage spurious oscillations. The accuracy of the scheme was
validated by first comparing the numerical results with those obtained by the
NMA. The simulations produced the linear instabilities at within a short time
period. Nonlinear instabilities occurred after a long time period, resulting in
nonlinear processes such as the merging of eddies and the formation of the
shocklets (hydraulic jumps) simulated by DNS.

2 Formulation

The equations governing the shear flow in one layer of shallow water are:

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂(h + zo)
∂x

+
τsx − τbx

ρh
(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂(h + zo)
∂y

+
τsy − τby

ρh
(3)

where (u, v) = x- and y-components of the depth-averaged velocity, h =
depth of the layer, zo= bottom elevation, (τsx, τsy) = x- and y-components
of driving force, (τbx, τby) = x- and y-components of the resistance force, g =
gravity and f = coriolis parameter. These equations model the stratified flow
of one layer, if g is replaced by the reduced gravity g′ = g∆ρ/ρ. The layer can
be a dense current in the atmosphere where its fluid is heavier than the fluid
above the layer, or a surface current in the lakes and oceans where the its
fluid is lighter than the fluid below the layer. Therefore, the simulation results
obtained from these equations are generally applicable to free-surface flows
in shallow river waters and coastal currents, as well as one-layer stratified
flows in the atmosphere, lakes and oceans.

The numerical computations were carried out using the finite volume
method in a staggered grid. The control volumes for the solution of the
continuity equation and the momentum equations are staggered as shown
in Figure 1(a). Values on the face of the control volume are first determined
by quadratic interpolation, as shown in Figure 1(b). The spurious numerical
oscillations if any are controlled by revising the face values to achieve TVD
[BC06]. To account for the energy dissipation across the shocklets, the DNS
are carried out using a momentum conserved formulation. The dimensionless
parameters identified with the shear instability of the gravity waves are

Frc =
U1 − U2

c1 + c2
= convective Froude number, S =

Ĝ

Û Ûy

= friction number.

(4)
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Fig. 1. (a) Staggered Grid. (b) Quadratic upstream interpolation for the west face
of the control volume used to solve the continuity equation.
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Fig. 2. Surface wave, h′, and vorticity, ζ′, profiles: (a) Frc = 0.4, (b) Frc = 0.8, (c)
Frc = 1.2. (d) The semi-logarithmic plot of |vmax − vmin| has an initial slope of α.
(e) All quadratics, uumax, vvmax and 1

2
(u2 + v

2), have the same initial slope of 2α.

In the expressions for Frc and S, c1 =
√

gH1, c2 =
√

gH2, are the celerities of
the gravity waves; U1 and U2 are the velocity in the free streams; Û and Ûy are
the velocity and its gradient at the inflection of the base-flow velocity profile.
The subscripts correspond to the lateral free streams 1 and 2 on both sides
of the mixing plane. Figure 2 (a), (b) and (c) show plan views of contours
delineating depth fluctuation profile, h′, and the vorticity fluctuation profile,
ζ′, for the shear flows having convective Froude numbers Frc = 0.4, 0.8 and
1.2, respectively. The region of greatest vorticity reduces with the increasing
the Froude number. The vorticity fluctuations ζ′ define the shear instability,
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while the depth fluctuations h′ define the surface gravity waves. These two
components do not necessarily occupy the same region. At Froude number
Frc = 1.2, the surface waves were excited and subsequently dominated a
region much greater than that of the shear instabilities. The computational
domain for the DNS extended from y = -192 to +192, in order to accomodate
the surface waves.

3 Stability

From the DNS results, the growth rate of the shear instability, α, was deter-
mined by fitting the initial exponential growth on the semi-logarithmic plots,
as shown in Figure 2 (d) and (e). The results are shown in Figure 3, where
the growth rates α are correlated with the wave number k, the Froude num-
ber Frc, and the friction number S. Figure 3 (a) shows the analogy between
the one-layer gravity stratified flows with the compressible flow. The points
in the figure show the DNS results obtained for the gravity-stratified flows
having convective Froude numbers Frc = 0.01, 0.4, 0.8 and 1.2. These are
compared with the lines in the figure for compressible flows having convec-
tive Mach numbers, Mac = 0.01, 0.4, 0.8 and 1.2, obtained by the NMA of
Sandham and Reynolds [SR91]. The close analogy between the instabilities
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Fig. 3. (a) Rate of the initial exponential growth for flow with S = 0. Data show
analogous dependence on the convective Froude number Frc and convective Mach
number Mac. (b) Dependence on friction number; Frc = 0.4 and (c) Frc = 0.8.
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Fig. 4. Maximum growth rate αmax as a function of the convective Froude number
Frc and friction number S; (a) constant depth, (b) variable depth
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Fig. 5. Nonlinear development subsequent to the shear instability at Froude num-
ber Frc = 0.8; (a) free surface elevation, (b) vorticity, (c) turbulence intensity, (d)
production, and (e) radiation
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of the gravity stratified flow and the compressible flow is due to the remark-
able similarity in the radiation damping of flow disturbance energy between
the two flows. Given the Frc and S, a maximum growth rate was obtained.
Figure 4 shows the maximum rate αmax, normalized by Ûy. Growth rate
dependence on the convective Froude number Frc and friction number S is
similar for both constant depth and variable depth. For subcritical instability,
the general dependence on convective Froude number and friction number is

αmax

Ûy

= 0.18 [1 − S

Scrit
− Fr2

c

Fr2
crit

] if Frc < 1, (5)

where Scrit and Frcrit are respectively the critical values of the friction num-
ber and convective Froude number, when the growth rate of the disturbance’s
amplitude is reduced to zero.

Similar correlations with the convective Froude number and the friction
number have been obtained for nonlinear development of the shear flow subse-
quent to the shear instabilities. When eddies and shocklet merge, as shown in
Figure 5, the energy dissipation across the hydraulic jumps become significant.
The full details of these and otherDNS resultswere presented at the conference.

4 Conclusion

Shear instability and its subsequent nonlinear development over a wide range
of conditions were determined by a quasi-DNS using a one-layer shallow
model. The results are consistent with previous studies by the NMA [CW91]
[SR91], and are successfully correlated with the friction and radiation damp-
ings using two dimensionless parameters: Frc and S.
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1 Introduction

Fluid-Structure coupling analysis is required to handle a interaction between
the analysis of fluid mechanics and structural analysis. (In this study, the
analysis of fluid mechanics is as follows: aerodynamic analysis) Because of
inconsistency of aerodynamic grid and structural mesh, each result of analy-
sis needs to be converted to be holding a compatibility of another analysis.
Therefore, the Fluid-Structure Interaction (FSI) problem makes lots of diffi-
culties and more studies are required.

High-aspect-ratio wing is applied in HALE (high-altitude, long endurance)
aircraft commonly. Because HALE aircraft requires large lift to drag ratio and
weight reduction, aspect ratio of wing is very large and structure of wing is
flexible. This kind of wing deflects largely in normal operations.

Recently, many researchers have studied the HALE aircraft. Schoor and
Flotow [SF90] researched the aeroelastic analysis for human-powered aircraft
with high-aspect-ratio wing using linear beam model and two-dimensional
aerodynamic model. Patil et al. [PHC01] studied the static aeroelastic and
flutter analysis for high-aspect-ratio wing of HALE aircraft. Tang and
Dowell [TD01] published the aeroelastic analysis using nonlinear beam model
neglecting high order of geometrical nonlinearities over third order terms
and ONERA aerodynamic stall model. Also they compared flutter insta-
bility boundary and Limit-Cycle Oscillations (LCO) caused by geometric
structural nonlinearity with experimental results. Patil and Hodges [PH04]
researched the aeroelastic analysis using nonlinear structural model and
three-dimensional aerodynamic model. Yoo et al. [YLL04] studied the non-
linear static aeroelastic analysis using the transonic small disturbance (TSD)
and large deflection beam theory.
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The aerodynamic analyses for aeroelastic analysis of HALE aircraft wing
have been based on the low fidelity models, such as either two-dimensional
aerodynamic model or three-dimensional panel method. However, these ap-
proaches have some difficulties to consider the thickness and the camber of
airfoil. Hence, the Computational Fluid Dynamics (CFD) technique needs
to analyze aerodynamic loads more accurately. In this study, CFD analysis
is used for aerodynamic model based on three-dimensional Euler equation.
Finite Element Method (FEM) is applied to structural analysis, which uses
beam element.

2 VMT Method

In VMT method, V represents Shear force, M for Moment and T for Torque.
The VMT is the method used to transfer the aerodynamic load distribution
into FEM mesh, to satisfy the force equilibrium in each airfoil section. In
structural analysis, because the aerodynamic loads work dominantly in the
direction of lift, analysis can be executed to focus only on the lift. However
there is a great deal of complexity in the relation between CFD grid and
FEM mesh. Thus, transfer of lift is difficult. To transfer lift distribution from
CFD grid to FEM mesh, the VMT method is required.

Firstly, V, M and T of whole wing are calculated using aerodynamic loads
distribution. Next, weighting factor wi = ax+ by + c, or coefficients a, b, and
c are calculated to obtain the nodal forces of FEM mesh. (x and y are nodal
coordinates of the FEM mesh.)

The VMT method can be expressed as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Fig. 1. Aerodynamic loads(Fz = pi) and nodal loads(Fz = fiwi)
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3 Transfer of Structure’s Displacement

We assume that the configuration of the wing section does not change. This
assumption is based on the fact that the spanwise bending and torsional
motion are dominant among the wing deformations. The translation and
rotation of wing section are caused by wing deformation.

After calculating the displacement of the structural model, we used method
which maintains the configuration of the wing section and transfers the trans-
lation and the rotation of the section. The surface grid is moved with this
method, volume grid is regenerated using the surface grid.

4 Fluid-Structure Interaction Analysis

In this study, I used a static aeroelastic analysis to solve the fluid-structure
interaction problem. The static aeroelastic analysis analyzes the wing de-
formation, caused by static loads. For example, gravity force, steady state
aerodynamic loads are static loads. The aerodynamic loads make structural
deformations, and these structural deformations also affect the next aerody-
namic loads. To find a solution, we evaluate the structural and aerodynamic
problems, repeatedly, because these processes interact with each other. In
general, loose coupling and strong coupling approach are most conventional
methodologies in solving the static aeroelastic problem. This study uses loose
coupling to analyze aeroelastic problem.

5 Wing Model

My numerical example is based on the experimental wing model studied by
Tang and Dowell. The wing is rectangular, untwisted, flexible, and high-
aspect ratio wing with a slender body at the tip. Physical Representation of
the wing model is shown in Fig. 2.

Span length is 0.4508m, chord length is 0.0508m, and mass of slender body
at tip is 0.0417kg. Further information is given in the reference [TD01].

Fig. 2. Physical representation of wing model
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The wing section is NACA 0012 airfoil. Root-support mechanism is a
socket that allows a change in the steady angle of attack at the root. There-
fore, the cantilevered condition is selected as the boundary condition for
structural analysis. Because the lift is dominant in this system, which later-
ally acts on the wing, the beam element are used.

6 Results

In this section, static deflection under gravity loading and static aeroelastic
deflections of wing will be presented. Static aeroelastic analysis is performed
in two flow conditions.

1) Mach number = 0.1, angle of attack = 2.2 deg.
2) Mach number = 0.1, angle of attack = 1.0 deg.

Because the effect of aerodynamic loads is small, the slender body of the
tip was not considered for aerodynamic analysis.

6.1 Static Deflection under Gravity Loading

This analysis was performed to validate structural model and to obtain the
initial state. Tip deflection is -59.2mm, this value is approximately 0.06m. This
result is similar to experimental data reported by Tang and Dowell [TD01].
Therefore, we can conclude that the structural wing model is well built.

6.2 Static Aeroelastic Deflections of the Wing

The results are shown in Fig. 4. and Fig. 5. for an angle of attack 2.2 deg.
Fig. 4. shows shape deformations of wing model, and Fig. 5. shows the con-
verged state of the wing tip deflection. After the wing tip is repeatedly de-
flected upward and downward during the transient state, a converged shape
is obtained. However, quantities of deflection change are decreased gradu-
ally. Converged tip deflection 110.0mm is almost equal to experimental data
reported by Tang and Dowell [TD01].

Fig. 3. Initial shape under gravity loading only
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Fig. 4. Static aeroelastic deflection of the wing for angle of attack 2.2 deg

Fig. 5. Converged state of the wing for angle of attack 2.2 deg

Fig. 6. Static aeroelastic deflection of the wing for angle of attack 1.0 deg

Fig. 6. and Fig. 7. show the static aeroelastic deflection at the tip for an
angle of attack 1.0 deg. At flow velocity 34.5m/s (M = 0.1), the aerodynamic
forces provide minimum lift to overcome the effect of gravity. Compare to the
results for an angle of attack 2.2 deg., the magnitude of the converged static
aeroelastic deflections is less than those for the angle of attack 2.2 deg.
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Fig. 7. Converged state of the wing for angle of attack 1.0 deg

7 Conclusions

Fluid-Structure Interaction analysis has been conducted on a high-aspect
ratio wing that has a beam-like structural behavior. The high-aspect ratio
wing showed the corresponding large deflections under the aerodynamic loads.
And the effect of large deflections changed the aerodynamic loads. It is a
typical behavior of the fluid-structure interaction problems.

Static aeroelastic study has been performed using 3-dimensional Euler
solver and nonlinear FEM solver. And from this study, the VMT method
and loose coupling approach are very successful in solving the fluid-structure
interaction analysis.
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Summary. This paper focuses on the passageway design of the main sieve
diaphragm that is the key point to reduce the pressure drop of a gas mask
canister. Three types of the passageways are designed to explore the aerody-
namic behaviors of the flow inside a canister. The models include the hole,
rib-strip and honeycomb types. The 3-D numerical simulations of flows have
been applied to determine the pressure drops in the models. The simulation
results reveal the smallest pressure drops on the passageway of honeycomb
type, because the structure of honeycomb type is stronger enough to avoid the
deformation of the main sieve diaphragm. So the passageway of honeycomb
type can provide larger channel area and more uniform channel distribution
to reduce the pressure drop. The analysis of the flow structure, such as the
velocity profile and the distribution of dead zone in the models, is also studied.

Keywords: main sieve diaphragm, gas mask canister, porous media, air age.

1 Introduction

After the 911 terror-attack, the gas masks are not only for soldiers to use in
the battle fields, but also for people to regard these masks as necessities for
their daily lives. Therefore, the gas masks are bringing the potential com-
mercial opportunities in the markets. On the basis of the design of gas mask
and in addition to confirming the standard of toxic filtering, the low pressure
drop of respiratory is the other considerable factor. The pressure drop of a
gas mask mainly results from inhaling gas through the canister. The canister
generally consists of the filter layer and activated carbon layer. Both layers
are defined as porous media significantly causing the pressure drop. The fil-
ter layer consists of multi-pleated filter papers enabling to block suspended
particles. The activated carbon layer can functionally adsorb and filter toxic
gases. Generally, to connect the filter layer and the activated carbon layer is
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a main sieve diaphragm that is an only passageway to permit gas entering
activated carbon layer.

To the design of this kind of porous media filters, like gas mask canister or
industrial filters, the aerodynamic behaviors of fluids, such as pressure drop
and flow structure, are the most vital factors in the flow dynamic system [1].
The flow structures should prevent from forming the preferential flow and the
dead zone. Due to the opaqueness of the absorbent, it would not be experi-
mentally observed the inner flow structures through the sizes and locations
of the preferential flow and dead zones. It will be helpful to explore the aero-
dynamic characteristics of the flow field for the references of the design and
improvement, through employing the CFD tools to analyze the flow variables
in porous media inside the filter. According to the fluid dynamics of porous
media, it generally obeys the Darcy’s equation at low Reynolds number. In
this equation, the pressure drop is satisfied with the linear relation as below.

−∆P/L = (µ/κ)Vs (1)

where ∆P is the pressure drop of porous medium zone, L is the length in
flow direction, κ is the permeability, µ is the fluid viscosity and Vs is the
superficial velocity entering porous medium zone.

When the superficial velocity or Reynolds number increases, the inertia
effect is gradually to increase. A second order parabolic equation can describe
the inertia effect that is called the Forchheimer’s equation, shown as below.

−∆P/L = αµVs + βρV 2
s (2)

where α is the reciprocal permeability of porous material, it also called viscous
parameter. β is usually called the inertial parameter.

Previous authors have used CFD tools to analyze porous filters, but their
primary focus was to analyze the fluids flow through different arrays of the
spatial microstructure of a filter media in 2-D or 3-D simulations [2-4].The
point which most previous studies have in common is that they focused on a
single type of porous media. However, very little existing literature analyzes
the aerodynamic characteristics of a gas mask canister. Therefore, the topic
of the aerodynamic behavior of a gas mask canister with two kinds porous
materials is worthy of further research.

Li & Miao, used CFD to simulate a gas mask canister containing two porous
media [5]. The passageway of main sieve diaphragm in the canister was hole
type. The effects of the distribution and area of holes in the main sieve di-
aphragm and the thickness of the activated carbon layer on the pressure drop
and the aerodynamic flow behavior inside the canister body were determined.
The results revealed the flow structures in the activated carbon layer were
dominated by the passageway distribution of main sieve diaphragm. Better
hole distribution and a larger hole area corresponded to a lower pressure drop,
a smaller dead zone, and a higher adsorption time. In present study, we de-
sign three types of the passageways to explore the aerodynamic behaviors of
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the flow inside a canister. The design of passageway on main sieve diaphragm
should be optimized by considering not only how to reduce the pressure drop
and the weight of activated carbon layer, but also the structural strength and
the limitations of the manufacturing technique used. The analysis of the flow
structure, such as the velocity profile and the distribution of dead zone in the
models, is also studied.

2 Problem

2.1 Governing Equations

The governing equations herein include the continuity and momentum equa-
tions, both of which obey the conservation principle,

∂

∂xi
(ρui) = 0 , (3)

∂

∂xj
(ρuiuj) = − ∂P

∂xi
+

∂τij

∂xj
+ ρgi −

∂

∂xj
(ρu′

iu
′
j) + Si , (4)

where ρ is the fluid density; ui is the velocity component in the i direction;p is
the pressure; τij is the viscosity shear stress tensor; gi is the acceleration due
to gravity in the i direction; ρu′

iu
′
j is the Reynolds stress term, related to the

mean flow by the Boussinesq hypothesis when the flow is not laminar, and Si

is a source term that describes the pressure gradient in the porous medium,
and is defined by Eq. (2) and is assumed to be isotropic. The turbulent model
is adopted the κ−ε turbulent model with low-Reynolds number[6]. The work-
ing gas is air, for which ρ = 1.225kg m−3 and µ = 1.7894× 10−5kg m−1s−1.

The air age equation is

∂

∂xi
(ρuiτ) =

∂

∂xi
(
µeff

στ

∂τ

∂xi
) + ρ , (5)

where τ is the air age; µeff = µl + µt (where µeff is effective viscosity, µl is
molecular viscosity and µt is turbulent viscosity) and στ = 1 is the turbulent
Schmidt number.

2.2 Boundary Conditions and Numerical Method

At the inlet of the canister, a constant velocity value is imposed. The outlet
boundary condition is the outlet pressure boundary. The no-slip condition
was assumed at the solid wall. The central axial plane of the canister is
regarded as a symmetrical boundary.

The 3-D numerical simulations of flows have been applied to determine
the pressure drops in the models. The flow variables in present models are
solved by the Navier-Stokes equations adding to the low Reynolds number
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κ− ε turbulent model. The pressure gradient is calculated by Forchheimer’s
equation to add to the source term of the momentum equation. The air age
is employed to represent the resident time of gas in a canister. The finite
volume method based on the cell center is used in the models. We discretize
the integral form governing equations based on unstructured tetrahedron
grid. The convection term is discretized by the one-order upwind scheme and
the viscous term is discretized by central differential scheme. The solution
algorithm for pressure-velocity coupling is the SIMPLE algorithm and related
discretization algebraic equations are solved using the TDMA method.

2.3 Grid Configuration

According to the research of Li & Miao, we know the passageway design of
the main sieve diaphragm that is the key point to reduce the pressure drop of
a canister. In this paper, three types of passageways are designed to explore
the aerodynamic behaviors of the flow inside a canister. The mesh of models
including the hole, rib-strip and honeycomb types are shown in Figure 1. All
the results presented here are grid-independent. The residual convergence
criterion in all cases was less than 1×10−4.

3 Result and Discussion

We used curve fitting to estimate the viscous and inertia parameters of
the porous media in accordance with the experimental data. The simula-
tion results of the estimated inertial and viscosity parameters in the Forch-
heimer’s equation are in good agreement with the experiment. The more
details see the [5]. In the following simulations, the same parameters are used.
Figure 2(a-c) shows the velocity contours of hole, honeycomb and rib-strip
types at the flow rate of 30 L/min. Figure 2(a) shows that since the outer-
most holes are sealed and and the porous flow causes momentum loss, the

Fig. 1. Mesh system of three types of passageways on a gas mask canister. ((a)
hole type, (b) rib-strip-type and (c) honeycomb type).
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gas flowing through the open holes of the main sieve diaphragm does not
easily flow past the outer part of the activated carbon layer. Thus, a larger
low-velocity zone called dead zone forms in this area. Figure 2(b) shows that
the rib-strip design of the main sieve diaphragm in models H1, the original
low-velocity region in Fig 2(a) decreases in size. Figure 2(c) shows that the
honeycomb design of the main sieve diaphragm in models J1, the low-velocity
region almost disappears.

Employing the flow variable distributions described by the air age index, it
is much easier to judge the position of the dead zone through observing the
flow structure inside the activated carbon layer. Figure 3(a-c) appears the
contours of air ages of the hole, rib-strip and honeycomb types. Models A1,
with sealed outermost holes, clearly have a large zone of higher air age outside
the activated carbon layer (Fig. 3(a)). The gas cannot flow easily through this
zone, and a large dead zone is formed. Figure 3(b) shows that the original
dead zone in Fig 3(a) apparently shrinks, but a little dead zone still exists at
the corner of wall. Figure 3(c) shows that the dead zone almost disappears
in Model J1. Figure 4 shows the velocity profile of three type passageways.
The velocity profile of honeycomb type is more uniform than those of others.
The local parts of high or low velocity profiles form the preferential flow or
the dead zones result in increasing the pressure drops of a canister.

Fig. 2. The velocity contours in the activated carbon layer under the condition of
flow rate, 30 L/min. ((a) hole type, (b) rib-strip-type and (c) honeycomb type).

Fig. 3. The air age contours in the activated carbon layer under the condition of
flow rate, 30 L/min. ((a) hole type, (b) rib-strip-type and (c) honeycomb type).
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Fig. 4. Velocity profile of three types of models at 30 L/min

4 Conclusion

Equations for a porous medium describe the relationship between the superfi-
cial velocity and the pressure drop from a macro perspective. A higher super-
ficial velocity corresponds to a greater pressure drop. According to the con-
tinuity equation, the product of the superficial velocity and the flow-through
area yields the volumetric flow rate. Consider model A1 as an example: the
passageway of main sieve diaphragm yields a non-uniform velocity profile.
Fluid does not flow easily into the resulting low-velocity zone, yielding a
dead zone. Hence, the overall superficial velocity in the activated carbon
layer increases, increasing the pressure drop. In contrast, the passageway of
honeycomb design yields a more uniform velocity profile, as in model J1,
reducing the size of the dead zone, and reducing the superficial velocity in
the activated carbon layer, thereby reducing the pressure drop. Using the
advantages of CFD, the positions of the dead zones and the preferential flow
can be identified, providing great assistance in the design of improved main
sieve diaphragms.

To summarize the research results, the conclusions can be obtained as fol-
lows: comparing with the three types of the passageways, because the structure
of honeycomb type is stronger enough to avoid the deformation of main sieve
diaphragm, so the main sieve diaphragm of the honeycomb type own the larger
channel area and better channel distribution to reduce the pressure drop.
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Abstract. This paper describes an improved methodology for studying combus-
tion in porous media in pore scale. Porous media combustion is one technology 
having advantages over the conventional combustion system. Examples of com-
bustion in porous media are presented to show the potential application of the pre-
sent mesh-based microstructure representation algorithm (MBMRA). 

Keywords: Porous media, Mesh refinement, Combustion, Flame. 

1   Introduction   

The combustion research in porous medium has been conducted from the early 
development. The applications range broadly from internal combustion engines to 
nuclear waste storage tanks. In simulating flows in natural or manufactured porous 
materials, fluid and thermal transport are usually modeled using the continuum 
approach in terms of appropriate averaged parameters in which the real pore struc-
ture and the associated length scales are not considered; instead their effects are 
accounted for by averaging over the pores in a global manner. However, those 
averaged parameters can only be obtained by experiments and are strongly de-
pendent on the types of microstructure and operating conditions. Often, the mod-
els are grossly simplified and do not account for the effects of micro-scales acted 
on meso or macro scales. The dispersion effect, which significantly changes the 
behavior of mass and thermal transport, is difficult to be adequately quantified by 
experiments or global theories.  

In conventional CFD approach, a prescribed physical domain of porous me-
dium with existing fluid-solid interface is mapped onto a computational domain, 
which is then geometrically discretized by mesh generation. This would become a 
formidable task if hundreds or thousands of pores of irregular shapes were to be 
mapped. To overcome this hurdle, we have developed a mesh-based microstruc-
ture representation algorithm (MBMRA) [1].  

In this paper, we present an improved MBMRA over the earlier development 
by incorporating a mesh adaptation scheme. The local refinement of mesh in the 
surroundings of a solid structure in the porous media offers an efficient grid distri-
bution and a cost-effective use of computing time. The degree of refinement is 
based on the minimum distance from solid cells, and the refinement is typically 
done by connecting midpoints of cell edges (thus, a triangle is divided into 4 sub-
elements in 2D). A smoothing mechanism is added to blend fine meshes into 
coarse ones smoothly. The refinement is completed by a bisection refinement  
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(dividing into 2 sub-elements) to eliminate hanging nodes. A refined two-
dimensional unstructured triangular mesh MBMRA is illustrated in Fig. 1.  The 
shaded area in (a) is a sample solid which is composed of three triangular cells.  
After the refining processes described above, new meshes are produced, shown in 
(b), and their corresponding connectivity are rebuilt. Also, the sample solid has 
increased its mesh from three triangular cells to 26 elements which allow a more 
effective conjugate heat transfer simulation. 

 

Fig. 1. (a) Original MBMRA mesh distribution around a sample solid; (b) Refined mesh 
distribution of the same solid sample 

1.1   Test Case 

NASA’s National Combustion Code (NCC) is a set of tools for analyzing and 
designing combustion systems over a wide range of Mach numbers. Its chemistry 
tool permits users an arbitrary number of reactions and species.  It is used to 
incorporate the MBMRA methodology because it has been subject to validation 
tests for a broad range of combustion problems.  In this study, both  non-reacting 
and reacting flows are used for validation.  

First, a two dimensional flow over a circular cylinder is considered to test the 
ability of the refined MBMRA for capturing an unsteady flow around a single 
solid body at a higher Reynolds number. This is a standard benchmark case for 
unsteady flow problem, and various experimental and computational references 
are available in the open-literature, e.g., Roshko [2] and Visbal  [3]. 

A cylinder of diameter of 0.1 m is considered. A triangular mesh of 11736 cells 
is generated originally, with 1074 solid elements representing the cylinder. 
Refinement as aforementioned is applied surrounding the cylinder to help 
facilitate solution convergence and reduce numerical oscillations. A total of 18002 
elements are used in the computation, see Fig. 2. The insert at the right upper 
corner of Fig. 2 shows the mesh zoomed around the solid cylinder. The first grid 
 



                                                Pore Scale Simulation of Combustion in Porous Media  365
 

 
Fig. 2. A triangular mesh over the circular cylinder, consisting of a refined mesh, in cyan 
color, around the cylindrical solid – enlarged view given in the inset   

 
spacing away from the cylinder, ∆yw, is 5x10-4 m. The adiabatic and no-slip 
conditions are imposed on the surface of cylinder. The left half of the outermost 
grids is assigned the inflow conditions (u = 0.1 m/s, v = 0 m/s, ρ = 0.187 kg/m3) 
while the other half is imposed with a fixed pressure p and with extrapolations of 
other variables from their interior values. The resulting ReD (Reynolds number 
based on diameter) is 64, lying in the range in which the existence of unsteady 
vortex shedding is ensured.The contours of longitudinal velocity component u are 
plotted in Fig. 3. The contours indicate that the flowfield is fully developed. A 
small reversed flow, denoted by the dark blue color, is formed behind the cylinder. 
The computed Strouhal number (St) is 0.161, a close agreement with the 
experimental values of 0.16-0.17, reported by Roshko [2]. Thus, this MBMRA 
generated single solid body case provides a quantitative comparison with 
experimental data. 

Next, the Sandia’s piloted methane-air flame D, which consists of a main jet 
with a mixture of 25% methane and 75% air by volume, is simulated. It has been 
demonstrated that NCC can provide numerical results in excellent agreement, in 
terms of temperature and species, with the experimental results by Norris et al. 
[4]. In addition, an open flame calculation through a porous zone, as described in 
Sandia’s flame, is compared with the Sandia test results. Figure 4 shows the 
resulting temperature contours for this case. The top plot shows the steady state 
solution of Snadia D-Flame while the bottom plot indicates the flame was 
deflected by the existence of porous medium situated at the center of the flow 
domain. A case of the flame burning inside a channel was studied with a 10 steps, 
12 species finite-rate chemistry. The results without and with a porous medium of 
porosity 0.95 are shown in Fig. 5 (a) and (b) respectively. Similar to the Sandia 
case, the closed flame in channel is deflected through the porous zone. In this 
section, the MBMRA technique has been applied in dealing with non-reacting and 
reacting flows in porous medium. 
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Fig. 3. Velocity contours showing vortex-shedding behind a circular cylinder (ReD=64) 

 
 

Fig. 4. Temperature contours. Top: Sandia’s D-Flame; Bottom: Flame through a porous 
zone in the open flame case. 
 

 
Fig. 5. Top: Flame propagating into porous zone inside a channel; Bottom: Flame propagat-
ing in clean/non-porous channel at steady state 
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2   Dump Combustor 

Dump combustors are widely used in modern air breathing propulsion systems for 
its geometrical characters. A sudden expansion in dump combustor usually causes 
flow to separate and creates a low speed recirculation zone. A well-designed dump 
combustor will provide reactants sufficient residence time in the vortex to fully 
react, thus producing a larger energy conversion and a wider stable operating con-
dition. We consider a dump combustor with a swirler mixing the combustion air 
radially and axially with the premixed and pre-heated methane fuel. A low 
Reynolds number κ- ε turbulent model and the Magnussen eddy dissipation  
model are used. The Magnussen chemistry model, a simplified chemical kinetic 
mechanism, is governed by flow field turbulence quantities. Figure 6 shows the 
computational domain of 21,000 cells. Particle traces are displayed with the axial 
velocity contours in Fig. 7 to show the effect of swirler. Figure 8 shows the 
temperature contours and fuel mass fraction at mid-plane (y = 0) of this 
combustor. Magnussen model, known for predicting a fast heat release, has 
resulted in high velocities in the swirler zone and high temperatures in the same 
area as shown in Figs. 7 and 8. 

To enhance the mixing of fuel and oxidant, a section of porous material with 
porosity of 0.485 is inserted at the ignition zone of this dump combustor, as shown 
in Fig. 6. The porous material is Silicon Nitride (Si3N4), which has the following 
thermal properties, heat conductivity (K) of 25 W/K-m and heat capacity (Cp) of 
0.5 KJ/(Kg-K). There are additional 30,000 computational elements after refining 
meshes around solid structures within porous zone. Figure 9 shows the location of 
the porous medium by plotting iso-surface of density. The red color indicates solid 
and blue for air. The rest of colors show where the intertwining flow passages. 
The same flow and boundary conditions as the clean dump combustor are applied 
in this porous combustor. Figure 10 is a cross sectional cut (y-z plane) of the 
porous region. 

 
 

Fig. 6. Computational mesh used for the dump combustor analyses. The cyan color indicate 
the plane of  y = 0. 
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Fig. 7. Particletraces through the inlet and radial swirler surface plotted with contours of 
axial velocity 

 

Fig. 8. Chemical reaction results in a dump combustor, contours of temperature and fuel 
mass fraction distributions in the  y = 0 plane 

 

Fig. 9 Using porous microstructure as a mixer in dump combustor: density contours of  gas-
phase (air) and solid-phase (Si3N4) 
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The results obtained indicates that  the inserted porous structure increases the 
mixing of fuel and oxidant, as shown in  particles tracing through the entire flow 
field in Fig. 11. It is also displayed in terms of turbulent kinetic energy (κ) in  
Fig. 12. The top plot in Fig. 12 is the κ-contours from the porous case comparing 
to the clean dump combustor shown in the bottom figure. The intensified turbulent 
activity inside the porous medium is obvious. In addition to turbulence, the pro-
pensity of a combustion system to burn is also dependent on other factors, such as 
fuel type, calorific value, mixture, pressure, velocity, and enclosure geometry. In 
this porous geometry, the added ignition heat is conducted away sufficiently fast 
that the temperature is reduced below thse spontaneous ignition temperature. The 
flame was quenched right after igniting this rapidly burning explosive mixture 
because of sufficient cooling by solid structures.  

 

 

Fig. 10. Cross section of the porous structure in terms of pid ( property identification), solid 
has a pid of 2 while fluid has a pid equal to 1 

 

Fig. 11. Traces of particles released at the inlet and swirler surfaces, showing re-circulation 
in the porous zone  
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Fig. 12. Contours of turbulent kinetic energy 

3   Anderson’s Burner (Hydrogen/Air Combustor) 

The high cost and reliability of jet fuel has pushed the aerospace industry to renew 
its interest in using hydrogen as fuel. There are advantages of reduction of 
particulate emission, elimination of carbon related emission and coking. The 
concept of using hydrogen as a practical fuel in gas turbine combustor started in  
 

 

 
Fig. 13. Schematic of the hardware and set up and an enlarged view of the flame holder in 
Anderson's hydrogen/air burner experiment 
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early 1950's. There were previous experimental efforts[5,6] and recent numerical 
analyses[7] which provides ample knowledge in developing quick mixing, low 
emissions and high performance fuel injector and mixer. 

Note that the flame holder consists of eighty small tubes, shown in Fig. 13, and 
each cross section is 92% blocked. This specific blockage prevents flashback but 
causes a 25% to 40% pressure drop. Further information in experimental set up 
and hardware uses is given in [5]. A three-dimensional 1.3 millions unstructured 
mesh, seen in Fig. 14, is used to represent half of the geometry in the CFD studies 
on the assumption that flow is symmetric inside the burner. To reduce the  
 

 
Fig. 14. Grid used in computing Anderson’s burner 

 

 
Fig. 15. Product NO in contours of mass fraction at the x = 0 plane, indicating the flame 
front moving downstream as solutions  progress to  steady state 



372   M.-F. Liou and H. Kim 
 

computational cost of representing a full reaction mechanism,  NCC's intrinsically 
low-dimensional manifold (ILDM) procedure [4] is used in this study. Two cases 
with different equivalence ratios are computed by matching with those experimen-
tal conditions listed in Table 1. The numerical results were in good agreement 
with experimental data for peak temperatures and  NOx along the centerline of 
burner [7]. Figure 15 presents the flame front traveled from the 100th iteration 
after ignition to the stage that flame held at steady state. A two dimensional model 
of Anderson burner is used to study the morphology of porous structure in flame 
holding. Similarly, unstructured grid for half of the burner  is needed because of 
symmetry. Basically, it is a 2-D channel with a 2-D flame holder. Mesh refine-
ment around solid structure, colored in cyan in Figs. 16 and 18, is applied.  
Figure 16 shows the location of solid (in red) in a geometry of 15 tubes flame 
holder located behind the ignition zone. After ignition, the premixed H2/air burned 
behind the flame holder. The flame was flashback to tiny channels after being 
blocked by the porous region, as shown in Fig. 17. The other case is a geometry of 
reduced number of channels, from 15 to 7, in the flame holder while keeping their 
size unchanged. It is intended to use porous solids to enhance flow recirculation 
behind the flame holder. In Fig. 18 it is seen that the flame from the tiny channels 
is moved to the solid structures and held there. This flame-holding is displayed in 
the contours of temperature in Fig. 19. The top plot is the 2D model with porous 
medium and the bottom figure is the results from a clean channel. 

 
Fig. 16. Anderson’s 2-D model with 15 flame holder tubes and porous medium located 
behind ignition zone 

Table 1. Conditions used in computing the Anderson case 

Inlet mixture 
temperature 

Burner
pressure 

Reference 
  velocity 

Equivalence
  ratio 

700 K 3.8x105 N/ m2 18 m/sec 0.4

600 K 3.8x105  N/ 
m2

17 m/sec 0.25
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Fig. 17. Temperature contours; Top: fame stopping at the porous structure and flushbacking 
into flame holder. Bottom: flame held at flame holder in clean channel. 

 
Fig. 18. Geometry of 2-D model with reduced number of channels and solids inside igni-
tion zone 

 
Fig. 19. Contours of temperature; Top: flame held at solids. Bottom: flame held at flame 
holder in clean channel 

4   Summary 

In this paper, the MBMRA technique is used in several combustor configurations 
to study flame propagation characteristics of different fuels in arbitrary porous 
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media, which act as a premixer or as a flame holder. The flame studied is 
deflected by the porous media and the flame temperature is lower than those 
without it. It also demonstrated that the porous structure can enhance the 
recirculating/mixing feature and intensify the turbulent flow quantities, thus 
advantageous for diffusion flame. But, it also can quench the flame if  the thermal 
characteristics of solid material or the morphology of pores can not sustain the 
combustion. In the future, consideration of refinement based on the local Reynolds 
number will be included so that relevant scales of the flow can be adequately  
resolved. 
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1 Introduction

Combining finite element together with particle methods provide one of the
best compromise for solving transport problem in porous media. Saturated
or non-saturated flows are determined by boundary condition and the media
permeability.1 For real terrain, permeability can consist in various almost con-
stant and imbricated zones with complex shapes. Thus, it is of some interest
that the boundary between two adjacent zones coincides with a natural mesh
interface and that each element is entirely contains in one such zone. Beside
this, solving transport equation by means of particle methods offers two dis-
tinctive advantages. The method is unconditionally stable when applied to
a pure convective equation, and it does not contain any numerical diffusion
if the particle trajectories are correctly computed. Therefore the combina-
tion of finite elements and particle method appears to be a straightforward
application of the principle : “the right method at the right place”.

Although the previous statement provide a consistent basis to build a
numerical model, there still remain some options in the choice of the two
components themself. To start with, it has long been recognised that the
computed flow must satisfied as much as possible the divergence free condi-
tion; this can be achieved by selecting a non-conforming or mixed method.
Second, there exist many way to design particles methods for the convective
part as well as for the dispersion term. For the first one, a so-called streamline
method can be used as an alternative to the more classical time integration.
For the last one, there is a profusion of model including random walk, particle
1 This work was partially supported by GDR MOMAS-CNRS.
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mesh, particle strength exchange and dispersion velocity among others. Our
purpose is to compare some of these different strategies in order to provide as
clear as possible criteria to be used when designing a solver. Three different
points will be successively addressed hereafter : the finite element scheme,
the particle trajectories computation and the dispersion simulation.

2 Finite Element Flow Computation

The first point was adressed by considering two finite element schemes to
approximate the flow, the usual conforming scheme and a non-conforming
scheme (Beaugendre 2006). The latter is quite similar to the more usual
mixed hybrid finite element method: it uses one degree of freedom per mesh
face and produces a discrete flow field with continuous normal component.
The difference with the mixed hybrid finite element approach is that the
present scheme can be interpreted as a finite volume box scheme where the
mean of governing equations is considered elementwise. Figure 1 shows an
example of computed potential flow for the lense test-case.

Fig. 1. a) Schematic representation of the domain for the lense test case; b) Flow
potential distribution

3 The Streamlines Method

The trajectories computation was based on the flow computed with the pre-
vious finite element method. This is a two steps procedure. First the location
of the particle on the finite element mesh have to be determined, second the
trajectories of the particle across the resulting element has to be computed.
The first step was achieved by superimposing a regular cartesian grid to the
finite element mesh. The cartesian grid cells are selected as small as possible
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so that a large number of cells cover one single element. Therefore, a particle
contains in one grid cell is usually contained by no more than one element.
The trajectory computation was performed by using two alternative proce-
dures. The first one consists in a numerical time integration of the differential
equation dX/dt = U as usual in particles method. The second consist in using
the polynomial form of the velocity field on each element to compute the local
streamlines and then the particle trajectory across this element. Associated
to this calculation is a time interval corresponding to the particle sojourn
within this element also called flight-time. The whole procedure constitutes
the streamline method (Matringe 2006).

The resulting method was applied to different test-cases. On figure 2, we
present the lense test case streamlines computed from the potential obtained
with the conforming and non conforming method. Three different meshes were
used in order to point out the convergence of the two method. It was observed
that the non-conforming scheme always provide the best streamlines pattern.

Fig. 2. Comparison of the computed trajectories with non-conservative (left) and
conservative (right) flow fields. From top to bottom, finer meshes are used.



378 H. Beaugendre, A. Ern, and S. Huberson

Fig. 3. a) Schematic representation of the domain for the multi-conductivity test
case; b) Flow potential distribution

Fig. 4. Computed trajectories for the non-conservative (left) and conservative
(right) flow fields

The second test case - figure 4 corresponds to a similar configuration, but
uses a fully unstructured mesh. It can be observed from the computed stream-
lines compared to that of figure 2 that the method still works in this case.

4 Dispersion

The dispersion simulation can be based on many different methods. In
the present work, two methods were particularly investigated: the diffusion
velocity method and the particle strength exchange (PSE) method. The first
one was selected because it yields modified streamlines, keeping constant the
weight associated to each particles weither the second keep the streamlines
unchanged and only modifies the particles weight. The first method was as-
sumed to be in agreement with the streamline method concept. It consists in
an algebraic manipulation of the original convection-dispersion equation in
order to obtain a pure transport equation where the velocity consist in two
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Fig. 5. PSE dispersion. The square indicate the initial and final location of the
particle set.

Fig. 6. PSE dispersion : Initial (left) and final(right) concentration

parts, the original velocity component computed with finite elements and a
dispersion component which is proportional to the ratio of the gradient by
local value of the transported quantity. The method was found to work well
in a previous study (Beaudoin 2003) and can be easily combined with any of
the two procedures used for the computation of the trajectories. The imple-
mentation of the PSE method reduces to the addition of the computation of
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Fig. 7. velocity dispersion : selection of eight particles modified trajectories. dash-
lines : original streamlines, continuous lines : modified streamlines.

the particles weight at each time step. It has to be noticed that both method
necessitates to have a common time-stepping for all the particle which was
not the case when only streamlines were computed.

Eventually, it was found that the PSE metod was the best candidate for
extending the streamline method to the case of dispersive flows. The possi-
bility to display initialy the particles along pre-computed streamlines enables
to reduce the additional computational work to the particle weights. The ap-
plication of the velocity diffusion do not permit to keep the same streamlines
set for all the computation and, therefore, was found much more CPU-time
consuming. It can be obviously guessed that the same drawback definitely
plague the application of the Monte-Carlo simulation of dispersion.
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1 Introduction

Two-dimensional flows of a viscous fluid near a corner between two steady
rigid planes was first examined by Moffatt [Mof64]. He established that when
the angle between the planes is less than a certain critical angle, any flow
near the corner consists of infinite series of eddies with decreasing size and
intensity as the corner point is approached.

One of the most famous examples of flow in domain with corners is a flow in
the lid-driven cavity. The lid-driven cavity problem has become a benchmark
problem for researchers to test performance of numerical methods designed
for computation of viscous fluid flows. Particularly, among other criteria, re-
searchers examine the accuracy of their methods based on how accurately the
corner eddies can be computed. However, in the most of previous works only
a few eddies were computed. In addition, the accuracy of finding intensity and
position of the smaller eddies was less than the accuracy for the larger eddies.

The aim of this paper is to develop a systematic method that can accu-
rately compute position and intensity of infinite series of eddies in addition to
computing the other main features of flow in domains with corners. The pro-
posed method is based on a standard C1-continuous finite element discretiza-
tion (namely, Argyris elements) applied to the stream function equation. In
order to compute infinite series of eddies, the exponential mesh refinement
near the corners is used together with the special elements at the corners
of the domain with basis functions taken from Moffatt’s asymptotics. We
present the results of application of the proposed method to the lid-driven
cavity problem, though the method can be applied to any kind of problems in
domains with corners. The computations indicate that the proposed method
allows one to accurately compute the infinite series of eddies, with the relative
error of finding intensity and position of different eddies being independent
of their size.
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2 Computational Method

The problem of viscous fluid flow is governed by the boundary-value problem
for the Navier-Stokes equations, which in 2D can be written in the form of a
single equation for the stream function ϕ:⎧⎪⎪⎨

⎪⎪⎩
∆∆ϕ + Re

(
∂∆ϕ

∂x

∂ϕ

∂y
− ∂∆ϕ

∂y

∂ϕ

∂x

)
= 0, (x, y) ∈ Ω,

ϕ|∂Ω = 0,
∂ϕ

∂n

∣∣∣∣
∂Ω

= us,

(1)

where Re is the Reynolds number, domain Ω = [0, 1] × [0, 1], ∂Ω is the
boundary of Ω, and us is a tangential velocity on the boundary: us = 1 for
y = 1, and us = 0 otherwise.

To accurately resolve the corner eddies in a flow, we should consider the
structure of the flow in the vicinity of the corners. As was found by Moffatt,
any flow near the corner with angle smaller than the critical one consists
of a series of eddies with decreasing size and intensity as the corner point
is approached [Mof64]. The first (i.e. largest) eddies can be affected by the
flow far from the corner as well as by the nonlinear forces. However, such
impact on the smaller eddies can be neglected and therefore their behavior
is expected to be close to the behavior of the family of asymptotic solutions
found by Moffatt [Mof64]. To summarize, the flow domain consists of

1. the part without the corner eddies,
2. the part with relatively large corner eddies that might not be well de-

scribed by the asymptotic solution due to the impact of the flow far from
the corner as well as the impact of the nonlinear forces, and finally

3. the part with relatively small eddies that are well described by the Mof-
fatt’s asymptotic solution.

To construct a mesh, the domain is decomposed into several subdomains ac-
cording to the structure of the flow: the main subdomain without the corner
eddies, the near-corner subdomains with relatively large corner eddies and the
corner subdomains with the small eddies. Thus, the domain is decomposed into
1+ 2Nc subdomains, where Nc is the number of corners. A typical domain de-
composition near a corner is shown in figure 1(a). There is one main subdomain
(tagged with “M” in figure 1(a)), one near-corner subdomain per each corner
between rigid walls (tagged with “NC” in figure 1(a)), and one corner subdo-
main per each corner between rigid walls (tagged with “C” in figure 1(a)).

The discretization in the main subdomain is done on the uniform mesh
and is based on Argyris elements (the standard C1-continuous, P5 finite ele-
ments on a triangular mesh). The discretization in the near-corner subdomain
(trapezium ABGF in figure 1(a)) is also based on Argyris elements and is
done on the exponentially graded mesh. The mesh in the near-corner sub-
domain is chosen to be conforming with the mesh in the main subdomain
and therefore no additional techniques are involved to couple the solutions
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Fig. 1. (a) domain decomposition near the corner; (b) mesh of the near-corner
subdomain (right)

in these two subdomains. The typical mesh in the near-corner subdomain is
shown in figure 1(b).

We assume that in the corner subdomain (triangle OFG in figure 1(a)), the
asymptotic expansion of the flow gives a sufficiently accurate approximation
to the exact solution. Therefore, the solution basis in the corner triangle
OFG is chosen to be a set of only two functions, which are the real and
the imaginary part of the Moffatt’s asymptotic solution. Certain matching
conditions are introduced to the finite element formulation to ensure the
approximate conformity of the finite element basis across the edge FG.

The nonlinear system of algebraic equations resulted from the discretiza-
tion is solved using Newton’s iteration. The linearized system of algebraic
equations is solved by the unsymmetric multifrontal method implemented in
UMFPACK software package.

In the lid-driven cavity flow problem there are flow singularities in the
upper corners. The technique we use to treat the corner singularities is similar
to the technique we use to compute the corner eddies. Namely, we perform
the same mesh refinement and we match the asymptotic expansion at the
corner triangle with the solution at the near-corner subdomain.

3 Lid-Driven Cavity Problem

The lid-driven cavity flow consists of the primary eddy (denoted as PE), a
series of bottom left corner eddies (denoted as BL1, BL2, . . . , BLk, . . . ),
and a series of bottom right corner eddies (denoted as BR1, BR2, . . . , BRk,
. . . ). The eddies are numbered in order of decreasing size. For high Reynolds
numbers, the top left eddies (TL1 and TL2) can also appear in the flow.

The lid-driven cavity problem was computed using the method described
above. The computations were done on four different meshes denoted as M1,
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Table 1. Parameters of meshes used

Mesh Triangles DOF Reduced DOF Corner triangle size
M1 388 2078 1490 0.016
M2 2052 10126 8578 0.0039
M3 10244 48334 44482 0.00098
M4 49156 226574 217346 0.00024

M2, M3 and M4. The parameters such as number of triangles, number of
degrees of freedom (DOF) and size of a leg of the corner triangle (i.e. length
of OG in figure 1(b)) are presented in table 1. The fourth column (reduced
DOF) is the number of degrees of freedom after application of the boundary
conditions and the matching conditions on the interface between corner and
near-corner subdomains.

The present results were compared with the results of Barragy and Carey
[BC97], which were found to be the most accurate results containing up to
the 4th corner eddies. The absolute difference between the present work and
[BC97] in stream function at the location of the eddies is less than 10−5.
The finest mesh used in [BC97] had 132098 degrees of freedom and a finest
effective mesh size of about 0.00026.

Intensity and position of some of the eddies in the present computations
of the flow with Re=2500 for different mesh refinements and the results of
Barragy and Carey [BC97] are presented in table 2. The data indicate that the
present results of computing both the large (i.e. PE) and the small (i.e. BL3)
eddies for Re=2500 converge fast and are more accurate than the results
of Barragy and Carey. However, it should be admitted that the results of
[BC97] for very high Reynolds numbers (Re ≥ 10000) have somewhat better
accuracy in computing the large eddies, which is attributed to the uniform
mesh being used in the main subdomain in the present method. Barragy and
Carey used the graded mesh which might resolve the boundary layers near
the walls better.

It is interesting to examine the relative error of finding intensity and po-
sition of different corner eddies depending on the mesh and compare it with
the results of Barragy and Carey. The error was estimated as the difference
with the present solution on the finest mesh M4. The estimated relative error
for Re = 2500 thus computed for the eddies BL1-BL4 is presented in table
3. As can be seen from table 3, the method of Barragy and Carey (as well
as all the methods available in the literature and known to us) produces the
relative error which increases for the smaller eddies. On the contrary, the
present method allows us to compute the whole infinite series of eddies, and
the relative error of finding the eddies’ intensity and position decreases uni-
formly for all the eddies as the mesh is refined. That is, there is a bound on
the relative error of finding the eddies’ intensity and position, this bound is
independent of size and intensity of the particular eddy and decreases as the



A Numerical-Asymptotic Method for Computation 387

Table 2. Comparison of results for eddies PE and BL3 for Re=2500 for different
refinements with Barragy and Carey [BC97]

PE ϕ x y

M1 −0.1229531 0.5232264 0.5433070
M2 −0.1214925 0.5197949 0.5439642
M3 −0.1214695 0.5197760 0.5439257
M4 −0.1214690 0.5197769 0.5439244

Barragy&Carey −0.1214621 0.5188822 0.5434181
BL3 ϕ x y

M1 7.062414 · 10−13 0.0003730432 0.0003730432
M2 7.758873 · 10−13 0.0003711063 0.0003711063
M3 7.750788 · 10−13 0.0003708568 0.0003708568
M4 7.751069 · 10−13 0.0003708612 0.0003708595

Barragy&Carey 7.595817 · 10−13 0.0003884944 0.0003884944

Table 3. Estimated relative error of finding eddies’ intensity for Re=2500

BL1 BL2 BL3 BL4
present, M1 0.077583 0.088858 0.088846 0.088846
present, M2 0.00086856 0.0010060 0.0010069 0.0010069
present, M3 0.000031924 0.000036335 0.000036188 0.000036189

Barragy&Carey 0.00010006 0.00060359 0.020030 -

Table 4. Intensity and position of all eddies for Re=2500

ϕ x y

PE −0.1214690 0.5197769 0.5439244
BL1 0.0009311474 0.08424181 0.1110062
BL2 −2.811158 · 10−8 0.006129716 0.006158831
BL3 7.751069 · 10−13 0.0003708612 0.0003708595
BL4 −2.137191 · 10−17 0.00002238491 0.00002238491
BR1 0.002662432 0.8344014 0.09075692
BR2 −1.226678 · 10−7 0.9904594 0.009384439
BR3 3.381770 · 10−12 0.9994289 0.0005710737
BR4 −9.324506 · 10−17 0.9999655 0.00003446937
TL1 0.0003434479 0.04300225 0.8893601
BLk 5.892847 · 10−22 Φk−5 1.351140 · 10−6 Rk−5 1.351140 · 10−6 Rk−5

BRk 2.571033 · 10−21 Φk−5 1 − 2.080551 · 10−6 Rk−5 2.080551 · 10−6 Rk−5

mesh is refined. This is a distinctive feature of the proposed method, which is
a result of appropriate mesh refinement near the corners as well as coupling
the approximate solution with the exact asymptotics.

The present method allows us to compute intensity and position of all
the eddies present in the flow. The results for Re=2500 are given in table 4.
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The fifth corner eddies (BL5 and BR5) as well as the smaller eddies (sixth,
seventh, etc.) were computed for the first time in the present work. The
relative difference between computations of these eddies on the meshes M3
and M4 was found to be relatively small (about 10−4), which indicates the
accuracy of the present results.

4 Conclusion

The method of computing infinite series of corner eddies in viscous fluid
flows in domains with corners was proposed. The method is based on Argyris
finite element discretization for the stream function formulation of the Navier-
Stokes equations, exponential mesh refinement near corners, and asymptotics
of the flow near corners. The method was applied a benchmark problem of the
lid-driven cavity flow. The results of computations demonstrate high accuracy
of the present method, show that the method can accurately compute the
infinite series of eddies, and indicate that the relative error of finding eddies’
intensity and position decreases uniformly as the mesh is refined (i.e. the
error of finding intensity and position of different eddies does not depend on
their size). The comparison with the results available in the literature shows
that the present method produces solutions of the same or better accuracy
than the existing methods.
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Summary. Compact differencing can deliver high-order accuracy using only
a limited span of stencils, but incurring a costly matrix inversion. Hence, use
of a stable implicit time discretization becomes favorable in order to offset the
computation cost by allowing a large time step. A practical way to reduce
the burden of inverting a large matrix from multidimensional problems is
to split the implicit operator into a series of smaller operators. Undesirable
consequences can surface, such as (1) loss of stability, and/or (2) loss of
accuracy. Here, we propose a consistent implicit compact method and study
the stability and accuracy of steady and unsteady solutions.

1 Introduction

Approximating derivatives with the use of high-order methods has several
advantages, one of which is efficiency in the sense that with only a moderate
increased effort it leads to convergence to the “true” solution at a fast rate.
This means that fewer discrete points are needed for the same level of accu-
racy or a more accurate solution is obtained with the same number of grid
points, in comparison with low-order methods.

Interest in high-order accurate methods has surged recently because of
its efficiency and necessity for some applications in CFD, in which accuracy
appears to be critical. Examples include turbulence simulation and aeroa-
coustics. Methods being intensively studied at the present time still have
shortcomings. For example, a quick reduction of stable time step is found
in the discontinuous Galerkin methods. Compact differencing methods are
based on a known structure of stencils, thus restricting its use to structured
grids only.

The approximate factored scheme proposed by Beam and Warming [1] is
a popular implicit scheme for allowing a large time step. However, temporal
accuracy is lost due to various approximations; a dual time scheme is often
employed to restore the accuracy, but requires subiterations between physical
time steps. Some fundamental issues remain to be clarified, with respect to
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spatial and temporal convergence and stability. For example, inconsistent
discretizations of spatial derivatives for the implicit (LHS) and explicit (RHS)
operators can lead to degradation of stability and spatio-temporal accuracy.

In this paper, we present the analysis for the scalar convection-diffusion
equation and extend it to Navier-Stokes equations. We begin with the stable
Crank-Nicolson implicit method for any dimensions; the spatial derivatives
are then approximated with the compact schemes, because of its ease of
extending to very high orders of accuracy, say 10th and above and its com-
patibility with implicit formulation. We pay special attention to the following
aspects: (1) clarification of “delta-form” vs. “direct-from”, here “direct form”
referring to solving the unknown itself, rather than the difference of unknowns
at two consecutive time levels, (2) spatial and time convergence, (3) exten-
sion to a system of equations, and (4) effects of tridiagonal and pentadiagonal
Padé schemes on stability and convergence.

2 Formulation

Let us consider the constant-coefficient scalar convection-diffusion equation,

∂

∂t
ϕ + L(

∂

∂xi
,

∂2

∂xj∂xi
)ϕ = 0 (1)

where the spatial derivatives operator,

Lϕ =
3∑

i=1

ci
∂

∂xi
ϕ − ν

3∑
i=1

3∑
j=1

∂2ϕ

∂xj∂xi
(2)

contains the usual convection and diffusion terms, and also mixed derivatives
to mimic terms involved in the compressible Navier-Stokes equations. We
shall consider how these types of terms can be handled and whether any
approximation (such as time delayed) of it would affect stability.

Apply the Crank-Nicolson (C-N) discretization, we get

�ϕn = ϕn+1 − ϕn =
k

2
L(ϕn+1 + ϕn), k = tn+1 − tn. (3)

Use p-th order accurate compact differencings for first and second deriva-
tives on a domain with a constant spacing h = xj+1 − xj for 1 ≤ j ≤ J ,

∂ϕ

∂xi
⇒ Li{

∂ϕj

∂xi
} = Ri{ϕj},

∂2ϕ

∂x2
i

⇒ Lii{
∂2ϕj

∂x2
i

} = Rii{ϕj}, i = 1, 2, 3 (4)

where the notation {◦} represents a vector containing a set of variable values
at all discrete points. The difference matrices Li,Ri,Lii,Rii are diagonal, tri-
or penta-diagonal in our case. The notation for subscripts “i” and “ii” serves
two purposes: the first denotes directions 1 ≤ i ≤ 3 and the second indicates
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the order of derivatives, i.e., a single subscript denotes a first derivative while
a double subscript refers to a second derivative. After substitution, we have[

I +
k

2

3∑
i=1

(Bi − Bii)

]
{ϕn

ijk} =

[
I − k

2

3∑
i=1

(Bi − Bii)

]
{ϕn

ijk} (5)

where the spatial derivatives are approximated by

Bi = ciL−1
i Ri, Bii = νL−1

ii Rii, i = 1, 2, 3 (6)

The above discretization has the following properties: (1) the accuracy is
O((k2 + hp)), (2) it is unconditionally stablefor any time step k.

There are also two issues concerning this equation: (1) it is costly to invert
the LHS matrix for a multidimensional problem, and (2) the steady state
solution is dependent on the time step k and is O(k2), in this case.

To address the first issue, the main idea is to break the costly unwieldy
operator into a sequence of small simpler operators, so that the overall compu-
tation is still much cheaper. This splitting is usually based on the coordinate
direction in the spatial derivatives, as in the case of alternating direction [2]
or fractional step [3].

Splitting of Operators

The coordinate splitting gives,
3∏

i=1

[
I +

k

2
(Bi − Bii)

]
{ϕn+1

ijk } =
3∏

i=1

[
I − k

2
(Bi − Bii)

]
{ϕn

ijk} (7)

The splitting error, in reference to the unsplit form (5), involves product of
matrices Bi and Bii and is at most as large as the time discretization error.
Hence the split form maintains the same formal order of accuracy.

Interestingly, if further splitting is carried out by separating convection
and diffusion derivatives, the resulting split scheme

3∏
i=1

(I +
k

2
Bi)(I − k

2
Bii){ϕn+1

ijk } =
3∏

i=1

(I − k

2
Bi)(I +

k

2
Bii){ϕn

ijk} (8)

is also unconditionally stable for any dimensions and for any CFL (= cik/h)
and Fourier numbers (= νk/h2), see You [4] and Zhao et al. [5]. We note
that the unconditional stability is achieved in (5-8) by maintaining consis-
tent operations for the corresponding terms on the LHS and RHS. If this
consistency is broken, serious ramifications on stability can appear. Since the
solution {ϕn+1

ijk } is solved directly in (5), (7) and (8), it is called direct method.
The above splitting is good for unsteady solution since the formal order of

accuracy remains. Unfortunately, it loses accuracy for steady solution, because
the solution is always time-dependent to the order of k2, thus when O(k2) >>
O(hp) - a desirable condition for seeking steady-state solutions , the extra work
done to gain benefits of high order spatial differencing is now in vain.
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Steady State Solution: Delta Form

The second issue concerns the steady-state solution; following the idea of
Beam and Warming [1], the equation is recast such that the solution satisfies
the discrete version of spatial derivatives only, as �ϕn diminishes,[

I +
k

2

3∑
i=1

(Bi − Bii)

]
{�ϕn

ijk} = −k

3∑
i=1

(Bi − Bii){ϕn
ijk} (9)

Here, the increment of variable, {�ϕn
ijk} is solved, thus called delta method.

In what follows, we are concerned with the issues of stability, accuracy of
time-dependent and steady-state solutions, and computational efficiency.

Notice that the above equation is identical to (5), hence retaining the same
stability and accuracy, but adding the property of having the steady-state
solution independent of time step. This is a very desirable property because
the steady-state solution is wanted by using as large a time step as possible.

For the sake of computation efficiency, we again apply coordinate splitting,

3∏
i=1

(I +
k

2
(Bi − Bii)){�ϕn

ijk} = −k

3∑
i=1

(Bi − Bii){ϕn
ijk} (10)

To further reduce computational cost incurred by the matrix operations on
the LHS, it is interesting to observe that one can find an implicit compact op-
erator common for both Li and Lii. That is to say, Li = Lii as given in [6], but
at the expense of reducing accuracy by one order from the individually-derived
matrices on the same stencil configuration. In fact, we now have odd-valued
orders of accuracy, e.g., O(h7). The resulting algebraic equation becomes,

3∏
i=1

(I+
k

2
L−1

i (ciRi−νRii)){�ϕn
ijk} = −k

3∑
i=1

L−1
i (ciRi−νRii){ϕn

ijk} (11)

In what follows, we present results to comment on accuracy and stability;
the results are obtained for a 2D convection-diffusion equation, unless noted.

Accuracy: direct vs delta forms
First, we show in Fig. 1 the effect of using this “hybrid” compact differencings
on accuracy. We see the resolution of the present method in the wavenumber
domain is quite good. Moreover, computational results show an extremely fast
reduction of error for the 3rd-order and 7th-order schemes and the efficiency
of the 7th-order scheme shows the dominating advantage.

Figure 2 compares the convergence rates of three approximations: (1) LHS
uses explicit O(h2) and RHS uses Pade’s O(h4), (2) LHS and RHS use the
same 3-3 stencil, implicit compact O(h3) scheme, and (3) LHS and RHS use
the same 5-5 stencil implicit compact O(h7) scheme. Some striking results
are observed: (1) there’s an optimal CFL number for convergence in each
group, (2) the level of error at convergence is proportional to the spatial
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discretization accuracy, and (3) the 5-5 scheme is the best by considering
accuracy and number of iterations at convergence.

In Fig. 3, we show convergence of steady and unsteady solutions by using
the direct and delta forms. We see in (a) the “delta form” converges at a
rate of 5th-order, better than the theoretical 4th order accuracy for a 3-
point stencil Padé scheme, while the “direct form” coincides at larger spatial
steps (∆x = h), but deteriorates considerably at fine steps. However, it’s also
shown that the “direct form” can be made to give identical convergence if the
temporal error is reduced to the level of spatial error by varying time step (k)
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such that O(k2) = O(h4). In (b), the time-convergence (reducing k) of both
forms are shown; now the “delta form” has no advantages, behaving exactly
the same as the direct form while keeping h constant. On the other hand, if
h is reduced at the same rate as the temporal error, then the convergence
maintains at a constant rate (≈ 2.5), again displaying super-convergence. It
is clear that spatio-temporal errors must be synchronized. This finding, to
our knowledge, has not been reported in the literature.

The convergence study of 2D linearized Navier-Stokes equations was con-
ducted, the trends are identical to that in Fig. 3, thus they are omitted here.
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Fig. 4. Stability map for the 3D 3-level backward time differencing

Stability: effects of splitting and stencil
Splitting of the LHS operators alone compromises the stability. With ADI
splitting on the delta form, the impact of splitting only begins in 3D equations
with a loss of stability, see Fig. 4. The stability boundary in a Reh vs CFL
map is shown for the three-level backward implicit scheme, where Reh =
cih/ν. The result for the C-N scheme is similar (and not shown), but with
smaller stability region. The result clearly shows that the stable time-step
(expressed in terms of CFL) is affected by the cell Reynolds number Reh

and interestingly it is reasonably large, but quickly reduces to CFL ≈ 1.
The trend is confirmed by computation, in which the stable and unstable
points are depicted. How to recover the stability in 3D while maintaining a
steady-state solution using compact scheme remains a subject of interest.
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1 Introduction

Computation of periodic flows using a time-accurate integration scheme is a
costly procedure. Often, much effort is devoted to resolving the initial tran-
sients and finally capturing a full flow cycle. Moreover, if the flow phenomena
has complex features which only very fine grids can resolve, then the pro-
hibitive cost of each time step may lead to unacceptably large computational
times. Notably, leading edge vortex shedding, flutter conditions and rotor-
craft aerodynamics remain very challenging cases that would benefit from
more efficient solution techniques.

To alleviate the cost of periodic flow modeling, Hall introduced [HTC00]
the Harmonic Balance method, later pursued by McMullen & Jameson
[MJA01] as the Non-Linear Frequency Domain (NLFD). By representing the
flow solution as a Fourier expansion, this method allows for precise results
while requiring only a limited number of harmonics.

In this work, we combine the NLFD time representation to the Spectral
Difference (SD) scheme of Wang et al. [WLM07]. The spectral difference is
a high order, conservative scheme for conservation laws in differential form,
similar to the discontinuous Galerkin and spectral volume methods. Com-
bining the SD and the NLFD schemes leads to a high-order, fully compact
numerical procedure to solve periodic Euler flows at high resolution, using
only a reduced number of degrees of freedom. An implicit LU-SGS technique
is also presented to allow an efficient solution of the NLFD equations.

2 Scheme Formulation

The basis of the SD method of order k is a superposition of two grids within
each cell. The first one, formed by the Gauss-Chebyschev quadrature points,
is chosen such that it supports a polynomial solution of degree k − 1. This
polynomial is then used to reconstruct the fluxes on a second grid formed
by the Gauss-Lobbato points. On this grid, the fluxes form a polynomial of
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degree k that is then differentiated to obtain the residual. At the edges of the
flux grid, the numerical flux is evaluated through a Riemann solver providing
the inter-element coupling and the upwinding necessary for stability. The
analytical flux function may be used at the inner nodes as the solution is
continuous within each element. In accordance with the method of lines, the
discretization results in a set of ODE’s to which an integration method may
be applied:

wt + R(w) = 0. (1)

If a time accurate approach is chosen, the residual is integrated forward in
time using a Runge-Kutta (RK) scheme. Here, we choose to adopt a time
spectral method where periodicity of the state and residual vectors is as-
sumed. These vectors can be represented by independent Fourier series and
substituted in the governing equation to yield a separate equation for each
mode. Adding a pseudo-time derivative, we iteratively solve those equations
to steady state:

ŵτ + ikŵk + R̂k = 0. (2)

The solution technique uses a pseudo-spectral method that can be described
as follows: the residual is computed for each real space instances and trans-
ported to Fourier space, along with the state vectors. Equation (2) can then
be solved to retrieve new Fourier coefficients for the flow solution. Finally,
the updated flow is brought back to real space for a residual evaluation. To
efficiently solve the equation corresponding to each wave number, the implicit
LU-SGS solver of Sun et al. [SWK07] is adapted to our purpose. Solving (2)
implies driving the real and imaginary part of each mode to zero:

∂ŵR

∂τ
+ R̂R − kŵI = 0,

∂ŵI

∂τ
+ R̂I + kŵR = 0.

To keep those equations decoupled and preserve the simplicity of the method,
the source term is kept explicit, all other terms being treated implicitly. We
linearize the residual, distinguishing between the cell’s and the neighbor’s
contribution:

ŵn+1
c − ŵn

c

∆τ
+

∂R̂c

∂ŵc

[
ŵn+1

c − ŵn
c

]
+
∑
nb�=c

∂R̂c

∂ŵnb

[
ŵn+1

nb − ŵn
nb

]
= −R̂n

c − ikŵn
c .

For more efficiency, the scheme employs a Gauss-Seidel approach. Noting s
the sweep iteration and ∗ the latest available update, we transfer the neigh-
bor’s contribution to the right-hand side:(

I

∆τ
+

∂R̂c

∂ŵc

)[
ŵn+1

c − ŵn
c

]s+1
= −

∑
nb�=c

∂R̂c

∂ŵnb

[
ŵn+1

nb − ŵn
nb

]∗ − R̂n
c − ikŵn

c .
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Sun proposes a simplification to approximate the neighbors contribution, and
we refer to his paper for the complete derivation. Once applied, the scheme
simplifies to:(

I

∆τ
+

∂R̂c

∂ŵc

)[
ŵn+1,s+1

c − ŵn+1,s
c

]
= −R̂∗

c −
[
ŵn+1

c − ŵn
c

]s
∆τ

− ikŵn
c . (3)

The left-hand side of (3) is assembled and stored in factorized LU form for the
real and imaginary part of each mode. Using a symmetric sweeping pattern,
we solve each cell sequentially by performing triangular solves until the time
step is deemed sufficiently converged. Finally, we mention that the Fourier
space Jacobians can be easily obtained by taking advantage of the pseudo-
spectral NLFD approach. Indeed, using the chain rule we write

∂R̂

∂ŵ
=

n∑
r=1

∂R̂

∂Rr

∂Rr

∂wr

∂wr

∂ŵ
, (4)

where the summation is effectuated over the real space instances. Noticing
that ∂R̂/∂R and ∂w/∂ŵ are simply the coefficients forming the basis func-
tions of the forward and inverse Fourier transforms, we conclude that the
spectral Jacobians are easily calculated as a linear combination of the real
space Jacobians. This method is significantly simpler than formally express-
ing R̂ as a function of ŵ and taking the appropriate derivatives.

3 Numerical Results

3.1 Vortex Advection

To numerically evaluate the accuracy of our SD Euler solver, we perform
the vortex advection problem, a common test case for high order solvers.
In a mean diagonal flow (ρ, u, v, p) = (1, 1, 1, 1), perturbations are added
such that an isentropic vortex is created and passively advected downstream.
This exact solution is then used to assess the amount of numerical diffusion
introduced by the scheme.

(δu, δv) =
ε

2π
e

1
2 (1−r2)(−ȳ, x̄), δT = − (γ − 1)ε2

8γπ2
e(1−r2), ε = 5. (5)

The simulation is run using a 14×14 square domain using progressively finer
structured grids until t = 2. First-through fifth-order SD schemes are tested
using the Roe flux and a third-order TVD-RK scheme. As Fig. (1a) shows,
the measured error decays at the expected rate for all SD formulations and
near-ideal orders of convergence are recovered, albeit for a slight inaccuracy
in the coarse first-order results. Figure (1b) shows error as a function of
the number of degrees of freedom of the solution. For the same number of
unknowns, the high-order SD schemes are much more accurate than their
lower order counterpart, demonstrating the benefits of p- over h- refinement.
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Fig. 1. Vortex advection accuracy study

3.2 Steady Subsonic Airfoil

In the following test, first-through fifth-order SD schemes are used to solve
the inviscid, steady flow around a NACA0012 airfoil in subsonic regime,
M∞ = 0.4 and α = 5o. The simulation is effectuated on an very coarse
grid of 32× 8 using Rusanov’s numerical flux. The solid wall is presented as
quadratic segments using a higher-order boundary representation. To numer-
ically quantify the solution accuracy, the entropy production in the solution
are compared. Figure (2) shows the error as a function of the scheme order.
The spectral (exponential) decay of the entropy error under p-refinement is
clearly noticeable.

3.3 Pitching Subsonic Airfoil

As a demonstration problem for the NLFD-SD scheme, a NACA64A010 air-
foil undergoing a sinusoidal motion is simulated. Flow parameters are:
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Fig. 2. Steady subsonic airfoil
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Fig. 3. Pitching subsonic airfoil

M∞ = 0.502, ᾱ = −0.22o, αo = 1.02o, ωr = 0.1 (6)

This corresponds to the CT = 2 case of Davis [Dav82], whose experimental
results will be used for validation purposes. The simulation is run using the
third-order SD scheme on a 128×32 grid, using explicit and implicit methods.
Figure (3a) presents the lift hysteresis obtained with 1, 2 and 3 modes above
the fundamental frequency. As it can be noticed, the three curves are nearly
indistinguishable, suggesting that a single mode is sufficient to capture the lift
history. Since one mode requires only three time steps in real space, it can be
concluded that the NLFD is a large improvement over time accurate methods.
Figure (3b) compares the residual convergence of the three mode simulation
when using the LU-SGS and five-step RK integration schemes. The implicit
solver displays an improvement of more that an order of magnitude over
the explicit scheme. Finally, Fig. (4) presents the real and imaginary part of
the first mode of cp, showing a good agreement with the experimental data.
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Fig. 4. First mode of the pressure distribution
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The detail frame in Fig. (3b) confirms that one mode captures the general
pressure trend. The curves representing the two and three modes simulations
are completely overlapping, proving that mode-independence is achieved and
that two modes are sufficient to get converged pressure distributions.

4 Conclusion

The present investigation describes the NLFD-SD high-order scheme for the
solution of periodic inviscid flows. By combining high-order SD spatial dis-
cretization and a Fourier space description of the flow, high resolution may
be achieved in both time and space dimensions. Subsonic inviscid simulations
realized with a limited number of harmonics on relatively coarse meshes were
in good agreement with experimental values. Lastly, the implicit driver was
found to be at least an order of magnitude faster than its explicit counterpart,
making the high-order NLFD-SD a competitive solution technique.

References

[HTC00] Hall, K.C., Thomas, J.P., Clark, W.S.: Computation of unsteady non-
linear flows in cascades using a harmonic balance technique. Techni-
cal report, 9th International Symposium on Unsteady Aerodynamics,
Aeroacoustics and Aeroelasticity of Turbomachines (2000)

[MJA01] McMullen, M., Jameson, A., Alonso, J.: Acceleration of convergence to
a periodic steady state in turbomachinery flows. AIAA paper 01-0152
(2001)

[WLM07] Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral Difference Method
for Unstructured Grids II: Extension to the Euler Equations. Journal of
Scientific Computing 32, 457–471 (2007)

[SWK07] Sun, Y., Wang, Z.J., Liu, Y., Chen, C.L.: AIAA paper No. 2007-0313
(2007)

[Dav82] Davis, S.S.: NACA 64A101 (NASA Ames model) Oscillatory Pitching.
Compendium of unsteady aerodynamic measurements (1982)



 

 

 
 
 
 
 
 
 
 
 

Part 22 
Higher-Order Method 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



“This page left intentionally blank.”



High-Order-Accurate Fluctuation Splitting
Schemes for Unsteady Hyperbolic Problems
Using Lagrangian Elements

G. Rossiello, P. De Palma, G. Pascazio, and M. Napolitano

Dipartimento di Ingegneria Meccanica e Gestionale,
Centro di Eccellenza in Meccanica Computazionale,
Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
g.rossiello@poliba.it, depalma@poliba.it, pascazio@poliba.it,

napolita@poliba.it

1 Introduction

Fluctuation splitting (FS) schemes have been developed in order to solve com-
plex flows, using unstructured grids, more accurately than standard schemes,
while employing a compact stencil. FS schemes, which can be viewed as
an efficient implementation of finite elements within a residual distribution
framework, have been applied with success to solve steady and unsteady,
continuous and discontinuous compressible flows, see, e.g., [Bon05, Dep05].
In particular, for the case of unsteady advection problems, the authors de-
rived the conditions to obtain consistent mass matrices [Dep05] and the suf-
ficient conditions for an FS scheme to be (r+1)-th-order accurate in both
space and time [Ros07]. Most importantly, they have proven that the explicit
FS Lax–Wendroff scheme [Str94], being one of the FS scheme satisfying the
above conditions, is an extremely efficient scheme with second-order accu-
racy in both space and time on a general triangulation composed by linear
elements [Ros08]; indeed a remarkable result. This paper proceeds from the
aforementioned studies to provide an analysis of FS schemes based on La-
grangian triangular elements, which allow one to achieve higher-order accu-
racy, while retaining the advantage of the compactness of the original schemes
designed for linear elements. In particular, as done for the case of linear ele-
ments in [Dep05, Ros07], for the present case of triangular Lagrangian ones,
the consistency conditions for the mass matrix are derived, together with
those to be satisfied in order for mass lumping to preserve the accuracy of
the scheme. After a brief description of the theory, numerical results are
presented for two linear explicit schemes of Lax–Wendroff’s type, which are
seen to obey the theoretical prediction of [Ros08]. A more thorough analysis
of the theory is presented in [RosSu], whereas its numerical validation will
be provided in the near future.
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2 Analysis

Consider the two-dimensional scalar conservation law:

∂u

∂t
+ ∇· F = 0 , (1)

with u : Θ → R, Θ = Ω×[0, +∞[, Ω ⊆ R2, F = (f(u), g(u))T .

For linear advection, the flux vector can be expressed as F = λu, where
λ = (a, b)T is the advection velocity. The spacial computational domain, Ω,
is divided into cell-vertex triangular Lagrangian elements, T ; the vertices are
labeled i, j, k, and the generic node (degree of freedom) is numbered σ. For
a pth-order element, the number of nodes is equal to ν = (p + 1)(p + 2)/2.

FS discretizations1 of hyperbolic equations are obtained by distributing
the fluctuation, namely, the element residual,

ΦT = φT + ψT =
∫

T

∇·Fh(uh) dΩ +
∫

T

∂uh

∂t
dΩ, (2)

among the nodes σ, using suitable weight functions, ωσ:

ΦT
σ = ψT

σ + φT
σ , φT

σ =
∫

T

ωσ ∇·Fh(uh) dΩ, ψT
σ =

∫
T

ωσ
∂uh

∂t
dΩ,

with
∑
σ∈T

ωσ(x) = 1, ∀x ∈ T, so that
∑
σ∈T

ΦT
σ = ΦT ,

(3)

where uh and Fh are the discrete counterparts of u and F, respectively, h
representing the spacial increment, and φT

σ , ψT
σ are the steady and unsteady

signals from triangle T to node σ, respectively.
Then, the system of nDOF equations to be solved is obtained by summing

up for each node σ all signals from the triangles sharing it:

Φσ =
∑

T� σ

ΦT
σ = 0. (4)

For the steady term, it can be shown [RosSu] that the fluctuation reads:

φT =
∑
σ∈T

Fσ ·
∫

T

∇Nσ dΩ =
∑
σ∈T

uσλ ·
∫

T

∇Nσ dΩ =
∑
σ∈T

k�
σuσ, (5)

where Nσ are the shape functions and k�
σ are generalized inflow parameters

equal to linear combinations of the well known vertices-inflow parameters of
1 Here, for the sake of brevity, only a finite difference discretization in time

is employed since no major differences arise when considering a space-time
approach [Ros08].
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linear-reconstruction FS schemes, ki = λ · ni/2. Starting from equation (3),
an elemental convection matrix can be defined,

{
φT

δ

}
= [Cδσ] {uσ} =

[
βT

δ K�
δσ

]
{uσ} =

⎡
⎢⎣

βT
1 K�

11 . . . βT
1 K�

1ν
...

. . .
...

βT
ν K�

ν1 . . . βT
ν K�

νν

⎤
⎥⎦
⎧⎪⎨
⎪⎩

u1

...
uν

⎫⎪⎬
⎪⎭ ,

(6)

where βT
δ =

1
ST

∫
T

ωδ dΩ and K�
δσ = λ · ∇Nσ(x�)ST , with x� ∈ T given

by the mean-value theorem. The coefficients of the convection matrix must
satisfy the following conditions to provide a consistent and conservative FS
discretization. For each row of C,∑

σ∈T

∇Nσ = 0 =⇒
∑
σ∈T

K�
δσ = 0. (7)

Furthermore, from equations (5) and (6):

φT =
∑
σ∈T

uσ k�
σ =

∑
δ∈T

φT
δ =

∑
δ∈T

βT
δ

∑
σ∈T

K�
δσuσ =

∑
σ∈T

uσ

∑
δ∈T

βT
δ K�

δσ.

(8)
Thus, for each column of the elemental convection matrix:∑

δ∈T

βT
δ K�

δσ = k�
σ. (9)

Finally,
∑
δ∈T

βT
δ = 1, since

∑
δ∈T

ωδ(x) = 1, ∀x ∈ T .

Considering, now, the discretization of the unsteady residual, one has:

ψT
δ =

∫
T

ωδ
∂uh

∂t
dΩ =

∑
σ∈T

∂uσ

∂t

∫
T

ωδ Nσ dΩ =
∑
σ∈T

mT
δσ

∂uσ

∂t
, (10)

where mT
δσ are the components of the element mass matrix which can be

written as [Ros08]:

mT
δσ =

∫
T

ωδ Nσ dΩ = Nσ(x�
δ)
∫

T

ωδ dΩ = γδσ βT
δ ST , (11)

where x�
δ ∈ T and Nσ(x�

δ) = γδσ. The constraints to be satisfied by the mass-
matrix coefficients for the scheme to be consistent and conservative are now
recalled [Dep05]. Since

∑
σ Nσ = 1,

∑
σ

mT
δσ =

∑
σ

∫
T

ωδ Nσ dΩ =
∫

T

ωδ dΩ = βT
δ ST . (12)

Moreover, using equation (11), one has∑
σ

mT
δσ =

∑
σ

γδσ βδ ST =⇒
∑

σ

γδσ = 1, for δ = 1, ..., ν. (13)
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Furthermore, since
∑

δ

ωδ = 1, for conservation:

ψT =
∑

δ

∫
T

ωδ
∂uh

∂t
dΩ =

∫
T

∂uh

∂t
dΩ =

∑
σ

∂uσ

∂t

∫
T

NσdΩ =
∑

σ

∂uσ

∂t
ησST .

(14)
On the other hand, using equations (10) and (11),

∑
δ

∫
T

ωδ
∂uh

∂t
dΩ =

∑
δ

∑
σ

mT
δσ

∂uσ

∂t
=
∑

δ

∑
σ

∂uσ

∂t
γδσ βT

δ ST . (15)

Comparing the right hand sides of the last two equations, the following con-
servation constraints are obtained:∑

δ

γδσ βT
δ = ησ, for σ = 1, ..., ν. (16)

Classical FS schemes, written in the form

ΦT
δ = βT

δ ΦT , (17)

satisfy the above conditions for consistency and conservation: starting from
equation (2) and using equations (5) and (6) for φT and φT

δ and equations (14)
and (10) for ψT and ψT

δ , equations (17) provides:

K�
δσ = k�

σ, and γδσ = ησ. (18)

Conditions (7) and (9) are thus satisfied, being
∑
δ∈T

βT
δ = 1,

∑
σ∈T

k�
σ = 0

and
∑
σ∈T

ησ = 1. Therefore a scheme defined by equation (17) is consistent

and conservative; on the other hand, its associate algebraic system (4) is
indeterminate when employing Lagrangian elements with p ≥ 2 (see [RosSu]
for details).

2.1 Mass Lumping and Explicit Schemes

Generalizing to a pth-order reconstruction the analysis provided in [Ros08]
for p = 1, mass lumping, namely, γδσ = δδσ, automatically satisfies condition∑

σ γδσ = 1 and requires that βδ = ηδ for consistency (see equation (16)).
Starting from these results, the FS Lax–Wendroff explicit scheme is proven

to be second-order-accurate in space and time over general unstructured
grids. For a linear reconstruction, the consistent mass lumping requires
βσ = ησ = 1/3, indicating that the space distribution derives form the
Galerkin weight functions. Assuming a linear reconstruction of the flux func-
tion in time, the following signal is obtained:

Φn+1
δ =

∑
T�δ

[
ψ

T,n+ 1
2

δ + φ
T,n+ 1

2
δ

]
= Sσ

un+1
σ − un

σ

∆t
+

1
3

∑
T�σ

φT,n+ 1
2 = 0. (19)
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In order to derive an explicit scheme, performing a Taylor expansion in time
for λ ·∇un+ 1

2 and integrating in space using ωδ = Nδ, the following approx-
imation of φ

T,n+ 1
2

δ is obtained:

1
3
φ

T,n+ 1
2

δ =
1
3
φT,n

δ +
kδ

2∆t
φT,n

δ = βLW
δ φT,n, (20)

where βLW
δ is the distribution coefficient of the FS Lax–Wendroff (LW)

scheme [Str94]. The proposed analysis for consistent mass lumping allows
one to derive a family of high-order-accurate explicit schemes which differ in
the discretization of the time derivative and in the time approximation of the
steady term. For example, a two-point-backward discretization of the time
derivative leads to an alternative FS scheme (LW2) (see [Ros08] for details)
which also enjoys second-order accuracy.

3 Results

The accuracy of the two LW and LW2 schemes has been verified by computing
the unsteady linear advection, with λ = (1, 2), of the double-sine-shaped
function,

u = sin2(2πx) sin2(2πy),

over the unit square [0, 1]2. Two set of meshes have been employed for dis-
cretizing the computational domain, called A and B. Each coarsest mesh has
32 cells along each edge of the computational domain: the coarsest mesh A
is an unstructured mesh, obtained by a triangulation with a non uniform
discretization of the edges of the computational square, which is made up of
regular triangles having largely different sizes, see figure 1 (left); the coarsest
mesh B is a considerably skewed mesh obtained by a perturbed structured
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Fig. 1. Linear advection: Coarsest mesh A (h1 = 3.534 · 10−2) (left) and coarsest
mesh B (h1 = 3.125 · 10−2) (right)



410 G. Rossiello et al.

module, shown in figure 1 (right). Starting from each coarsest mesh, four
refined meshes were obtained by mapping it onto each region obtained by
dividing the computational domain into 4, 16, 64, and 256 identical squares,
(hi = h1/4i for i = 1, ..., 4), with h1 = 1/

√
NT , NT being the total number

of triangles of the corresponding coarsest mesh. It is noteworthy that such a
refinement does not preserve the shape of each cell, locally, thus providing a
very severe test for the order of accuracy of the schemes.

The logarithms of the L1 and L∞ norms of the numerical errors are reported
in figure 1, which confirms the predicted order of accuracy of the schemes.
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1 Introduction

This work is interested in the design of discretization tools ensuring high
order of accuracy for both discontinuous and smooth solutions. These de-
velopments are motivated by the desire to achieve aeroacoustic calculations
of supersonic turbulent flows such as for instance supersonic jets, transonic
airfoils or supersonic opened cavities.

Since the earliest stages of computational aeroacoustics (CAA), the need
for algorithms exhibiting high accuracy over a large range of wavenumbers
has been recognized [Tam95a]. Schemes with large stencils are therefore com-
monly implemented in order to perform simulations of the generation of
sound waves by turbulent flows. In particular, Dispersion-Relation-Preserving
(DRP) schemes have been developped in order to meet the stringent require-
ments of CAA [BB04, TW93]. These algorithms are based on large stencils
whose coefficients are optimized in the Fourier space to ensure low dissipa-
tive and low dispersive properties. The DRP discretization tools are especially
well suited for long range propagation and aeroacoustic calculations, but do
not have shock-capturing specific features. When encountering flow with dis-
continuities, high-order algorithms may indeed fail to describe the solution
because of their inability to deal with the spurious oscillations generated by
the Gibbs phenomenon in the neighborhood of strong gradients. This issue
may be circumvented by employing specific shock-capturing schemes, e.g.
the Essentially NonOscillary (ENO) or the Weighted ENO (WENO) differ-
entiation methods [HEOC87]. These approaches are however not suitable for
aeroacoustic applications since they can introduce too much artificial dissi-
pation strongly altering the features of the acoustic waves.

An alternative technique proposed by Jameson et al. [JST81] is to combine
high-resolution central difference schemes with a selective adaptive smooth-
ing term. Kim & Lee [KL01] extended Jameson’s algorithm by designing
an adaptive control of the damping terms. This Adaptive Nonlinear Artifi-
cial Dissipation (ANAD) aims at damping out spurious oscillations gener-
ated close to the shock waves while keeping acoustic waves unaffected. The
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dissipation term is indeed expressed as the combination of a second- and a
fourth-order damping term. A nonlinear function, relying on a shock sensor,
then locally regulates the magnitude of the second- and fourth-order dissi-
pations according to the rate of change of the pressure gradient. This class
of algorithms is appealing because of its simplicity and its low requirement
in computational cost. The method furthermore turned to be efficient for
several CAA applications [KL01, ELC07, MBM07].

Adaptive Nonlinear Selective Filtering (ANSF) techniques are also avail-
able for calculation of flows with discontinuities. ANSF techniques share
strong similarities with ANAD algorithms. Smoothing terms are nevertheless
no longer considered as artificial damping terms. Instead, a signal process-
ing operation is applied after each time step in order to adjust the solution
near discontinuities. The method relies on an algebraic algorithm theoreti-
cally able to handle any kind of discontinuity. Such a shock-capturing scheme
has been recently proposed by Bogey et al. [BCB08].

Another promising family of shock capturing schemes can be derived using
flux-limiting procedures. Daru & Tenaud [DT04] recently introduced a new
set of high-order upwind-limited schemes. The procedure of limitation allows
to obtain a monotonicity-preserving (MP) algorithm while maintaining high-
order of accuracy. The numerical flux combines a high-order flux function to
a Roe’s scheme, and is designed so that the Monotonicity-Preserving (MP)
conditions are fulfilled [SH97]. Test cases relying on calculations of supersonic
cavity flows furthermore demonstrated that these algorithms were suitable
for CAA applications [DG07].

Three shock capturing techniques, the ANAD algorithms of Kim & Lee
[KL01], the ANSF technique of Bogey et al. [BCB08] and the MP scheme of
Daru & Tenaud [DT04], are therefore available for aeroacoustic calculations
involving shocks. The present work is an attempt to provide a comprehensive
comparison between these approaches.

2 Shock-Capturing Algorithms

For sake of brievity, the algorithms themselves are not provided in details but
full descriptions of the schemes may be found in the works cited in what fol-
lows. The following discretization schemes are assessed in the present study:
the 11-point optimized finite differences along with the 11-point optimized se-
lective filter of Bogey & Bailly [BB04] (refered to as DRP11), the 11th-order
one-step monotonicity-preserving algorithm of Daru & Tenaud [DT04] [DT04]
(refered to as OSMP11), the adaptive damping scheme of Kim & Lee [KL01]
with the 11-point optimized selective filter of Bogey & Bailly [BB04] as a
background filter (refered to as ANAD), and the adaptive nonlinear selective
filtering of Bogey et al. [BCB08] (refered to as ANSF).
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3 Test Cases

3.1 Shock Wave Interacting with a Density Disturbance (1D)

A one-dimensional test case, initially proposed by Shu & Osher [SO89] is
first solved. A moving Mach 3 shock wave interacts with a sinusoidal density
profile. The solution is computed up to t = 1.8 using 200 grid points, for
the DRP11, the OSMP11, the ANAD and the ANSF algorithms. The result-
ing density distributions close to the shock are plotted in figure 1. One may
observe that the DRP11 and the OSMP11 yield rather similar results. The
density disturbance is well preserved in the neighborhood of the discontinu-
ity. As concern the ANAD and ANSF schemes, it turns out that they may
introduce too much dissipation. In particular, for 5.5 < x < 7.5 the amplitude
of the high-frequency oscillations are particularly underestimated.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

x

ρ

Fig. 1. Pressure distribution for the 1D shock-turbulence interaction, obtained for
various numerical algorithms. · · · · ··, DRP11 ; –·–·–·–, ANAD ; ——–, ANSF ; – –
– –, OSMP11

3.2 Transonic Airfoil (2D)

A two-dimensional steady test case is now considered in order to assess the
algorithms in a more realistic context. The inviscid flow around a NACA0012
airfoil is solved. The angle of attack is α = 1.0◦ and the freestream Mach
number M∞ is taken to be equal to 0.85. Under these operating conditions,
compression shocks emerge on both pressure and suction sides of the airfoil.
This flow configuration has been widely used to benchmark shock-capturing
numerical techniques, as for instance in the works of Yee et al. [YH87].

Coordinate transformation is utilized in order to perform the calculation
using a curvilinear physical space. The mesh has a C-shape and makes use of
241×301 grid points. The domain extends from −6c to +4c in the streamwise
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Fig. 2. Mach colormap and pressure coefficient distribution computed for various
numerical algorithms, for the NACA0012 airfoil with M∞ = 0.85, α = 1.0◦. (a)-
(b), DRP11 scheme; (c)-(d), ANAD scheme; (e)-(f), ANSF scheme. Colorscale
based on the Mach number from 0 (blue) to 1.5 (red). Line styles for the pressure
coefficient: ——–, present calculations; ······, reference data of Yee & Harten [YH87].
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direction, and ranges from −6c to +6c in the transverse direction, where c
is the chord length. The flow around the airfoil is computed using the 11-
point optimized DRP11 schemes [BB04], the ANAD algorithm of Kim &
Lee [KL01]and the ANSF technique of Bogey et al. [BCB08].

The Mach number field is represented in figures 2.a, 2.c and 2.e, for the
DRP11 scheme, the ANAD scheme and the ANSF scheme, respectively. For
the three numerical algorithms the Mach number distributions appear to be
very similar. Flow acceleration is visible on either side of the airfoil and the
Mach number eventually becomes greater than one in some regions around
the airfoil. Two shocks are observed, one around x/c ∼ 0.9 on the suction
side, and another around x/c ∼ 0.6 on the pressure side.

The pressure coefficient distributions around the airfoil is now presented
in figures 2.b, 2.d and 2.f, for the DRP11 scheme, the ANAD scheme
and the ANSF scheme, respectively. As a guideline, the results of Yee &
Harten [YH87] using ARC2D with a grid refined in the neighborhood of the
shocks (560×65 nodes) are also presented. An overall agreement is observed.
In particular, the shock locations are correctly reproduced for all the nu-
merical methods, including the DRP11 schemes in figure 2.b. It is worth
noting that even though the optimized schemes do not have any specific
features aiming at capturing flow discontinuities, the pressure coefficient dis-
tribution is still in good agreement with the data of Yee & Harten [YH87].
Gibbs oscillations are nonetheless visible but it seems that they do not have
a negative impact on the global solution. According to figure 2.d and fig-
ure 2.f, Gibbs oscillations are severely reduced with the ANAD or the ANSF
schemes. Away from the shocks, the pressure coefficient does not seem to be
affected by the shock-capturing. On the other hand, around the discontinu-
ities, the solution is clearly smoother than the one obtained with the DRP11
schemes alone. Some small residual oscillations are however still visible in
figure 2.d for the ANAD scheme. For the ANSF algorithm in figure 2.f, the
solution is completely smooth but the shock lies over a larger number of grid
points.

The calculations with the shock-capturing algorithms ANAD and ANSF
therefore appear to correctly reproduce the features of the flow around the
transonic airfoil.

4 Conclusion

The shock-capturing abilities of three numerical algorithms, namely, the
ANAD algorithms of Kim & Lee [KL01], the ANSF technique of Bogey et
al. [BCB08] and the MP scheme of Daru & Tenaud [DT04], have been inves-
tigated. The simulation of the interaction of a shock wave interacting with
a density disturbance showed that the ANAD and ANSF schemes might be
slightly over-dissipative. On the other hand, inviscid calculations of the flow
around a transonic airfoil using the ANAD and ANSF techniques turn out
to provide correct results.
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Summary. A shock-capturing method is developed for high-order non-linear
computations. It consists in applying an adaptative second-order conservative
filtering to handle discontinuities, in combination with a background selec-
tive filtering to remove grid-to-grid oscillations. The magnitude of the shock-
capturing filtering is determined dynamically from the flow solutions using
a procedure based on a Jameson-like shock detector. Results obtained for a
shock-propagation problem are shown to assess the validity of the method.

1 Introduction

The need for filtering high-frequency waves is a recurrent issue in high-order
simulations, which has led to the design of selective filters, e.g. by Lele [10],
Visbal & Gaitonde [14] and Bogey & Bailly [2]. These filters can be used
for strongly non-linear problems, such as the generation of screech noise in
supersonic jets as performed in [1], but it is generally recognized that they are
not well suited to solutions including discontinuities. Near shocks, high-order
schemes might indeed generate spurious Gibbs oscillations due to spectral
truncation in the wavenumber space. Therefore the usual approach to ensure
stability for shocked flows is based on shock-capturing schemes. Such schemes
might however be too dissipative for unsteady problems. In that case, their
spectral properties have to be analysed [11], and their accuracy has to be
checked by solving demonstrative test cases [6].

An alternative approach consists in developing an adaptative shock-
capturing filtering, which is also appropriate for high-order simulations, as
done for instance by Tam & Shen [13] and by Kim & Lee [9]. In the present
study, a spatial filtering is thus proposed to deal with shocks in high-order
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non-linear computations in which a background selective filtering is imple-
mented to remove grid-to-grid oscillations. To smooth shocks, the filtering
is of second order, and its magnitude is adjusted dynamically from the flow
variables so that it is negligible for linear propagation and for vortical distur-
bances. A procedure of shock detection is especially proposed so as to evaluate
the filtering amplitude from the magnitude of the high wavenumbers of the
solutions. In order to obtain a strong conservative form, the filtering proce-
dure is also written as the difference between damping fluxes taken at the
interface of two adjacent cells.

In what follows, the shock-capturing method is first presented, and so-
lutions calculated for a shock-propagation problem are then shown. More
details about the method and results obtained for other test cases including
linear sound propagation, vortex convection, shock-acoustic interactions in a
transonic nozzle and shock-vortex interactions can be found in [5].

2 Shock-Capturing Methodology

A procedure of shock detection is first derived to estimate the strength of the
shock-capturing filtering from the flow variables, so that it should be signif-
icant around discontinuities but negligible everywhere else. More precisely,
in order to indicate the presence of shocks, a shock detector, roughly similar
to that formulated by Jameson et al. [8] making use of the second deriva-
tive of pressure, is evaluated from the magnitude of the high-wavenumber
components of a variable that can be either pressure or dilatation.

In some cases the use of pressure to detect shocks might however not be
appropriate for distinguishing between turbulent fluctuations and shocks in
an unambiguous manner. To deal with this deficiency, as also suggested by
Ducros et al. [7], a possibility is to take into account the local property of
compressibility. This led us here to perform the shock detection from dilata-
tion Θ = ∇ · u rather than from pressure.

To determine the shock sensor, the high-wavenumber components are first
extracted from variable Θ using a Laplacian filter, yielding, at node i

DΘi =
1
4

(−Θi+1 + 2Θi −Θi−1) (1)

The magnitude of the high-passed filtered dilatation is then calculated as

DΘ
magn
i =

1
2

[
(DΘi −DΘi+1)

2 + (DΘi −DΘi−1)
2
]

(2)

and the shock sensor is defined as the ratio r expressed as

ri =
DΘ

magn
i

c2
i /∆x2

+ ε (3)
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where c2
i = γpi/ρi is the square of the sound speed, ∆x is the mesh spac-

ing, and ε = 10−16 is introduced to avoid numerical divergence later in
equation (4).

Once the value of the shock detector r is known, the strength of the filtering
has to be given. In the present approach, a threshold parameter rth is used
to specify the regions where the shock-capturing filtering is employed. The
filtering magnitude is evaluated by the function

σsc
i =

1
2

(
1− rth

ri
+
∣∣∣∣1− rth

ri

∣∣∣∣
)

(4)

For ri ≤ rth, the filtering magnitude is σsc
i = 0 as required. For ri > rth,

that is when the level of the high-wavenumber components of dilatation are
appreciable, one gets 0 < σsc

i < 1, and in particular σsc
i → 1 for ri → +∞.

The threshold parameter rth is typically to be set between 10−6 and 10−4, a
lower value corresponding to an application of the shock-capturing filtering
on a wider region. In this way, the second-order filter is only switched on
when the dilatation gradients are strong.

The shock-capturing filtering is applied at each time step just after the
background selective filtering removing grid-to-grid oscillations. Since its
magnitude depending on the shock detection varies, the filtering operation is
written in a conservative form as the difference between two damping fluxes
taken at the interface of two adjacent cells as recommended by Kim & Lee [9]
for instance. At point i on an uniform grid, the conservative variables U are
thus filtered explicitly to yield

Usc
i = Ui −

(
σsc

i+ 1
2
Dsc

i+ 1
2
− σsc

i− 1
2
Dsc

i− 1
2

)
(5)

where the filtering strength 0 ≤ σsc ≤ 1 is specified by the dynamic proce-
dure presented previously, and the damping functions Dsc

i+ 1
2

and Dsc
i− 1

2
are

estimated from the variables U using the following interpolations

Dsc
i+ 1

2
=

n∑
j=1−n

cjUi+j and Dsc
i− 1

2
=

n∑
j=1−n

cjUi+j−1 (6)

To determine the coefficients cj of the 2n-point interpolation defining the
damping functions, one considers the non-conservative form of the filtering

Usc
i = Ui − σsc

i

n∑
j=−n

djUi+j (7)

and notes that equations (5) and (7) must be equivalent when the filtering
magnitude is uniform. For a given n, the coefficients cj are then directly ob-
tained from the coefficients dj of the corresponding non-conservative centered
filter. The values found for the standard 2nd-order filter, here referred to as
Fo2, are collected in Table 1.
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Table 1. Coefficients cj for conservative shock-capturing filtering: standard 2nd-
order filter (Fo2), and optimized 2nd-order filter (Fopt), with c1−j = −cj

Fo2 Fopt

c1 1/4 −0.210383
c2 0 0.039617

The coefficients cj calculated for another second-order filter are also re-
ported in the Table. This filter was built up in [5] using an optimization
procedure in the wave-number space so that it displays dissipation features
similar to those of the standard filter Fo2, but generates reduced phase errors.
Phase errors are indeed induced by the variations of the filtering magnitude.

3 Application to a Shock-Propagation Problem

The shock-capturing methodology is now implemented to solve the shock-
propagation problem proposed by Tam [12], based on the one-dimensional
Euler equations. The spatial derivatives are computed using eleven-point low-
dispersion centered finite-differences, and the time integration is performed
using a six-stage low-dissipation Runge-Kutta algorithm, designed in [2]. The
grid spacing is uniform with ∆x = 1, and the time step is ∆t = 0.8. A back-
ground selective filtering is carried out using a eleven-point filter of order 6
optimized in the wavenumber space [5], with a uniform magnitude equal to 1,
at each grid point every time step. The shock-capturing methodology is then
applied. Note that the present discretization methods have been successfully
used to perform accurate Large-Eddy Simulations of three-dimensional tur-
bulent flows and their radiated noise [1, 3].

The pressure solution calculated at t = 200 using selective filtering of the
fluxes as discussed in [4], without shock-capturing, is presented in figure 1(a).
The pressure pulse has been dispersed, which suggests that filtering the fluxes
is not appropriate when strong non-linear effects take place.

The solutions obtained using selective filtering of the variables, alone or
in combination with the shock-capturing filtering, are then displayed in fig-
ures 1(b), 1(c) and 1(d). The pressure pulse has become triangular in shape
at t = 200 due to non-linear effects. In figure 1(b), without using shock-
capturing, a shock is indeed visible at x � 249∆x, but it is surrounded by
Gibbs oscillations because of the spectral truncation of the solution.

In figures 1(c) and 1(d), using shock-capturing, the pressure pulse however
does not exhibit oscillations around the shocks which are rather sharp. The
Gibbs oscillations have then been removed by the second-order filter. More
precisely, as demonstrated in [5], the second-order shock-capturing filtering
applies near the discontinuity, but its magnitude is nil everywhere else.

In addition the location of the shocks is found to differ when non-
conservative or conservative filtering procedures are implemented, with shocks
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Fig. 1. Shock propagation. Pressure computed at t = 200 : (a) selective filtering of
the fluxes without shock-capturing, (b) selective filtering of the variables without
shock-capturing, (c) selective filtering of the variables and non-conservative shock-
capturing filtering, (d) selective filtering of the variables and conservative shock-
capturing filtering, using filter Fo2 and a threshold parameter rth = 10−5

that are situated at x � 252∆x in figure 1(c) but x � 249∆x in figure 1(d).
This result illustrates the fact that that the use of the conservative form of the
filtering is required to properly calculate the speed of the shock propagation.

4 Concluding Remarks

A methodology based on an adaptative spatial filtering has been developed
to capture shocks in non-linear problems which have to be computed using
low-dissipation schemes such as aeroacoustic problems. In order to opti-
mize the efficiency of the approach, the different components of the shock-
capturing procedure, including the shock detection from the flow variables,
the determination of the filtering strength from the shock detector and the
second-order filter applied around the shocks, have been considered. The
method has been then applied to linear test cases and to non-linear prob-
lems involving shocks, as described in detail in [5]. The results obtained show
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that it takes into account shocks in a proper manner, while being of easy
implementation and of reasonable cost.
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1 Introduction

In recent years, the discontinuous Galerkin methods (DGM) have received
increasing attention in computational fluid dynamics due to many attractive
features they possess. However, DGM have a number of weaknesses that have
to be addressed, before they can be applied to flow problems of practical inter-
est in a complex configuration environment. In particular, how to efficiently
discretize diffusion terms required for the Navier-Stokes equations remains
one of unresolved issues in the DGM. DGM are indeed a natural choice for
the solution of hyperbolic problems, such as the compressible Euler equa-
tions. However, the DG formulation is far less certain and advantageous for
the compressible Navier-Stokes equations, where dissipative fluxes exist. A
severe difficulty raised by the application of the DGM to the Navier-Stokes
equations is the approximation of the numerical fluxes for diffusion terms,
that has to properly resolve the discontinuities at the interfaces. Taking a
simple arithmetic mean of the solution derivatives from the left and right is
inconsistent, because the arithmetic mean of the solution derivatives does not
take into account a possible jump of the solutions. A number of numerical
methods have been proposed in the literature, such as those by Bassi and
Rebay [bassi], Cockburn and Shu[cockburn], Baumann and Oden[baumann]
and many others. Arnold et al. have analyzed a large class of discontinuous
Galerkin methods for second-order elliptic problems in a unified formula-
tion in Reference [arnold]. All these methods have introduced in some way
the influence of the discontinuities in order to define correct and consistent
diffusive fluxes. More recently, van Leer and Lo[vanleer] proposed a recovery-
based DG method for the diffusion equation using the recovery principle,
and Gassner et al[Gassner] introduced a numerical scheme based on the ex-
act solution of the diffusive generalized Riemann problem for the discontin-
uous Galerkin methods. Unfortunately, all these methods seem to require
substantially more computational effort than the classical continuous finite
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element methods, which are naturally suited for the discretization of elliptic
problems.

In this work, a discontinuous Galerkin Method is presented for the solution
of the compressible Navier-Stokes equations on arbitrary grids, where the nu-
merical fluxes at the interface are evaluated using a gas-kinetic Bhatnagar-
Gross-Krook (BGK) formulation[liu]. The idea behind this approach is to
combine the robustness of the BGK scheme with the accuracy of the DG
methods in an effort to develop a more accurate, efficient, and robust method
for numerical simulations of viscous flows in a wide range of flow regimes. The
developed method is used to compute a variety of viscous flow problems on
arbitrary grids. The numerical results obtained by this BGKDG method are
extremely promising and encouraging in terms of both accuracy and robust-
ness, indicating its ability and potential to become not just a competitive but
simply a superior approach than the current available numerical methods.

2 Numerical Method

The governing Navier-Stokes equations are discretized using a newly devel-
oped DG method on arbitrary grids[luo08]. Unlike the traditional discontin-
uous Galerkin methods, where either standard Lagrange finite element or
hierarchical node-based basis functions are used to represent numerical poly-
nomial solutions in each element, this DG method represents the numerical
polynomial solutions using a Taylor series expansion at the centroid of the
cell, which can be further expressed as a combination of cell-averaged values
and their derivatives at the centroid of the cell. The unknowns to be solved
in this formulation are the cell-averaged variables and their derivatives at
the center of the cells, regardless of element shapes. As a result, this for-
mulation is able to provide a unified framework, where both cell-centered
and vertex-centerd finite volume schemes can be viewed as special cases of
this discontinuous Galerkin method by choosing reconstruction schemes to
compute the derivatives, offer the insight why the DG methods are a bet-
ter approach than the finite volume methods based on either TVD/MUSCL
reconstruction or ENO/WENO reconstruction, and possesses a number of
distinct, desirable, and attractive features and advantages, which can be ef-
fectively used to address the shortcomings of the DG methods. First, the
same numerical polynomial solutions are used for any shapes of elements,
which can be triangle, quadrilateral, and polygon in 2D, and tetrahedron,
pyramid, prism, and hexahedron in 3D. Using this formulation, DG method
can be easily implemented on arbitrary meshes. The numerical method based
on this formulation has the ability to compute 1D, 2D, and 3D problems us-
ing the very same code, which greatly alleviates the need and pain for code
maintenance and upgrade. Secondly, cell-averaged variables and their deriva-
tives are handily available in this formulation. This makes implementation
of WENO limiter straightforward and efficient that is required to eliminate
non-physical oscillations in the vicinity of discontinuities. Thirdly, the basis
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functions are hierarchic. This greatly facilitates implementation of p-multigrid
methods and p-refinement.

Unlike the traditional discontinuous Galerkin methods, where a Local Dis-
continuous Galerkin (LDG) formulation is usually used to discretize the vis-
cous fluxes in the Navier-Stokes equations, a BGK scheme is used in this
DG method to compute the fluxes which not only couples the convective and
dissipative terms together, but also includes both discontinuous and continu-
ous representation in the flux evaluation at a cell interface through a simple
hybrid gas distribution function. BGKDG formulation is especially attractive
for the Navier-Stokes equations, as there is no need to compute the viscous
fluxes at the interfaces, thus significantly reducing the computational costs.
In the BGK formulation, the fluxes at the interface for the Euler and Navier-
Stokes equations are constructed based on the integral solution of the BGK
model, which requires both conservative variables and their derivatives. In
this regard, the BGK formulation bears a strong resemblance to the general-
ized Riemann solver in the evolution of fluxes at the interface. However, the
BGK formulation offers a much deeper physical insight in the construction
of a DG method for the convection-diffusion problems. It should be pointed
out that the BGK scheme, recognized as being expensive in comparison with
the traditional upwind methods for computing numerical fluxes, makes a
comeback in the context of DG formulation, as it does not require a sepa-
rate computation of viscous fluxes at the interfaces. A recently developed,
fast, low-storage p-multigrid (p=polynomial degree)[luoaiaa08] is used for
obtaining steady state solutions to the governing compressible Navier-Stokes
equations. A Hermite polynomial WENO limiter[luo07] is used to eliminate
the non-physical spurious oscillations in the vicinity of discontinuities.

3 Numerical Examples

The developed method is used to compute a variety of viscous flow problems
on arbitrary grids. A few examples are presented here to illustrate the high
accuracy and robustness of this DG method for a wide range of flow regimes
from subsonic to hypersonic.

A. Laminar flow past a flat plate
This test case is chosen to assess the accuracy of the numerical solution ob-
tained by the BGKDG method for solving the Navier-Stokes equations. The
mesh used to compute the flat plate boundary layer contains 120 cells and
30 cells in the x- and y-direction, respectively. The numerical solution is pre-
sented at a Mach number of 0.2, and Reynolds number of 100,000 based on
the freestream velocity and the length of the flat plate using DG(P1) and
DG(P2) methods. Fig. 1 compares the profiles of velocity component in the
x-direction at five locations obtained by DG(P1) and DG(P2) solutions with
Blasius solution, respectively, while the velocity profiles in the y-direction
obtained by DG(P1) and DG(P2) solutions are compared with Blasius
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Fig. 1. Comparison of the velocity profiles in the x-direction at different x-locations
obtained using the DG(P1) (left) and DG(P2) (right) solutions with Blasius solution

Fig. 2. Comparison of the velocity profiles in the y-direction at different x-locations
obtained using the DG(P1) (left) and DG(P2) (right) solutions with Blasius solution

solution in Figure 2. Both DG(P1) and DG(P2) solutions resolve boundary
layers very accurately, even with as few as four cells in the boundary layer.
What demonstrates the high accuracy of DG solutions is that they give the
accurate prediction of velocity profiles not only in the x-direction, but also
in the y-direction, which is extremely difficult to predict accurately.

B. Hypersonic laminar flow past a circular cylinder
This test case is taken from the experiment done by Wieting34, where the
flow condition is given as M∞=8.03, T∞=124.94 K, Tw=294.44 K, Re =
1.835x105. Fig. 3 shows the mesh used in the computation, the computed pres-
sure, and temperature contours in the flow field, respectively. Fig. 4 compares
the computed normalized pressure and heat flux at the cylindrical surface with
the experimental data, where a fairly good agreement can be observed. This
example clearly indicates the potential and promise of the DG method for ac-
curate and reliable prediction of heat flux in the hypersonic regime.
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Fig. 3. Comparison of the computed head flux (left) and pressure distributions
along the cylindrical surface with the experimental data
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Fig. 4. Comparison of the computed head flux (left) and pressure distributions
along the cylindrical surface with the experimental data

4 Conclusions

A discontinuous Galerkin method based on a Taylor basis has been extended
for solving the compressible Navier-Stokes equations on arbitrary grids. Un-
like the traditional discontinuous Galerkin methods which normally use a
local discontinuous Galerkin formulation to discretize the viscous fluxes,
the present DG method uses BGK formulation for the discretization of the
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Navier-Stokes equations, which has the ability of treating both convective
and dissipative effects together using a gas-kinetic distribution function. As
a result, there is no need to compute the viscous fluxes at the interfaces
separately, thus significantly reducing the computational costs. The devel-
oped method has been used to compute a variety of viscous flow problems
on arbitrary grids. The numerical results obtained by the BGKDG method
are extremely promising and encouraging, indicating its ability and poten-
tial to become not just a competitive but simply a superior approach than
the current available numerical methods. Further effort will be focused on
conducting a systematic study on accuracy, convergence, and cost between
BGKDG and LDG methods for solving the Navier-Stokes equations and ex-
tending this BGKDG method for three dimensional problems.
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1 Introduction

There is an increasing interest to develop the next generation simulation
tools for the advanced nuclear energy systems. These tools will utilize the
state-of-art numerical algorithms and computer science technology in order to
maximize the predictive capability, support advanced reactor designs, reduce
uncertainty and increase safety margins. In analyzing nuclear energy systems,
we are interested in compressible low-Mach number, high heat flux flows with
a wide range of Re, Ra, and Pr numbers. Under these conditions, the focus
is placed on turbulent heat transfer, in contrast to other industries whose
main interest is in capturing turbulent mixing. Our objective is to develop
single-point turbulence closure models for large-scale engineering CFD code,
using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)
tools, requireing very accurate and efficient numerical algorithms.

The focus of this work is placed on fully-implicit, high-order spatiotem-
poral discretization based on the discontinuous Galerkin method solving the
conservative form of the compressible Navier-Stokes equations. The method
utilizes a local reconstruction procedure derived from weak formulation of the
problem, which is inspired by the recovery diffusion flux algorithm of van Leer
and Nomura [VN05] and by the piecewise parabolic reconstruction [CW84]
in the finite volume method. The developed methodology is integrated into
the Jacobian-free Newton-Krylov framework [KK04] to allow a fully-implicit
solution of the problem.

2 Jacobian-Free Newton-Krylov Framework

The Jacobian-free Newton-Krylov (JFNK) [KK04] framework enables a fully-
coupled solution of the nonlinear system. JFNK is a combination of quadrat-
ically convergent Newton’s method and a Krylov subspace method [Saa03].
In each Newton iteration, the following linear system of equations is solved:
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JkδUk = −Res(Uk) (1a)

Uk+1 = Uk + δUk (1b)

where, the superscript k denotes the kth Newton iterate. J ≡ ∂Res
∂U is the Ja-

cobian matrix and Res(Uk) denotes the nonlinear residual functions. Com-
putation of the Jacobian matrix can be prohibitively expensive. The JFNK
method eliminates the direct computation of the Jacobian matrix by taking
advantage of the fact that Krylov methods require only matrix-vector prod-
uct to perform the iterations. To this end, the Jacobian-vector product is
approximated by the forward finite difference of the form:

Jv ≈ Res(U + εv)−Res(U)
ε

(2)

With this formulation, the linear system of equations can be solved by
providing only subroutines for the nonlinear residual function evaluation.
Thus, the JFNK framework provides a powerful platform to include a vari-
ety of nonlinear phenomena, especially useful for multiphysics simulations.
This “Jacobian-free” version of Krylov methods can also be applied to the
preconditioned system, which is the key to efficient numerical algorithm1.
The Jacobian-vector product of the (right-) preconditioned system can be
expressed as:

JM−1v ≈ Res(U + εM−1v)− Res(U)
ε

(3)

3 Recovery Discontinuous Galerkin Method

The “recovery” discontinuous Galerkin (rDG) method was first introduced
by van Leer and Nomura [VN05] for a diffusion operator. Their idea was to
approximate a diffusion flux at cell edges by a higher-order reconstruction of
the solution. As we found out, the concept of “recovery” can be extended to
the advection and reaction operators. The rDG for the advection operator
may be considered as the generalization of the Piecewise Parabolic finite
volume method (PPM) [CW84]. In rDG, the higher-order solution within a
cell is reconstructed by utilizing the solutions at the immediate neighboring
cells. To do so, we first define the “recovered” function in cell i as:

Ũi (x) =
R∑

n=0

Ũn
i L

n
(x) (4)

where Ũn
i is the coefficient of the nth-order recovered function Ũi (x). The

recovered function is the Rth-order polynomial, where R = 3p + 2, and p
1 For recent developments of the physics-based preconditioning in nuclear reactor

applications, see [PNM08].
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is the order of the original DG method. The coefficients are computed by
enforcing the following weak formulations:∫

Im

L
n

(x) Ũm (x) dx =
∫
Im

L
n

(x)Um (x) dx

m=i,i±1 and n=0,...,p

(5)

where Um is the original DG solution in cell m. Eq. (5) produces the (R +
1)× (R + 1) system of equations, which can be solved analytically. Since the
weak statements are used in reconstruction, the procedure is conservative
and the first p-moments of the recovered coefficients are equal to those of
the original DG solution. The advantage of the rDG is that the higher-order
corrections are used only to compute the numerical fluxes at cell edges or
integral reaction terms which appears upon DG discretization. As a result,
it does not increase the number of unknowns of the solved nonlinear system.

Two-dimensional extension of rDG. The recovery procedure discussed
above can be extended to two-dimensional problems. The lowest order dis-
cretization rDG0(=PPM) uses the direction-by-direction recovery procedure;
therefore it is only 1st order in the cross derivatives. The recovered in-
cell solution of the high-order rDG, on the other hand, includes high-order
cross-derivative terms, as well as normal derivatives. The key to this pro-
cedure is the choice of degrees of freedom (DoF) that avoids a null space.
Fig. 1 shows our choice of DoF from neighboring cells in rDG1, and Eq. (6)
expresses the resulting recovered function.
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Fig. 1. The choice of the in-cell solution reconstruction for rDG1
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Ũ = Ũ00L0(x)L0(y)
+ Ũ10L1(x)L0(y) + Ũ01L0(x)L1(y)
+ Ũ20L2(x)L0(y) + Ũ02L0(x)L2(y) + Ũ11L1(x)L1(y)
+ Ũ30L3(x)L0(y) + Ũ03L0(x)L3(y) + Ũ12L1(x)L2(y) + Ũ21L2(x)L1(y)
+ Ũ40L4(x)L0(y) + Ũ04L0(x)L4(y) + Ũ22L2(x)L2(y)
+ Ũ50L5(x)L0(y) + Ũ05L0(x)L5(y)
+ O(∆x6, ∆y6, ∆x3∆y, ∆x∆y3) (6)

where the subscripts denote the order of polynomial in x- and y-direction,
respectively. From Eq. (6), it is clear that the reconstructed function is the
6th order accurate in x- and y-direction and the 4th order accurate in cross-
derivative terms.

4 Numerical Examples

In this section, we demonstrate high-order convergence of the rDG by solving
the one- and two-dimensional Navier-Stokes equations. As the first example,
we use a one-dimensional manufactured solution [NTP08]. Fig. 2 (left) shows
the density error vs. total number of DoFs, used for rDG0−3. All spatial dis-
cretizations exhibit nearly theoretical convergence rates. Fig. 2 (right) shows
the convergence of five fully implicit time integration schemes, which also
demonstrates the expected convergence rates.

The next example is the 2-D traveling wave problem, defined as

u(x, y, t) = 1 + 2 cos(2π(x− t)) sin(2π(y − t)) (7a)
v(x, y, t) = 1− 2 sin(2π(x − t)) cos(2π(y − t)) (7b)
P (x, y, t) = P0 − (cos(4π(x− t)) + cos(4π(y − t))) (7c)

Fig. 2. Spatial (left), and temporal (right) convergence tests for rDG0−3
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Fig. 3. Grid convergence of rDG for total energy (upper left), and x-momentum
(upper right). Vorticity and velocity fields are shown at t=0.0 (bottom left), t=0.15
(bottom right) .

Fig. 4. Error vs. CPU time for the traveling-wave problem

Fig. 3 summarizes the convergence studies, comparing the DG1 with rDG1,
for total energy and x-momentum variables. Samples of the velocity and
vorticity fields at t=0.0 and t=0.15 are shown at the bottom. As can be seen
from Fig. 3, the convergence rates are the 2nd and the 6th order for DG1

and rDG1, respectively. A significant increase in accuracy is gained. Fig. 4
shows the efficacy (accuracy vs. CPU time), comparing the DG1 with the
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rDG1. Since the average number of the GMRES and Newton iterations does
not increase in this problem, the CPU time solely depends on the number of
nonlinear function evaluations. As one can see from Fig. 4, up to five orders
of magnitude more accurate result can be obtained with same CPU time, On
the other hand, to obtain the same accuracy, thr rDG1 is ≈ 100 times faster
than the DG1.

5 Conclusion

In this work, we have developed very high-order spatial discretization scheme
for hyperbolic and reaction operators based on the recovery of DG method.
Numerical examples demonstrated nearly theoretical convergence for the
smooth-flow tests. A significant saving in the computational time has been
achieved. The recovery procedure uses only the immediate neighbors to es-
timate higher order correction terms in the solution, which can be utilized
for a posteriori error indicator and subsequent mesh adaptivity. The next
step is to extend the procedure to unstructured grids as well as to the three-
dimensional problems.
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A hybrid compact-WENO scheme for viscous flow simulations on the curvi-
linear coordinates is presented. The inviscid fluxes are computed by the 5th-
order hybrid compact-WENO scheme. An improved Roe type character-wise
decomposition approach is used to extend the hybrid scheme into system
of equations. The compact schemes for discretizing the metrics terms that
appear in the inviscid and viscous fluxes are also constructed. After apply-
ing the present scheme to some standard test cases to verify the code, we
use the present method to simulate the interaction between the reflect shock
wave and the incident boundary layer. The effects of the grid density and the
Reynolds number are considered.

1 Introduction

Accurate and efficient simulation of turbulence flow fields involving shock
waves represents a significant challenge for numerical schemes. The numerical
schemes should be highly accurate to capture shock waves as well as the multi-
scale smooth flow structures. In recent years, many efforts have been devoted
in developing schemes with these properties.

Among others, the hybridization of the high order compact scheme and the
high resolution shock capturing scheme is a promising approach. This type
of hybrid schemes takes the advantages of the compact schemes in smooth
flow regions and the high resolution shock capturing schemes near the flow
discontinuities. Adams and Shariff [AS96] have developed a hybrid compact-
ENO scheme which is composed of the non-conservative compact upwind
scheme for the smooth region and the shock-capturing ENO scheme that is
used near the discontinuities. Pirozzoli [P02]has derived a hybrid compact-
WENO schemes in which a conservative approach for the compact scheme



438 Z. Sun and Y.-X. Ren

rather than a non-conservative one was developed to make coupling with the
WENO scheme much easier and the numerical oscillation level much lower.
Ren et al [RLZ03] have improved the hybrid compact-WENO in several ways.
They designed a continuous weight function to avoid the abrupt transition
from one sub-scheme to another. The Roe type, characteristic-wise decom-
position approach rather than the Lax-Friedrichs flux splitting was used to
reduce the numerical dissipation. This characteristic-wise hybrid scheme has
shown remarkable improvement in resolutions.

In the present paper, the characteristic-wise hybrid scheme is extended to
solve viscous flow in curvilinear coordinate. The inviscid fluxes are computed
by the 5th-order hybrid compact-WENO scheme. An improved Roe type
character-wise decomposition approach is used to extend the hybrid scheme
into system of equations. The sixth order central difference scheme is used
for viscous flux computation. On the curvilinear coordinates, one important
problem is to design the discretization of the geometrical metrics so that
the desired accuracy can be ensured. In this paper, the compact schemes
for discretizing the metrics terms that appear in the inviscid and viscous
fluxes are constructed. After applying the present scheme to some standard
test cases to verify the code, we use the present method to simulate the
interaction between the reflect shock wave and the incident boundary layer.
The effects of the grid density and the Reynolds number are considered. The
numerical results show very good resolution to the shock and shear waves.

2 Numerical Method

In the present paper, the numerical scheme will be designed to solve the
2-dimensional compressible Navier-Stokes equations in strong conservative
form on general curvilinear coordinates (ξ ,η):

∂Û

∂t
+

∂F̂

∂ξ
+

∂Ĝ

∂η
=

1
Re

(
∂F̂v

∂ξ
+

∂Ĝv

∂η

)

Further details of the equations can be found in [ATP84].
On the curvilinear coordinates, one important problem is to design the

discretization of the geometrical metrics so that the desired accuracy can
be ensured. The metric terms are computed by the 6-th order conservative
central compact scheme. Taking ∂x

∂ξ as an example:

∂x

∂ξ
|j,k = x̂j+1/2,k − x̂j−1/2,k

where x̂j+1/2,k is obtained by the solution of the following compact scheme.

1
3 x̂j−1/2,k + x̂j+1/2,k + 1

3 x̂j+3/2,k = 1
36xj−1,k + 29

36xj,k + 29
36xj+1,k + 1

36xj+2,k
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Then the metrics are employed to evaluate the Jacobian J :

J =

∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

The inverse metrics such as ∂ξ
∂x can thus be computed using the general

relationship of the coordinate transformation:

∂ξ
∂x = J−1 ∂x

∂ξ
∂ξ
∂y = −J−1 ∂x

∂η , ∂η
∂x = −J−1 ∂y

∂ξ
∂η
∂y = J−1 ∂x

∂ξ

The inviscid fluxes are computed using an improved version of the charac-
teristic hybrid compact-WENO scheme [RLZ03]. For simplicity, we present
the scheme by omitting the subscript k without ambiguity. For the i−th
characteristic variable of the flux F̂ defined by w

(i)
m = L

(i)
j+1/2Fm, (i =

1, 2, 3, 4; m = j − 1, . . . j + 2), the hybrid scheme reads:

σ
(i)
j+1/2φ

(i)
j+1/2ŵ

(i)
j−1/2 + ŵ

(i)
j+1/2 + σ

(i)
j+1/2ψ

(i)
j+1/2ŵ

(i)
j+1/2 = ĉ

(i)
j+1/2

(1)

where σ
(i)
j+1/2 is the weight which can be found in [RLZ03] and

φ
(i)
j+1/2 = 1

3 +
s
(i)
j+1/2

6 , ψi+1/2 = 1
3 −

s
(i)
j+1/2

6 , s
(i)
j+1/2 = sign(λ(i)

j+1/2)

ĉ
(i)
j+1/2 = σ

(i)
j+1/2b̂

(i)
j+1/2 + (1 − σ

(i)
j+1/2)ŵ

(i),WENO
j+1/2 (2)

b̂
(i)
j+1/2 = ( 1

18w
(i),+
j−1 + 19

18w
(i),+
j + 5

9w
(i),+
j+1 ) + (5

9w
(i),−
j + 19

18w
(i),−
j+1 + 1

18w
(i),−
j+2 )

(3)
In these equations, λ

(i)
j+1/2 and L

(i)
j+1/2 are respectively the i−th eigenvalue

and left eigenvector. Further details of Eq. (2) and Eq. (3) are as follows. For
a chosen threshold value ηj+1/2, if min(|λ(i)

j |, |λ
(i)
j+1|) > ηj+1/2, then

w(i),+
m =

{
L

(i)
j+1/2Fm, ifλ

(i)
j > 0,

0, otherwise;

w(i),−
m =

{
0, ifλ

(i)
j > 0,

L
(i)
j+1/2Fm, otherwise;

ŵ
(i),WENO
j+1/2 = ŵ

(i),WENO−Roe
j+1/2

otherwise,

w(i),+
m =

L
(i)
j+1/2Fm + λ

(i)
m L

(i)
j+1/2Um

2

w(i),−
m =

L
(i)
j+1/2Fm − λ

(i)
m L

(i)
j+1/2Um

2
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ŵ
(i),WENO
j+1/2 = ŵ

(i),WENO−LF
j+1/2 .

The WENO-Roe and WENO-LF stand for the original Roe type WENO flux
and WENO flux based on the Lax-Friedrich flux splitting, see [JS96]. It can be
seen that the entropy-fix has been considered in these procedures. When the
eigenvalues are small enough, the right-hand side of Eq. (1) is computed by
the Lax-Friedrichs flux for both the compact and the WENO sub-schemes,
which is different with [RLZ03] where the entropy-fix was only applied to
the WENO sub-scheme. This improvement makes the present scheme being
more robust than the scheme of [RLZ03]. The final step of the inviscid flux
computation is to arrange Eq. (1) for all characteristic fields into a block-
tridiagnal system of equations that can be solved to obtain the numerical
flux in the physical space.

This viscous fluxes are computedby 6-th order central difference scheme.The
third order TVD Runge-Kutta scheme [JS96]is used for the time integration.

3 Numerical Tests

The first test case is a flat plate boundary layer problem with Ma = 0.2 and
Re = 104. A nonuniform rectangle mesh with 70× 110 cells (Figure 1)is used
in the simulation. Non-dimensional u velocity profiles are shown at x/L =
0.3 and are compared with Blasius profiles in Figure 2. A good agreement
between these two results can be seen.

This second case is a two dimensional laminar flow impinged by an oblique
shock upon a flat plate causing a boundary layer to separate near the imping-
ing region. A nonuniform rectangle grid is used in the simulation. The angle
between the incident shock and the horizontal line is32.6◦. Computational
results in Figure 3 are obtained at Ma = 2.0and Re = 2.96e5 and compared
with some experimental results in Figure 4. The agreement is also very good.

After applying the present scheme to above standard test cases to verify
the code, we use the present method to simulate the interaction between
the reflect shock wave and the incident boundary layer. The flow conditions
are taken from [DT00]. For the Re = 200 case, the computations have been

Fig. 1. Flat plate grids Fig. 2. u velocity distributions at x/L = 0.3
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Fig. 3. Pressure contour Fig. 4. Skin friction coefficient

Fig. 5. Re = 200, density contour of re-
flect shock wave interacting with incident
boundary layer at t = 1.0, mesh number
250 × 125

Fig. 6. Re = 1000, density contour of re-
flect shock wave interacting with incident
boundary layer at t = 1.0, mesh number
1000 × 500

performed on the 250×125 , 500×250 and 1000×250 nonuniform grids. The
numerical results are almost the same and the one on the 250× 125 grid is
shown in Figure 5. The advantage of the scheme on curvilinear coordinates
is that the nonuniform grids can be used in simulation. By clustering the
grids near the boundary layer, fast grid convergence can be achieved. For a
comparison, it is reported in [SY03] that the grid convergence can be reached
on a 1000×500 grid for the second order MUSCL scheme and on a 500×250
grid for the 5−th order WENO scheme and high order ACM filter scheme.

When the Reynolds number is increased to 1000, the flow structures are
much more complicated. The boundary layer separates at several points,
giving rise to development of lots of vortex and large compressibility effects.
The flow is suspected to be unstable according to [DT00]. No grid convergence
study is done in the present paper for this case. However, according to the
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numerical results shown in Figure 6 which is computed on a 1000× 500 grid,
the present scheme can capture very rich small scale flow structures. This
indicates that the present scheme can compute the multi-scale flows with
shock waves in very high resolution.

4 Conclusions

In this paper, the hybrid compact-WENO scheme has been extended to
solve the N-S equations on curvilinear coordinates. Firstly, we construct
the six-order central compact scheme to discrete the geometrical metrics to
obtain the desired accuracy. Secondly, an improved Roe type, 5-th order
characteristic-wise compact scheme is designed to combine with the 5-th or-
der WENO scheme to form a hybrid compact-WENO scheme with improved
entropy-fix procedure. Thirdly, the six-order central difference scheme is used
for viscous flux computation. Numerical tests show that the present scheme
can achieve very high resolution for complex flow structures with shock waves.
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1 Scope

High-order methods are being actively pursued in an effort to reduce the
cost of large-scale scientific computing applications. Moreover, for complex
flows both high-order discretizations and adaptive mesh refinement (AMR)
may be required. For hyperbolic conservation laws, the challenge has been to
achieve accurate discretizations while coping in a reliable and robust fashion
with discontinuities and shocks. For elliptic equations, it is desirable that
the discretization procedure remain accurate while satisfying a maximum
principle, even on stretched/distorted meshes [Coi94, DABLP99].

In spite of the many successful high-order methods proposed for both struc-
tured and unstructured meshes [HEOC87, Abg94, HS99, CS89, Bar93, OV02]
and their application to complex engineering problems even in combination
with AMR procedures [MJ06, WA06, BC05], there is still no consensus for
robust, efficient, and high-order-accurate schemes that fully deal with all of
the aforementioned issues and are applicable to more arbitrary meshes.

This study considers the development and application of a high-order cen-
tral essentially non-oscillatory (CENO) finite-volume procedure with AMR
to the advection-diffusion equation. A consistent order of discretization error
is sought for both hyperbolic and elliptic terms.

2 High-Order CENO Scheme

The two-dimensional advection-diffusion equation considered is given by

∂u

∂t
+ ∇ · (V(x, y, u) u)︸ ︷︷ ︸

advective(hyperbolic)

= ∇ · (κ(x, y, u) ∇u)︸ ︷︷ ︸
diffusive(elliptic)

+ φ(x, y, u)︸ ︷︷ ︸
source

, (1)

where u is the solution (a scalar quantity), V is the advection velocity vector,
κ is the diffusion coefficient, φ is a non-linear source term and x and y are the
two spatial coordinates. Based on the relative magnitudes of the advective
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and diffusive fluxes, the solutions of this equation can range from those having
a more hyperbolic nature and governed by wave propagation phenomena to
those having a more elliptic nature and governed by diffusive processes.

High-order solutions of (1) are sought here by applying a finite-volume
spatial discretization procedure in conjunction with high-order polynomial
solution reconstruction, upwind discretization of the hyperbolic flux, and
centrally weighting discretization of the elliptic flux. The semi-discrete form
of the finite-volume formulation applied to (1) for a cell (i, j) of a two-
dimensional multi-block mesh composed of quadrilateral computational cells
is given by

dūi,j

dt
= − 1

Ai,j

Nf∑
l=1

NG∑
m=1

(ωF · n ∆�)i,j,l,m+
1

Ai,j

∫
Vi,j

φi,j(x, y, u)dv = Ri,j , (2)

where each cell has Nf =4 faces and a NG-point Gaussian quadrature numer-
ical integration procedure is used to evaluate the solution flux, the sum of
the advective and diffusive fluxes F = Fa + Fd = Vu − κ ∇u, through each
face. The variable ūi,j is the average solution scalar, Ai,j is the cell area, ω is
the quadrature weighting coefficient, ∆� and n are the length of the cell face
and unit vector normal to the cell face, respectively. Analytical or numerical
integration can be performed to calculate the integral of the particular non-
linear source term, φi,j , for cell (i, j). In this work, either a two- or four-stage
standard Runge-Kutta scheme is used to integrate the system of ordinary
differential equations given by (2), depending on the desired accuracy.

The hyperbolic fluxes, Fa · n = uV · n, at each quadrature point are
determined from the left and right solution values, ul and ur, as follows:

Fa · n =
{

ul (V · n) if V · n ≥ 0,
ur (V · n) if V · n < 0. (3)

The solution states, ul and ur, are determined by performing piecewise
k-order polynomial solution reconstruction within each computational cell.
Herein, the k-order CENO reconstruction proposed by Ivan and Groth is used
[IG07].

The high-order central ENO (CENO) method is not based on either se-
lecting or weighting reconstructions from multiple stencils. Instead, a hy-
brid solution reconstruction procedure is used that combines the high-order
k-exact least-squares reconstruction technique of Barth [Bar93] based on a
fixed central stencil with a monotonicity preserving limited piecewise linear
least-squares reconstruction algorithm [Bar93]. The limited reconstruction
procedure is applied to computational cells with under-resolved solution con-
tent and the unlimited k-exact reconstruction scheme is used for cells in
which the solution is fully resolved. Switching in the hybrid procedure is
determined by a solution smoothness indicator. Note that for smooth and
hyperbolic problems, a k-order reconstruction produces a k+1-order accu-
rate spatial discretization. A detailed description of the CENO reconstruction
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procedure and of the smoothness indicator is given in the paper by Ivan and
Groth [IG07].

As previously mentioned, the proposed discretization seeks to obtain a
global k-order accurate scheme on arbitrary meshes. This implies the use of
a k-order accurate gradient for the diffusive flux evaluation, which here is
derived from a k+1-order accurate reconstruction. For this reason, even if a
quartic (k = 4) reconstruction has the potential to generate a 5th-order dis-
cretization of the hyperbolic flux in combination with at least three quadra-
ture points (NG = 3), it will only be 4th-order accurate for the elliptic flux
discretization. Therefore, two quadrature points (NG = 2) are sufficient to
obtain a global 4th-order accurate scheme with a piecewise quartic recon-
struction.

In a similar manner to hyperbolic fluxes, numerical elliptic fluxes, Fd ·n =
−κ ∇u ·n , must be evaluated at each quadrature point. Having determined
the left and right solution reconstructions, uk

l (r) and uk
r(r), the solution gra-

dient at the inter-cellular face is obtained as the arithmetic mean of the
reconstruction gradients and thus, the flux at the calculation point, r, is
evaluated as

Fd · n = −κ

[
1
2
(
∇uk

l (r) + ∇uk
r(r)
)]

· n . (4)

The accuracy of (4) can be easily observed to be k-order accurate. To in-
fer other properties such as positivity (i.e. local satisfaction of a discrete
maximum principle) or non-existence of odd-even solution decoupling, it is
convenient to apply the elliptic discretization to the Laplace operator and
analyse the influence coefficient of each entry in the supporting stencil [Coi94].
Note that for a given discretization the influence coefficients depend only on
the mesh geometry and not on the actual solution. As proposed by Coirier
[Coi94], the positivity of the scheme can be characterized in terms of α0 and
α̃min coefficients. Ideally, α0 < 0 for stability and α̃min = 0 for positivity
[DABLP99].

In the current work, different mesh geometries were analysed including
Cartesian, stretched, and randomly disturbed quadrilateral grids. The anal-
ysis has shown that odd-even solution decoupling does not occur. In terms
of the stability and positivity, it was found that α0 < 0 but α̃min < 0 for
discretizations of all order, unfortunately implying that, while stable, none of
the discretizations satisfy a discrete maximum principle. Note that for square
Cartesian meshes, values for α̃min are found to be -0.823 for k=2, -0.362 for
k=3 and -0.854 for k=4 when inverse distance geometric weighting is used in
the k-exact reconstruction. However, the positivity can be improved by using
an inverse distance squared geometric weighting, for which α̃min was found
to be -0.051 for k=2, -0.247 for k=3 and -0.324 for k=4. For non-Cartesian
meshes, large variations in the value of α̃min are possible (−5 < α̃min < 0),
depending on the regularity and topology of the mesh.
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High-order treatment of boundary conditions (BCs) is crucial for develop-
ing high-order accurate schemes. Herein, high-order BCs have been imposed
by making use of extra rows of ghost cells or by constraining the least-squares
reconstruction in cells adjacent to boundaries as described in [OV02].

A flexible block-based hierarchical data structure is used in conjunction
with the CENO scheme described above to facilitate automatic solution-
directed mesh adaptation on body-fitted multi-block quadrilateral mesh. In
this work, an h-refinement criterion based on the solution smoothness in-
dicator is used to control the refinement of AMR mesh. The AMR CENO
algorithm and the refinement criterion are described in details in [IG07].

3 Numerical Results

The accuracy of the hybrid CENO algorithm was first assessed based on the
circular advection at constant angular velocity of the smooth inflow varia-
tion u(x, 0) = ed sin6(π d) if d ∈ [0 : 1], otherwise 0, where d = x − 0.3. The
predicted solution distribution for this problem using the quartic CENO re-
construction on a 80×80 Cartesian mesh is shown in Fig. 1. The error norms
for both 4th-order versions (k=3 and k=4) of the proposed CENO scheme
are also depicted in Fig. 1. As the mesh is refined, the slopes of the L1-, L2-
and L∞-norms approach in the asymptotic limit -4.53, -4.55 and -4.58 for
the cubic reconstruction (k=3), and -4.94 in all error norms for the quartic
reconstruction (k = 4), respectively, indicating that the expected theoretical
order of accuracy has been achieved in each case.

The high-order CENO scheme was also applied in conjunction with AMR
to a problem similar to the previous one. In this case the inflow function
was u(x, 0) = e2 d sin6(2 π d) if d ∈ [0 : 0.8], otherwise 0, where d = x − 0.4.
This function exhibits two smooth extrema and a discontinuity close to the
second peak. Figure 2 shows the final solution profile along the cross-section
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Fig. 1. Predicted 4th-order (k=4) CENO solution (left) and L1, L2 and L∞ error
norms for k=3 and k=4 CENO reconstructions (right)
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Fig. 2. Comparison of 4th-order (k =3) AMR CENO solution on the final mesh
and exact solution along A-A (left) and final mesh with 2,911 10×10 blocks (right)

A-A compared against the exact solution and the final multi-block AMR
mesh and the location of line A-A. The results clearly show that the pro-
posed AMR scheme in conjunction with the h-refinement criteria based on
the smoothness indicator of the hybrid CENO reconstruction is capable of
refining both under-resolved (inaccurate) and non-smooth regions of the so-
lution and will not unnecessarily refine resolved solution content. The smooth
peaks are all well captured whereas the solution discontinuity is well identified
by the smoothness indicator and well resolved by the AMR procedure.

The numerical scheme was also tested for solutions to the Laplace equation
for the curved boundary domain shown in Fig. 3. Dirichlet BCs were imple-
mented based on the exact solution u(x, y) = eµ x (cos(µ y) + 2 sin(µ y)),
µ = 1.5. A 4th-order solution to this problem and the L1, L2, and L∞ error
norms for cubic and quartic interpolants are also shown in Fig. 3. The slopes
of the L1- and L2-norms reach in the asymptotic limit -3.86 and -3.85 for k=3
and -3.86 and -3.81 for k=4, respectively. Even if the orders of accuracy for
these two interpolants are essentially the same and close to the theoretical
value, there is about one order of magnitude difference between the absolute
error values, demonstrating the benefits of using a quartic interpolant.

The proposed scheme is now applied to problems involving different ratios
of advection and diffusion terms as determined by the Péclet number (Pe).
Solution of (1) with V = (v0, 0) and κ(x, y) = 0.01, for the BCs shown in
Fig. 4 is considered for Pe = 0.1, Pe = 1, and Pe = 10, depending on v0.

Figure 4 shows the numerical solution obtained for Pe = 10 on an 80×40
Cartesian mesh and the error norms for the three Péclet numbers. The results
show that the errors generated by the quartic polynomial are consistently lower
than those of the cubic interpolant by at least one order of magnitude for all
cases and obtain the theoretical accuracy in all error norms. Thus, the L1-norm
for k=4 is -4.02 (Pe=0.1), -4.30 (Pe=1.0) and -3.92 (Pe=10.0), respectively.
In the case of cubic interpolant, the L1-norm is -3.92 (Pe=0.1), -3.88 (Pe=1.0)
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Fig. 3. Fourth-order (k = 4) solution to the Laplace equation on a 40×40 grid
(left) and L1-, L2- and L∞ error norms for cubic and quartic interpolants (right)
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Fig. 4. Fourth-order solution for a channel flow problem with Pe=10 (upper-left)
and L1-, L2- and L∞ error norms obtained with cubic (k =3) and quartic (k =4)
interpolants for Pe=0.1 (upper-right), Pe=1 (lower-left) and Pe=10 (lower-right)

and -3.53 (Pe=10.0), respectively. It can be also seen in the error plots that, for
the same accuracy level, the cubic interpolant requires almost twice as many
cells as the quartic one. Taking into account that both reconstructions have
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identical stencils, the only extra cost associated with quartic reconstruction is
to determine and store five additional derivatives.

4 Concluding Remarks

A high-order finite-volume scheme with AMR for the advection-diffusion
equation has been proposed with a number of desirable features. Future re-
search will extend the algorithm to the solution of the full Navier-Stokes
equations.
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1 Introduction

When a flying vehicle moves with a high velocity in the upper layers of the
atmosphere, a viscous shock layer is formed in the vicinity of its leading edges.
The viscous shock layer consists of a thick boundary layer and a thin zone
of inviscid flow behind the bow shock wave. The receptivity of a hypersonic
shock layer to external and internal disturbances plays an important role
in formation of a spectrum of initial disturbances and influences laminar-
turbulent transition in a hypersonic boundary layer. In this connection, the
investigation of wave processes in a hypersonic shock layer and development
of methods of controlling their intensity is an important scientific problem.

The previous results of experimental and theoretical research and control
methods developed refer to the boundary–layer flow and cannot be directly
transposed to a hypersonic shock layer. The flow in a hypersonic shock layer
has some specific features: the influence of a closely located shock wave on the
evolution of disturbances, significant nonparallelism of the flow, and a high
degree of rarefaction. The present paper describes comprehensive numerical
and experimental investigations of evolution of disturbances generated in the
hypersonic viscous shock layer on a flat plate by external acoustic waves and
by perturbations introduced into the shock layer from the surface of model.
The active control of intensity of pulsations is possible because both external
acoustic waves and the periodic controlled disturbances introduced on the
plate surface generate, in a shock layer, entropy-vorticity disturbances with
identical spatial distributions and phase velocities.

The analysis of the laminar-turbulent transition in the boundary layer is
traditionally started from the problem of receptivity, i.e., excitation of insta-
bility waves by external disturbances. Elucidation of the ways and reasons for
the emergence of disturbances in the shock layer, i.e., the process of gener-
ation of disturbances in the shock layer, is the essence of the problem of
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shock-layer receptivity. The study of boundary–layer–type subsonic flows
[KKL82] is based on a convenient classification of the mechanisms of recep-
tivity to external disturbances with subdivision into localized and distributed
mechanisms. The same classification can be used for hypersonic flows. Two
limiting cases of excitation of disturbances in the viscous shock layer can be
distinguished: continuous (distributed) generation in an extended flow region
and localized generation by spatially concentrated forcing. The present activ-
ities were aimed at numerical and experimental investigations of distributed
and localized receptivity of the shock layer on a flat plate at high Mach
numbers and moderate Reynolds numbers.

2 Methods of Investigation

With allowance for the moderate magnitude of local Reynolds numbers typi-
cal of the viscous shock layer, the most adequate approach to the problem of
numerical simulation seems to be the direct numerical simulation (DNS) of
disturbances on the basis of solving the full unsteady Navier-Stokes equations.
Two–dimensional Navier-Stokes equations written in the form of conserva-
tion laws are solved by high–order shock–capturing schemes. Details of the
numerical method can be found in [KMP06,KMPT06]. First, the steady flow
is calculated. The results of simulations turned out to be in good agreement
with the mean density in the shock layer measured in experiments by the
electron-beam fluorescence method [KMP06]. Then the problem of interac-
tion of the viscous shock layer with disturbances of different types, which are
introduced by imposing appropriate time–dependent boundary conditions, is
solved.

Measurements of characteristics of mean flow and density pulsations were
measured by the method of electron-beam fluorescence of nitrogen [MM00] at
hypersonic wind tunnel T-327A of ITAM SB RAS. A flat plate model 240mm
long with a sharp leading edge 100mm wide was inserted into a hypersonic
flow with a Mach number M∞ = 21, unit Reynolds number Re1∞ = 6 ×
105m−1, and stagnation temperature T0 = 1200K; the temperature factor of
the surface was Tw/T0 = 0.26.

3 Disturbances

3.1 Distributed Receptivity

The external acoustic disturbances excited in the experiments were slow
acoustic waves generated by the turbulent boundary layer formed on the
nozzle walls.

In numerical simulations of the problem of shock-layer interaction with
external acoustic disturbances, the variables on the left boundary of the com-
putational domain were set in the form of a superposition of the steady main
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a b

Fig. 1. Isolines of instantaneous density fluctuations for a slow external acoustic
wave on the basis of DNS (a) and in experiment (b) at M∞ = 21, ReL = 1.44 ×
105, Tw = 300K, A = 0.003, f = 9kHz, θ = 0◦

flow and a plane monochromatic acoustic wave characterized by the ampli-
tude A, frequency f , and angle of propagation θ.

Figure 1 shows the instantaneous fields of density fluctuations in the shock
layer for a slow external acoustic wave, which were obtained in computations
(a) and experiments (b). The spatial patterns of the fields of fluctuations are
in good agreement. The most intense density fluctuations are observed on
the shock wave and on the edge of the viscous boundary layer. The magni-
tude of the maximum of fluctuations on the boundary-layer edge is several
times lower than the amplitude of density fluctuations on the shock wave.
Disturbances of the entropy-vortex mode still dominate in the shock layer,
which is evidenced by the data on the field of vorticity fluctuations and by
the analysis with the use of the linear theory of interaction [MW68].

3.2 Localized Receptivity

Internal perturbations localized near the leading edge were generated by an
obliquely cut cylindrical aerodynamic whistle located under the plate [MT06].
Disturbances of the periodic blowing–suction type were simulated by impos-
ing the boundary condition for the transverse mass flow on a certain area of
the plate surface [KMPT06]. After introduction of disturbances, the Navier-
Stokes equations were integrated until the unsteady solution reached a steady
periodic regime.

a b

Fig. 2. Isolines of instantaneous density fluctuations induced by a whistle (periodic
blowing-suction) on the basis of DNS (a) and in experiment (b) at M∞ = 21, ReL =
1.44 × 105, Tw = 300K, A = 0.003, f = 38.4kHz
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The isolines of density fluctuations obtained in computations (Fig. 2a) and
experiments (Fig. 2b) show that the most intense density fluctuations are
observed on the shock wave and on the edge of the viscous boundary layer,
similar to the case of distributed receptivity, i.e., the field of fluctuations
generated by a local source of the blowing–suction type is similar to the field
of fluctuations generated by external acoustic disturbances.

The main specific feature inherent in the formation of the field of den-
sity fluctuations during shock-layer interaction with external acoustic distur-
bances and internal disturbances of the periodic blowing–suction type is the
mechanism of generation of entropy-vortex disturbances and their propaga-
tion inside the shock layer. This is also confirmed by the linear theory of
interaction of plane waves with the shock wave [MW68].

4 Active Control

An obvious consequence is the possibility of suppression of fluctuations gen-
erated by external disturbances by artificially inserted internal disturbances
with a properly chosen phase and amplitude of blowing–suction. The principle
opportunity of suppression and amplification of disturbances using simulta-
neous influence on the shock layer of external acoustic waves and a blowing -
suction near the plate leading edge has been first demonstrated numerically.

As is evidenced by the computed results (Fig. 3), periodic blowing–suction
of the gas near the leading edge initiated in-phase or in antiphase with respect
to the external fast acoustic wave with a properly chosen blowing–suction
amplitude can suppress or amplify the development of instability in the shock
layer, which arises under the action of free-stream acoustic disturbances, i.e.,
active control of the flow in the shock layer can be ensured. Similar results
were obtained in DNS [F07] for external slow acoustic waves.

The possibility of controlling the intensity of fluctuations in a hypersonic
shock layer on a flat plate was also demonstrated in experiments for fast

b

c

d

Fig. 3. Fields of instantaneous density fluctuations in a shock layer for M∞ =
21, ReL = 1.44 × 105, Tw = 300K, f = 38.4kHz: (a)- slow acoustic wave θ = 0◦,
A = 0, 001; (b) - blowing-suction A = 0, 06; (c) - antiphase action; (d) - in-phase
action
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Fig. 4. Arrangement of the experiment

external acoustic waves. The idea of this experiment is illustrated in Fig.
4. Periodic acoustic waves are generated in a hypersonic flow, which interact
with the shock layer on the plate and generate fluctuations in the shock layer.
The oblique gas-dynamic whistle located under the plate near its tip also
excites periodic pressure perturbations in the shock layer. If the frequencies
of external flow disturbances and of perturbations excited by the whistle
are identical, a certain relation between the phases of these disturbances
may lead to interference suppression (amplification) of fluctuations in the
boundary layer on a flat plate. As an illustration, Fig. 4 shows suppression
of density fluctuations in the shock layer at the time when the perturbations
excited by the whistle have covered half of the plate length.

For a frequency f = 37.5kHz, Fig. 5 shows the experimental curves for
the amplitude of density fluctuations on the edge of the boundary layer on
the plate ρ

′
/ρ

′

max in the cross section x/L = 0.63 versus the time shift
�τ between external flow disturbances and perturbations generated by the

0 1 2

0.4

0.8

1.2

Fig. 5. Amplitude of density fluctuations on the boundary-layer edge versus the
delay of the initial disturbances
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whistle. Here ρ
′

max is the level of density fluctuations on the boundary-layer
edge in the case of an in-phase action of the external acoustic wave and pe-
riodic blowing–suction. The relation between the amplitudes of external and
internal disturbances allows almost complete suppression of perturbations in
the shock layer. The solid curve in Fig. 5 approximates the experimental
values in accordance with the law of interference of two sinusoidal waves of
identical frequency and amplitude.

For comparison, Fig. 5 shows the DNS data (marked by crosses) for the
shock layer under the action of fast acoustic waves propagating at a zero
angle to the external flow centerline with a frequency f = 37.5kHz. The
initial amplitudes of the fast external acoustic wave and periodic blowing–
suction were chosen with the aim of suppressing the fluctuations and have
the values of 0.0017 and 0.0694, respectively. The numerical values are seen
to be in good agreement with the measured data.

This work was supported by the Russian Foundation for Basic Research
(Grant No. 05–08–33436).
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1 Introduction

The immersed boundary method (IBM) has gained tremendous popularity in
recent years due to its ability to deal with highly complex moving boundary
problems. Since IBMs usually employ body non-conformal Cartesian grids,
providing high resolution selectively to localized regions (such as the boundary
layer on the body) has been one of the major shortcomings of this method.
Introduction of local grid refinement into the IBM would therefore significantly
enhance the capability of the method. In the current paper, we present a
new local refinement technique that is specifically designed to work effectively
with our existing sharp-interface immersed boundary method ([Bozkurttas05],
[Mittal08]).

There are two fundamentally different approaches to local-refinement
([Michael99]). In the first approach, the mesh with local refinement is treated
as one single unstructured mesh and the connectivity between the cells can
either be implicit or explicit (as with a quadtree or octree structure). The sec-
ond approach employs finer block meshes which are considered to be ”nested”
or ”embedded” onto the coarser mesh. In the former approach, it is easy to de-
velop highly complex local refinement topologies but since the grid structure
is lost, one cannot take advantage of powerful block iterative and geometric
multi-grid scheme for solving the discretized equations. In the latter approach,
it is relatively difficult to work with complex refinement topologies but since
the structured nature of the grid topology is maintained, one has access to all
of the powerful solution methodologies that are available for such grids.

In the current effort we have developed a new nested grid refinement pro-
cedure that provides a high level of flexibility in local refinement which re-
tains the advantages of a structured grid topology. In order to implement this
method we introduce a new date structure we call an ”Eulerian global map”
to manage the connectivity between the nested refined grid blocks. The use
of this data structure simplifies the local refinement approach and proves to



be robust even for highly complex refinement topologies. In addition, a level-
set is used to determine the criteria for refinement and cell blanking used to
construct nested grid with curvilinear shapes.

2 Numerical Methodology

2.1 Underlying Numerical Scheme

In current study, the incompressible Navier-Stokes equations are solved with
an immersed boundary method.

∂ui

∂xi
= 0 (1)

∂ui

∂t
+

∂(uiuj)
∂xj

= − ∂p

∂xi
+

1
Re

∂2ui

∂xjxj
(2)

where p is the pressure and u velocity vector , respectively. The equations
are discretized in space using a cell–centered, non–staggered arrangement of
the primitive variables ui and p. In addition to the cell-center velocities, the
face-center velocity, Ui(only the component normal to the cell face) are com-
puted and stored. A second–order fractional step method is used to integrate
the equation in time. The advection term is linearized using a second–order
Adams–Bashforth scheme. Also, an implicit Crank–Nicolson scheme is em-
ployed to discretize the diffusion term and to eliminate the viscous stability
constraint. The resulting finite difference scheme is shown as follows:
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1
ρ
(
δpn+1

δxi
)cc (5)

Un+1
i = U∗

i − ∆t
1
ρ
(
δpn+1

δxi
)fc (6)

where Ni = δ(Ujui)/δxj , Di = δ(δui/δxj)/δxj δ/δxj represents a second-
order central difference. The intermediate face-velocity U∗is computed by in-
terpolating the neighboring intermediate cell-center velocity u∗. In the above
equation, cc stands for cell-center, fc stands for face-center. A line–SOR
scheme is used to solve the advection–diffusion equation and an alternating–
direction, geometric multi-grid with a line–SOR smoother is used to solve
the pressure Poisson equation. The boundary representation is implemented
by sharp interface immersed boundary method. A 3D ghost-cell methodology
has been developed to satisfy the exact boundary condition on the boundary
surfaces by linear interpolation[Mittal08].
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2.2 Grid Refinement Strategy

In the local refinement procedure, all of nested meshes are in principle rect-
angular in shape. Finer (child) meshes are completely embedded inside some
next level coarser (parent) mesh and the fine mesh resolution is exactly twice
that of the coarse mesh. Any given mesh refinement level can have multiple
(sibling) meshes of various shapes. A level set based on distance from the
immersed boundary is used to determine which cells of the fine nested meshes
are active and which are to be deactivated. This allows us to effectively have
complex shaped nested meshes. For each refinement layer, an Eulerian global
map is created, which covers the whole domain. Each nested block mesh is
given a unique ID and every grid location in the map stores the correspond-
ing block index ID. Since only one integer (or short) variable is stored, the
memory usage for this map is relatively small. With this data structure, the
information regarding the location and relation of nested mesh blocks is eas-
ily to get without searching the tree structure and the interpolation becomes
straight forward and robust even for complex grid topologies.

An iterative approach is adopted for solving the governing equations on
the nested mesh wherein we iterate successively between the meshes of dif-
ferent refinement levels till convergence. In order to pass information from
one mesh to another, we employ a single layer of ”ghost-cells” around each
mesh block and a linear 2nd-order scheme is used for the interpolation in-
terpolation. A separate conservative interpolation scheme is used to transfer
the fluxes (convective, diffusive and pressure gradient) between the blocks.
The ghost-cells values are transferred from coarse block to fine block and the
fluxes are transferred from fine block to coarse block. The solving procedure
is shown as follows:

1. Start
2. Specify initial conditions, un, Un, pn, and physical boundary conditions
3. Setup ”global map” according to the block topologies.
4. Identity the ghost-cell and conservative faces and store the connectivity

for interpolation
5. t = t + δt
6. The advection-diffusion step.

6.1 Compute ghost cell velocity un, and face velocity Un convective flux
Unun, diffusive flux δun/δx at block interfaces.

6.2 Compute Nn
i , Nn−1

i , Dn
i for each block.

6.3 Solve Advection-Diffusion equation for each block.
6.4 Compute ghost cell velocity u∗, diffusive flux δu∗/δx at block inter-

faces.
6.5 If u∗ are converged for all of blocks then proceed to next step, or

return to step 6.3.
7. Compute U∗ and Recompute U∗ at conservative interfaces for each block.
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8. The pressure possion step.
8.1 Solve possion equation for each block.
8.2 Compute ghost-cell pressure pn+1, and pressure gradient δpn+1/δx

at block interfaces for each block.
8.3 If pn+1 is converged for all of blocks then proceed to next step, or

return to step 8.1 .
9. Velocity correction.

9.1 Compute un+1 and Un+1 for each block.
9.2 Recompute un+1 and Un+1 at interfaces based on conservative pres-

sure gradient and pressure ghost value for each block.
10. If stationary boundary goto step 5.
11. If moving boundary, move the boundaries and surrounding blocks. goto

step 3.

3 Results and Discussion

Several test cases have been included here to demonstrate the capabilities of
the method. The first test case is that of the 2D cavity driven flow. For this
case, one layer grid refinement is used and the refinement region is 0.16 away
from outer boundaries(Figure 1 (a)). The case is simlated with Re = 100.

Fig. 1. 2D driven cavity flow (a) mesh configuration (b) streamlines (c) comparison
of u at vertical center line (d) v at horizontal center line
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The Figure 1 (c) and (d) shows that u and v centerline velocities match
previous study and they do not show any discontinuity at block interfaces The
second test case is of a 2D flow past a cylinder at Re = 100. For this case, a
three layer nested grid refinement is used(Figure 2 (a)). The first refinement

.
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Fig. 2. 2D simulations of flow past circular cylinder (a) Three-level nested mesh
used in current simulation (b) contours of instantaneous spanwise vorticity.

third case is of a 3D flow past a sphere at Re = 300. For this case, a three
layer nested grid refinement is used(Figure 3 (a)). First a rectangular grid
refinement block is created to capture the wake. Then a two-layer level-set
refinement block is created where the inner one is 0.5d away from the sphere,
the outer one is 1.0d distance from the sphere. Figure 3 (b) shows the vortex
structures created in the wake of the sphere and the vortex topology is inline
with previous studies[Mittal02] The last case is of 2D flow past a cylinder at

level has a C type shape so as to capture the flow around the cylinder and
the wake. Two other levels of refinement are used which tighly surround the
circular cylinder. The inner one is 0.5d away from the cylinder and the outer
one is 1.0d way from the cylinder. Figure 2 (b) shows the instantaneous
vorticity for this case and it shows vortex shedding from the cylinder. The

Re = 100 with moving nested grids. Two concentric elliptic type blocks are
created surrounding the cylinder (Figure 4) and a sinusoidal rotary motion
is given to these two blocks to demonstrate the moving block ability. As can
be seen from the figure, the results look reasonable with the moving blocks.

Fig. 3. 3D simulations of flow past sphere (a) Three-level nested mesh used in
current simulation (b) Isosurface of maximum eigenvalue of velocity gradient.

A Hierarchical Nested Grid Approach for Local Refinement Coupled 465



Fig. 4. Instantenous vorticity contour of 2D simulations of flow past cylinder with
moving concentric blocks

4 Conclusions

A new local-grid refinement approach that employs a hierarchical nested
grid approach has been developed and applied to a sharp interface immersed
boundary solver. The key feature of the methodology is that the structured
grid approach is retained at all the refinement levels and this allows us to
use powerful line-SOR schemes and a geometric multigrid method. A set of
simulations of canonical flows have been conducted and these indicate that
the solver accurately reproduces the key features of the flows.
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1 Introduction

The cut-cell method has become increasingly popular in recent years for
treating complex boundaries due to its computational efficiency relative to
other approaches [Aft99, Joh98]. However, a major difficulty in the applica-
tion of cut-cell methods arises from the presence of degenerate cells and/or
very small cells in the Cartesian grid.

Virtually all cut-cell methods use a Volume-of-Fluid (VOF) method to
reconstruct the boundary of the degenerate cell. Although this approach is
relatively simple to implement, it has the drawback that it may severely vi-
olate the geometric fidelity of the irregular boundary and, hence, affect the
accuracy of the solution. Another approach for dealing with a degenerate
split cell is to divide this cell into several separate computational cells. This
approach is less robust and computationally expensive, and also has the dis-
advantage that it results in very complex computational molecules involving
complicated relationships between a node and its neighboring nodes [Day98].

In this paper, we formulate a new robust and efficient cut-cell method for
the moving boundary problem on an arbitrary complex domain.

2 Numerical Methods

2.1 Representation and Tracking of an Irregular Moving
Boundary

Because the boundary can move and the Cartesian grid does not have to
conform to the boundary, an ordered list of marker points are used to repre-
sent the boundary. Instead of using piecewise linear segments to represent the
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boundary curve, a set of connected polynomials is constructed using marker
points to provide a parametric representation of the boundary curve. The
geometric properties associated with this boundary can be computed based
on cubic splines.

2.2 Discretization of the Governing Equation

We consider an initial-value problem given by

∂φ

∂t
+ D∇2φ = f, (1)

where t is the time, D is the diffusion coefficient and f is a source term. The
source term f is evaluated at the centroid of each cell. For the transient term
∂φ
∂t , a three-level implicit method that is second-order accurate is used.

In a cell, the discrete equivalent of the diffusion term in Eq. (1) can be
written as follows:

D

∮
S

∇φ · −→n ds = D
∑

d

ld∇dφ + D

∫
B

∇φ · −→n ds, (2)

where d is a generic label for a coordinate direction, B is the portion of the
boundary curve that intersects a cut-cell, and the gradient ∇d is evaluated
at the midpoint of a cell face in the direction d of the fluid domain. Here, we
have split the gradient fluxes into two contributions.

To evaluate the gradient fluxes of φ through the cell faces in the fluid
domain, let us consider 2 neighboring cells at the same grid refinement level.
Each cell can be either (1) a regular Cartesian cell, (2) a regular cut-cell,
(3) a degenerate no-split cut-cell or, (4) a degenerate split cut-cell, yielding
sixteen possible combinations. Here, we only discuss two selected cases. The
evaluation of the cell-face gradient fluxes can be determined for the remaining
twelve cases analogously to the two cases discussed below (see also [Ji06]).

The first case considers degenerate no-split and split cut-cells as illustrated
in Figs. 1 and 2, respectively. The gradient flux of φ at the east face (Fe) is
evaluated as:

eP E le∆y

Ghost point

Fig. 1. Evaluation of the gradient flux of φ through the face between two neigh-
boring degenerate no-split cut-cells at the same grid refinement level
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P Ee le∆y

Ghost point

Fig. 2. Evaluation of the gradient flux of φ through the face between two neigh-
boring degenerate split cut-cells at the same grid refinement level

Fe = (!y − le)∇eφ =
φE − φP

xE − xP
(!y − le) . (3)

Here, the concept of a “ghost point” is used in order to improve the robustness
of the present approach in treating degenerate split/no-split cut-cells.

In the second case, the two neighboring cells are a regular cut-cell (left)
and a degenerate no-split cut-cell (right), as shown in Fig. 3. The gradient
flux of φ on the east face (Fe) can be evaluated as follows:

Fe =
(

φE − φP

xE − xP

)
le

+
le

xE − xP

[(
∂φ

∂y

)
E

(ye′ − yE)−
(

∂φ

∂y

)
P

(ye′ − yP )
]

. (4)

The node P in Fig. 3 is the centroid of the regular cut-cell. However, the
centroid of the degenerate no-split cut-cell (node E), which is considered as
a “ghost point” here, is the same as the centroid of the corresponding regular
Cartesian cell. For the neighboring cells at different grid refinement levels, the
gradient flux of φ can still be evaluated using either Eq. (3) or (4), depending
on the particular case.

In Eq. (2), we also need to evaluate the gradient flux of φ through the
boundary curve B of the cut-cell. For Neumann boundary conditions, the
gradient of φ at each marker point along the boundary curve, represented by
a cubic spline, is known. If we assume that the variation of the gradient∇φ· →n

P

P’

E

E’
e’

Ghost point

le

Fig. 3. Evaluation of the gradient flux of φ through the face between regular and
degenerate no-split cut-cells at the same grid refinement level
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between any two adjacent marker points is linear, the second term on the RHS
of Eq. (2) can be evaluated using Simpson’s 3/8 rule. Without the need to split
the cut-cell into smaller cells and to treat each cell individually, our proposed
approach can be applied to the cut-cells that intersect a boundary curve at
any number of points. Furthermore, our approach results in an evaluation
of the gradient flux of φ through the boundary curve that is second-order
accurate owing to the assumption of the linear variation of ∇φ· →n along any
section of the boundary curve between two adjacent marker points.

3 Numerical Results

To evaluate the numerical accuracy of the proposed method, we consider as the
first case, a Poisson equation with the exact solution φ = sin(3πx) sin(3πy).
The interior boundary curve for this example is a very thin ellipse, which is
rotated 45◦ in the counter-clockwise direction as shown in Fig. 4 for L = 6
(L denotes the level of grid refinement). In this example, the boundary curve
cannot be adequately resolved even for the finest mesh used (viz., L = 8). It
should be noted that the VOF-based cut-cell method cannot solve this chal-
lenging problem without using a split-cell method.

Table 1 shows the variation of the Lp-norm of the solution error obtained us-
ing our proposedmethodology for this example. Here, rp is ameasure of the rate
of convergence of the solution (with respect to the Lp-norm), whereby rp = n
indicates that the solution methodology possesses an n-th order of accuracy.
From the tabulated information, it can be seen that our solution methodol-
ogy is second-order accurate (approximately or better) in the L1- (not shown)
and L2-norms. However, the solution methodology is less than second-order
accurate in the L∞-norm. This is because the L∞-norm of the solution error is
controlled by the error in one or more degenerate cut-cells for this example.

(a) (b)

Fig. 4. The global mesh with a locally refined mesh for L = 6 for an interior
boundary curve that is a thin rotated ellipse (‘thin’ boundary curve)
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Table 1. Numerical accuracy test for Poisson equation applied to the domain with
an interior boundary curve that is a thin rotated ellipse (‘thin’ boundary curve)

Level ‖ε‖2 r2 ‖ε‖∞ r∞

5 6.71 × 10−2 1.42 × 10−1

6 1.65 × 10−2 2.03 4.26 × 10−2 1.67
7 4.19 × 10−3 1.97 1.37 × 10−2 1.55
8 1.09 × 10−3 1.92 4.69 × 10−3 1.46

For the second case, we consider a moving boundary problem. For this
case, we use the following source term in Eq. (1) (with D = 1):

f(x, y, t) =
4(x2 + y2 − 5(t + 1))

125π(t + 1)3
exp
(
− x2 + y2

5(t + 1)

)
. (5)

The solution domain is the region exterior to an elliptical boundary curve,
defined at the initial time t = 0 as:

(x− p)2

a
+

(y − q)2

b
= 1, (6)

with p = 0.5− 6γ, q = 0.5− 5γ, a = 3
2γ, b = γ, and γ =

√
2

15 .
Dirichlet boundary conditions are imposed on the sides of the unit square.

Neumann boundary conditions were specified along the interior elliptical
boundary curve. The global mesh is two levels of refinement less than the
locally refined mesh used for the cut-cells. The solution is advanced in time
from t = 0 to t = 0.5.

The advection of the marker points on the boundary curve are computed
using an explicit second-order accurate Runge-Kutta method. The horizon-
tal and vertical velocities of the moving boundary curve are u = −0.1 and

(a) (b)

Fig. 5. A moving boundary problem showing (a) the initial grid at t = 0 and (b)
the final grid at t = 0.5 for a local refinement level L = 6
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Table 2. Numerical accuracy test for an unsteady problem applied to the domain
with a moving elliptical interior boundary curve

Level ‖ε‖1 r1 ‖ε‖2 r2 ‖ε‖∞ r∞

5 6.00 × 10−4 6.00 × 10−4 6.11 × 10−4

6 1.55 × 10−4 1.94 1.55 × 10−4 1.94 1.56 × 10−4 1.96
7 3.93 × 10−5 1.97 3.93 × 10−5 1.97 3.96 × 10−5 1.97
8 9.90 × 10−6 1.98 9.90 × 10−6 1.98 9.97 × 10−6 1.99

v = 0.2, respectively. A multigrid acceleration method is used to solve the
discretized system of equations at each time step.

Figure 5 shows the initial grid at t = 0 and final grid at t = 0.5. Table 2
summarizes the Lp-norms of the solution error at t = 0.5 as a function of
the grid resolution. The results in this table clearly demonstrate that our
solution methodology is second-order accurate in both time and space.

4 Conclusions

We present a new robust and efficient Cartesian grid method for solving a
moving boundary problem on an arbitrary complex domain. The gradient
fluxes through all sections of the boundary curve in a cut-cell are computed
using surface integrals, with the important consequence that all cut-cells
(including the degenerate cut-cells) in the solution domain can be treated
similarly. The concept of a “ghost point” is introduced when evaluating the
gradient fluxes in the fluid domain for degenerate (split and no-split) cut-cells
in order to increase the robustness of the present approach [viz., there is no
need to deal with each of the (usually small) split cut-cells individually]. Two
cases are used to demonstrate the accuracy and efficiency of our proposed
solution methodology for both fixed and moving boundary problems.
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In this paper, two numerical results obtained by Building-Cube Method which
is based on an equally-spaced Cartesian mesh method are presented. One is
a flow simulation around the Ahmed body which is a simplified automobile
model. The accuracy of the present numerical method is discussed by com-
paring with the experimental result. Another one is a flow simulation around
a formula-1 race car for demonstrating the capability of the present method
to treat 3D complicated geometries.

1 Introduction

At present, CFD using unstructured mesh is commonly used to simulate
around 3D arbitrary geometries owing to the flexibility in mesh generations.
The unstructured-mesh CFD, however, has some disadvantages. The mesh
generation is still time consuming for engineering uses. Spatial accuracy of the
unstructured-mesh CFD is usually at most second order and to implement
spatial higher order schemes is painfully expensive. Recently, Cartesian-mesh
method is spreading gradually [1][2][3], because of the advantages about quick
and robust mesh generation, easy implementation of spatially higher order
schemes, and so on.

The Building-Cube Method [4] (BCM) was proposed based on equally-
spacedCartesianmesh method to aim for high-resolution computations around
complex geometries. In this method, whole computational domain is divided
into a number of sub-domains of cuboids called as cubes. Each cube has equally-
spaced Cartesian mesh, called as cells, in it. By using the same number of cells
in all cubes, it is simple to keep load balance among all cubes in the use of large
scale computers with massively parallel processors (MPP).

In this paper, a BCM flow solver for the incompressible Navier-Stokes
equations is discussed with two large-scale computations. One is a flow simu-
lation around the Ahmed body for evaluation of the accuracy of the present
method. Another one is a flow simulation around a formula-1 race car to in-
vestigate the applicability and robustness of the present method for analyses
around 3D arbitrary geometries. These computations have been conducted
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by using NEC SX-9 vector-parallel supercomputers installed on Cyberscience
Center of Tohoku University.

2 Numerical Method

2.1 Mesh Generation

In the BCM, the computational mesh consists of two sets, cubes which are
the computational sub-domains, and equally-spaced Cartesian mesh called
as cells in each cube. Then BCM mesh generation is classified into two pro-
cedures of cube generation and cell generation. In these procedures, Tomas
Möllar’s intersection check, fully threaded tree (FTT) data structure and
OpenMP parallel processing are exploited for robust and fast mesh genera-
tion [5]. Typical time to generate BCM mesh for about 100 million cells is
less than 10 minutes on Dual quad-core 64 bit PC.

2.2 Solution Algorithm

In this paper, 3D incompressible Navier-Stokes equations (Eq.(1)) are solved
by fractional-step method with staggered arrangement.{

∂u
∂t +

(
u · ∇

)
u = −∇p + 1

Re∇2u
∇ · u = 0

(1)

In the fractional-step method, three processes of Eqs. (2)-(4) are imple-
mented sequentially at each time step [6][7][8]. In this paper, second order
accurate Adams-Bashforth explicit time integration is implemented in solv-
ing the temporal velocity field u∗ in Eq. (2). Here the convection term A
and diffusion term B are discretized by third order upwind finite difference
scheme [9] and second order central finite difference scheme respectively. In
the process of Eq. (3), the pressure filed pn+1 is solved by Poisson equation.
In solving incompressible Navier-Stokes equations, most of computational
cost is paid for the procedure. Therefore Red-Black SOR method is used to
exploit vector processing of SX-9. Moreover pressure perturbation in incom-
pressible flow field should be propagated to far field at once ideally. Then
flow information of each cube is exchanged between adjacent cubes because
BCM mesh is multi-block structure of cubes. Finally real velocity field un+1

is solved by Eq. (4).

u∗ − un

∆t
= −

(
3
2
An − 1

2
An−1

)
+
(

3
2
Bn − 1

2
Bn−1

)
(2)

∇2pn+1 =
1

∆t
∇ · u∗ (3)

un+1 − u∗

∆t
= ∇pn+1 (4)
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Detail of the present computational method is described in [10]. In the
present computations, wall object is expressed by simple staircase pattern.
Hence nonslip boundary condition of velocity and non gradient to normal
direction boundary condition of pressure are applied to staircase cells directly.

3 Numerical Results

3.1 Flow Simulation Around Ahmed Body

Ahmed body, which is a simplified automobile model, has been investigated
by many experiments and simulations [11][12][13] In the present paper, a
model with 35 degrees was employed for comparisons of velocity profile on
symmetrical plane. Total number of cubes is 3,048 and each cube has 323

cells in it. Total number of cells is 99,876,864 (about 0.1 billion). The mini-
mum spacing near the wall boundary is 1.2× 10−3 base on overall length of
the model which corresponds to 1.3× 10−3 meter in the real scale. Reynolds
number is 2.8 million based on the overall length. Ground boundary is treated
as a nonslip boundary. A constant velocity condition is applied at the inflow
boundary, and a constant pressure condition is applied to the outflow bound-
ary. On other outer boundaries, velocity and pressure are calculated by linear
extrapolation. In this simulation, any turbulence model was not used.

In Figure 2, black diamonds and red lines indicate the experimental and
the present computed results of the u-velocity on the symmetrical plane. At
upstream region of the model, a slight discrepancy is observed between the
present result and the experiment. The computed result shows a boundary
layer separation on the upper surface near the front. The separation affects
to the downstream above the model. In the diagonal part to wake region, the
present result shows relatively good agreement with the experimental result.

The boundary layer separation in the upstream region appeared in the
present computation may be due to the lack of mesh resolution for the thin
turbulent boundary layer at this Reynolds number. It caused a laminar sep-
aration because of no turbulence model. Therefore some kinds of turbulence
model such as the Smagorinsky model for LES may be required in the present
method.

Fig. 1. Computational mesh around Ahmed body
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Fig. 2. Comparison of velocity profile on symmetrical plane

Fig. 3. U-velocity distribution on symmetrical plane

3.2 Flow Simulation Around Formula-1 Model

The present method was applied to flow fields around a formula-1 race car as
shown in Fig. 4 for the capability demonstration. Total number of cubes is
5,930, and each cube has 323 cells. Total number of cells is 194,314,240 (about
0.2 billion). The Minimum spacing near the wall boundary is 7.3 × 10−4

based on overall length which corresponds to about 3.5 × 10−3 meter in
the real scale. Reynolds number is 14.9 million based on overall length [14].
The computational mesh was generated in about 10 minutes even for this
complicated model. In this simulation, wheels and ground boundaries are
treated as simple nonslip boundaries. A slight gap was inserted between the
wheels and the ground for keeping computational stability.

Typical flow features such as flow accelerations over the front-wing and un-
der the body, and inflow to the diffuser were qualitatively well captured. But
the magnitude of flow acceleration was relatively small because of the treat-
ment of wheels and ground boundary. Moving boundary treatment should be
included for more realistic solution.
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Fig. 4. Computational mesh around formula-1 car

Fig. 5. Flow visualization around formula-1 car

4 Conclusions

Incompressible flow simulations by Building-Cube Method were performed
around two kinds of objects. One was Ahmed body model, in which flow
separation was overestimated. LES or any other turbulence model should be
implemented for more accurate solution. Another one was formula-1 race car
model as an example of complicated geometries.
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We present an improved immersed boundary method for simulating incom-
pressible viscous flow around an arbitrarily moving body on a fixed computa-
tional grid. To achieve a large CFL number and to transfer quantities between
Eulerian and Lagrangian domains effectively, we combined the feedback forc-
ing scheme of the virtual boundary method with Peskin’s regularized delta
function approach. Stability analysis of the proposed method was carried out
for various types of regularized delta function. The stability regime of the
4-point regularized delta function was much wider than that of the 2-point
delta function. An optimum regime of the feedback forcing is suggested on
the basis of the analysis of stability limits and feedback forcing gains. The
proposed method was implemented in a finite difference and fractional step
context. The proposed method was tested on several flow problems and the
findings were in excellent agreement with previous numerical and experimen-
tal results.

1 Introduction

An immersed boundary(IB) method using momentum forcing in the Navier-
Stokes equations has received much attention because it can handle easily
viscous flow over or inside complex geometries with Cartesian grids which
generally do not coincide with the body surface. The IB method can be clas-
sified into two categories, depending on how momentum forcing is applied [1].
One is discrete forcing approach and the other is continuous forcing approach.
Compare with discrete forcing approach, continuous forcing approach is easy
to be expanded in three dimensional cases and straightforward in flows with
moving boundaries due to its simple formation. Details about comparison of
two approach can be found in Mittal et al. [1] Continuous forcing approach
can be divided in two method : Peskins IB method and the virtual boundary
method. Peskins IB method was first proposed by Peskin to simulate flows
inside a moving heart. The basic idea is to determine a singular force distribu-
tion at arbitrary Lagrangian positions and to apply it to the flow equations in
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the fixed reference frame via a regularized delta function. The careful design
of Peskins delta function is vital to the efficiency of the method. Goldstein et
al. [2] developed a virtual boundary method that employs a feedback forcing
to enforce the no-slip condition at immersed boundaries embeded in the fluid
domain. Saiki and Biringen [3] modified the virtual boundary formulation
and proposed the so-called area-weighted virtual boundary method. Several
papers using this method have reported that this method suffers from a very
strict time-step restriction since the amplitude of the feedback forcing needs
to be large for proper operation, resulting in a very stiff system. But Lee [4]
relieves time restriction by investigating the stability characteristics of the
virtual boundary method. He simulated turbulent flows with complex bound-
aries using an order-one CFL number. In the present study, we compare two
methods which are thought almost same by most people and combine benefi-
cial things of these methods for better performance. And we analyze stability
of present method to relieve time restriction. The present method is applied
to flow around several different moving problems.

2 Numerical Approach

In the present study, we present an immersed boundary method on the basis
of Navier-Stokes solver adopting the fractional step method and a staggered
Cartesian grid system. The fluid motion is defined on an Eulerian Cartesian
grid and the fluid-solid interface is discretized using a Lagrangian grid fixed
on the body. And the fluid-solid interface force is explicitly calculatied using
a feedback law as shown Eq. (1)

F = α

∫
(U(Xl) − Ud(Xl))dt + β(U(Xl) − Ud(Xl)) (1)

The regularized delta function is employed to transfer quantities between
Lagrangian and Eulerian locations in Eqs. (2) and (3), respectively,

U(Xl) =
∑

u(x)δh(x − Xl)h3 (2)

f(x) =
NL∑
l=1

F(Xl)δh(x − Xl)∆Vl (3)

In the present study, four types of regularized delta functions are chosen as
shown in Fig.1

δh(x) =
1
h3

φ(
x1

h
)φ(

x2

h
)φ(

x3

h
) (4)

Note that all four types of delta function have the property∑
δh(x − X)h3 = 1 (5)
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Fig. 1. Four types of regularized delta function

which is the discrete analogue of the basic property of the Dirac delta func-
tion. In Fig.1, the value of φ(r) is maximum at r = 0 for all functions and the
value of φ(0) decreases as the points of the delta function increase, except
for the 6-point delta function. These properties are kernels of the stability
analysis.

3 Stability Analysis

Stability analysis of the proposed method was carried out for various types
of regularized delta function. Figure 2 shows the stability regimes of different
types of delta functions for the case in which the Lagrangian domain is a
line immersed in a 2-D flow. The flow is stable in the region below the line,
and unstable above the line. The stability regimes are wider for the smaller

Fig. 2. Stability regimes in two-dimensional flow for several types of delta function
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value of φ(0) in the regularized delta functions. Compared with the 2-point
regularized delta function, the stability region of the 4-point regularized delta
function is twice as wide in each direction(−α∆t2, −β∆t). To validate the
numerical analysis, simulations of a moving cylinder in a 2-D flow using
the 4-point regularized delta function were carried out for different −α∆t2

and −β∆t . Stable and unstable cases are denoted by circles and crosses,
respectively, in Fig. 2. The analytical solution is in good agreement with the
numerical results obtained using the present IB method.

4 Results and Discussion

4.1 Stationary Cylinder in a Free-Stream at Re=100

We used a computational domain of 0 ≤ x, y ≤ 8 and a cylinder with di-
ameter d=0.30 whose center is located at (1.85,4.0). A Dirichlet boundary
condition(u/u∞ = 1, v = 0) was used at the inflow and far-field bound-
aries, and a convective boundary condition was used at the outflow boundary.
Table 1 shows the drag and lift coefficients, CD and CL, obtained using the
proposed method, as well as the Strouhal number defined from the oscillation
frequency of the lift force. The drag and lift forces were obtained by integrat-
ing all the momentum forcing applied on the boundary. Parameters such as
the mesh width h, time step ∆t, and feedback forcing gain α were selected
to match the conditions of Lai and Peskin [5] and a 4-point regularized delta
function was employed [5]. To compare the present method with Peskins IB
method, we used feedback forcing gains of α = −4.8 × 104 and β = 0. Table
1 indicates that the value of α = −4.8 × 104 used in the present method is
large enough to obtain reliable results. By contrast, the results of Lai and
Peskin [5] using κ = 4.8×104 deviate somewhat from the other results, espe-
cially those obtained in the same study using κ = 9.6 × 104. These findings
are consistent with previous reports showing that compared with the value
of −α in the virtual boundary method, a larger value of the stiffness coef-
ficient κ in Peskins IB method is required to ensure accurate results for a
rigid boundary problem [1]. Since we tested the stability region of feedback
forcing gains (α,β) with the 4-point regularized delta function (see Fig. 2),
we used a computational time step of 1.2 × 102(−α∆t2=6.912) to be con-
sistent with −α∆t2 ≤ 8. As a consequence, the present results are in good
agreement with those of Lai and Peskin [5], even though the computational
time step of the present method (∆t = 1.2 × 10−2) is about an order of
magnitude larger than that of Lai and Peskin (∆t = 9.6 × 10−4). The max-
imum Courant-Friedrichs-Lewy (CFL) number in the present simulations
exceeded 1 due to the adoption of the feedback forcing scheme and the opti-
mization of parameters by stability analysis.
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Table 1. Comparison of drag coefficient, lift coefficient, and Strouhal number with
those obtained in previous studies

h κ or −α ∆t CD CL St CFL

Case 1 1
64

4.8 × 104 1.2 × 10−2 1.44 0.35 0.168 1.35
Case 2 1

64
4.8 × 104 6.0 × 10−3 1.44 0.35 0.168 0.7

Case 3 1
64

4.8 × 104 6.0 × 10−3 1.37 0.34 0.163 0.7
Lai and Peskin [5] 1

128
4.8 × 104 1.8 × 10−3 1.52 0.29 0.155 -

Lai and Peskin [5] 1
128

9.6 × 104 9.0 × 10−4 1.45 0.33 0.165 -

4.2 Transverse Oscillation of a Circular Cylinder

The proposed method was applied to a periodic transverse oscillation of a
circular cylinder in a free-stream. The behavior of the l2-norm error (a mea-
sure of the no-slip condition along the IB) of the streamwise virtual surface
velocity is shown in Fig.3 for three different forcing gains with the 3-point
regularized delta function. The error converges to a smaller value for larger
−α∆t2, as observed for the stationary problem, and the error decays rapidly
for larger −β∆t. Since the initial decays of the error are important in com-
pensation of the boundary condition in moving boundary problems, the error
also converges to a smaller value for larger −β∆t. Accordingly, −α∆t2 and
−β∆t should be as large as possible to decrease the error

The time history of the drag coefficient is illustrated in Fig. 4 for four types
of delta function with the same forcing gains. As the number of points in the
regularized delta function increases, the non-growing oscillations decrease.
This suggests that the 4-point regularized delta function with large forcing
gains yield better results.

Fig. 3. l2-norm error of the virtual surface velocity in the streamwise direction
normalized by the free-stream velocity u∞ for three different forcing gains
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Fig. 4. Time history of the drag coefficient for different types of delta function
with −α∆t2=0.4 and −β∆t=1

5 Conclusions

We analyzed the stability regimes of the feedback forcing gains in the pro-
posed method for several types of delta function. The stability region of the
4-point regularized delta function was much wider than that of the 2-point
delta function. The effects of regularized delta functions and feedback forcing
gains (α, β) were also investigated. For the regularized delta function sup-
ported by more points, its non-growing oscillations became smaller. On the
other hand, the l2-norm error converged to a smaller value for larger −α∆t2

and decayed faster for larger −β∆t. In the stationary boundary problem,
−β∆t influenced only the initial behavior of the error, whereas in the mov-
ing boundary problem the error also converged to a smaller value for larger
−β∆t. On the basis of the stability analysis of the present method, we can
recommend an optimum region of the feedback forcing gains that enables the
use of a large CFL number and decreases the l2-norm error and non-growing
oscillations
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This paper introduces a computational technique to compensate for the added
numerical diffusion that is generated when uniform Cartesian coordinates
are used to describe the flow around bluff bodies. Because of the staircase-
like representation of the surface object, it was found that the added surface
“roughness” causes larger than expected separation region for some test cases.
In order to control the velocity profile in the boundary layer, a blvr (boundary
layer velocity ratio) is defined, and it is used to set the negative value of
the viscosity along the surface. Numerical solutions of the governing Navier-
Stokes equations are carried out in a uniform Cartesian coordinates using a
multi-directional finite difference scheme with a third-order upwinding. No
explicit turbulence model is incorporated into the model.One example, a flow
around a car, using this technique is presented. We get numerical value of
coefficient of drag, 0.234. This agrees with experimental value, 0.245 very
well.

1 Introduction

Many simulations of a flow past streamlined body have been carried out,
mostly using a finite-difference method in a body-fitted coordinate system
[KK04]. Simulations of bluff bodies are less frequent because of difficulties
in solver implementation and grid generation. It is often acknowledged, that
grid generation is one of the most difficult and manpower consuming parts
when dealing with body-fitted coordinates. On the other hand, many impor-
tant applications involve flow around a bluff body, i.e. flow around a car. The
simplest way to avoid all these complications would be to employ a Cartesian
coordinate system in which the body is represented by creating a masking
data (voxel) on the grid coordinates.[BKK03] However, this approach re-
sults in lack of resolution near the boundary of the object. If the object is
visualized, it looks like a staircase structure. By using multi-directional fi-
nite differences,[Kuw99], [KK02] a smoother representation of the staircase
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boundary is achieved, but the resolution problem is not completely solved. In
problems involving separation depending on the resolution of the boundary
layer, simulations predict larger than expected areas of separation. This is
due to the numerical diffusion caused by the roughness on the boundary. To
resolve the behavior of the flow along the staircase boundary, we introduce a
negative viscosity[KKB06] on the surface of the body to compensate for the
numerical diffusion. In the present paper, one example, a flow around a car,
using this technique is presented.

2 Computational Method

The governing equations are the incompressible Navier-Stokes equations. In
Cartesian coordinates system, they can be written as it follows,

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

∂

∂xj

{
1

Re

(
∂ui

∂xj
+

∂uj

∂xi

)}
(2)

For high-Reynolds number flow, time-dependent computations are re-
quired owing to the strong unsteadiness. Presently, a finite-difference method
is employed to discretize the basic equations and they are solved using the
projection method (Chorin[Cho68], and Takami and Kuwahara[TK74]). The
pressure field is obtained by solving the following Poisson’s equation:

� p = −div(u · gradu) +
Dn

δt
, D = divu (3)

where n is the time step and δt is the time increment. Dn+1 is assumed to
be zero, but Dn is retained as a corrective term.

In the present paper, a multi-directional finite difference method is imple-
mented when discretizing the governing equations. In case of 2-dimensional
computations, when structured grid points are given, the black points in Fig.
1(a) are usually used to approximate the derivatives at the central point
(system A). If we introduce another 45◦ rotated local grid system, the white
points in Fig. 1(b), can be used to approximate the derivative at the central
point (system B). In order to improve the derivative value at the central point,
the values of both systems are combined. If a ratio A: B=2:1 is adopted, the
resulting finite difference scheme for the Laplacian coincides with the well-
known 9 point formula with fourth-order accuracy. This method improves the
rotational invariance of the coordinate system, and then those cases where
flow direction is not parallel to the grid location are better simulated. In 3 di-
mensions, three different grid systems are used. Each grid system is obtained
by rotating a perpendicular plane 45◦ with respect to each coordinate axis.
One of such systems is shown in Fig. 1(c).
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(a) System A. (b) System B. (c) System Z:x’-y’-z.

Fig. 1. System for multi-directional scheme

Space derivatives are discretized using a three-point central difference
approximation with exception of the convective terms. For the convective
terms, a third-order upwind scheme is used to stabilize the computation
(Kawamura[KK84]). It has been found to be the most suitable for high-
Reynolds number flow computations. The second-order Crank-Nicolson im-
plicit scheme is used for time integration. The equations are iteratively solved
at each time step by SOR method. A multi-grid method is utilized to solve
the Poisson’s equation.

Negative viscosity

In the Cartesian coordinate system, the body is represented as a set of voxels
at the grid points with their values set on/off (a binary operator) to indicate
its presence. As stated before, the surface of the body resembles a staircase.
After computations are carried out, larger than expected regions of sepa-
rations are observed. This is due to the numerical diffusion caused by the
surface roughness. Therefore, a special treatment of the boundary conditions
is needed in order to properly simulate these types of flows. The present tech-
nique introduces a negative value of the viscosity on the surface of the body
to compensate for the numerical diffusion. At high-Reynolds number, turbu-
lence in the free space is simulated without using an explicit turbulence model
in these computations. Viscous effects are limited only within the boundary

Fig. 2. Boundary layer velocity ratio (blvr). blvr = v1/v2
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(a) blvr =0.60 (larger separation areas).

(b) blvr =0.70 (Separation is reduced).

(c) blvr =0.75 (Separation is reduced much
ferther.).

Fig. 3. Flow around a sphere in each blvr; pressure field and stream lines

layer. Therefore, a simple model is made for the boundary layer to account
for the viscous effect.

It is important to point out that this negative viscosity has no definitive
physical meaning, and how to determine its value represent a big challenge.
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If the absolute value is large enough, the flow near the boundary accelerates
and separation is reduced. On the other hand, if the absolute value is small,
the separation region becomes larger. Therefore, research in a proper way to
determine this value is been undertaken. The velocity profile in the boundary
layer is closely related to the negative viscosity. The present paper defines a
blvr (boundary layer velocity ratio) that it is used to determine the proper
value of the negative viscosity (See Figure 2). The blvr is the ratio of the av-
eraged velocity between the two points nearest to the surface (blvr = v1/v2).
If blvr is 0.5, the local flow Reynolds number is 0.0. On the other hand, if it
is 1.0, a free-slip condition is imposed blvr = v1/v2 on the surface. Therefore,
the value of the blvr should Figure 2. Boundary layer velocity fall between
0.5‘1.0. Presently, the value of the negative viscosity ratio (blvr) is a function
of this parameter.

Examples of 3-dimensional simulation of flow around a sphere with using
the negative viscosity are visualized. Figure 3 explains the effect of the neg-
ative viscosity, and blvr in Fig. 3 (a)‘(c) are 0.60, 0.70 and 0.75 respectively.

3 Computational Results

Figure 4 shows computational grid and a body represented by a set of vox-
els for simulation of a flow around a streamlined car in uniform stream. (The
body used the shape data of the low resistance body having been distributed
by Society of Automotive Engineers of Japan, Inc. for the bench mark[Soc08].)
In order to properly simulate these types of flows, the computation started to

Fig. 4. Flow around a car; pressure field and stream lines in Stage 4 (See table 1)

Table 1. In the computations around a car, Calculation area, calculation lattice
intervals and blvr in each stage

Stage Calculation area[m] Calculation lattice interval[mm] blvr

1 8×4×2 30 0.8
2 4×2×1 16 0.75
3 2×1×0.5 8 0.725
4 1s×0.5×0.5 4 0.725
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carry out with a large area and coarse grid, and shifted to a narrowness re-
gion, fine grid gradually. The blvr ratchet down (See Table 1). In coarse grid,
the separation region is larger than in fine grid. So we have to start large blvr.
The blvr in Fig. 4 is 0.725. We get numerical value of coefficient of drag, 0.234.
That’s good agreement with experimental value, 0.245.

4 Conclusion

Three dimensional flows around bluff bodies were simulated in Cartesian
coordinate system. In this system, the separation was effectively reduced by
using the negative viscosity. We get numerical value of coefficient of drag,
which agrees with experimental value, very well. In the future, we plans to
research in a proper way to determine the negative viscosity automatically.
And we want to finish to run a simulation of D’Alembert’s paradox.
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Abstract. In the present study the parachute deformation and motion in the
process of inflation are simulated by implementing the immersed boundary
technique in fluid-structure coupling solver, where velocity vector is given
in a virtual cell as boundary condition. The main focus is on examining
the process of canopy inflation; first the canopy is inflated in the normal
direction to the uniform flow (in the lateral direction), and then its apex is
pulled by a vortex ring generated by the canopy’s outer surface due to its
negative pressure. After finishing the inflation process, the canopy moves in
the tangential direction to the spherical surface, the center of which is located
at the payload location. This motion is caused by the breakup of an initial
axisymmetric vortex, followed by vortices generated from the shear layer. The
predicted maximum parachute opening force is twice as large as the payload
force in the steady state, which is in good agreement with experiment.

1 Introduction

Parachutes are usually used to decelerate high speed flying objects. It has
many attractive advantages such as compact size and light weight. However,
the dynamic behavior of a parachute system shows complicated phenomena
such as the deformation of parachute shape, the non-axisymmetric flow field,
and the interaction between the parachute structure and the surrounding
flow. The phenomenon in inflation process is complicated, because a large
deformation of the parachute occurs. In addition, the maximum parachute
opening force[1] and the onset of parachute canopy instability are seen in this
process. The peak of parachute opening force is important from the canopy
and payload structural requirement[2].

Several methods to analyze parachute dynamics have been developed so
far, where the parachute opening phase is modeled by the fluid-structure
coupling method. However, in computational simulation the problem is sim-
plified by using rigid or axisymmetric parachute models. Johari et al.[3] an-
alyzed the flow field around a rigid parachute in an impulsively started flow
and showed the non-axisymmetric flow field behind the canopy induces side



494 M. Miyoshi, K. Mori, and Y. Nakamura

force. Dreprov et al.[4] and Benney et al.[5]simulated the parachute opening
process by using simplified, axisymmetric models. However, problem of these
simulations neglect the interactions between the non-axisymmetric flow field
and canopy flexible structure.

In the present study, the inflation of a flexible parachute canopy is com-
puted by using a 3D Navier-Stokes solver along with a nonlinear mass-spring-
damper model. The results are compared with the experimental data by the
low speed wind-tunnel.

2 Numerical Method and Conditions

The low subsonic flow around a parachute is computed using the pseudo-
compressibility method. The governing equations are composed of the conti-
nuity equation and the Navier-Stokes equations. These equations are written
as

∂p

∂t
+ β∇ · u = 0 (1)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u (2)

where β is the artificial compressibility parameter. These equations are solved
in time using an implicit time integration scheme, LU-SGS, where subiter-
ation is performed. The CFD solver incorporated in the present solver has
been validated by Hashimoto et al[6].

In order to deal with the moving boundary, the immersed boundary method
is employed on a Cartesian grid. The boundary condition at the canopy’s sur-
face is calculated by the method proposed by Ochi[7]. In the case of solid
boundary, this method can approximately provide velocity vector in a virtual
cell, which is used to calculate inviscid terms. The virtual cell is a cell contain-
ing a control point. This method has been modified so as to treat the moving
boundary. The velocity vector in the virtual cell is written as

Vj = Vi − 2 (Vi · nj)nj + Vw (3)

where Vj is the velocity vector in the virtual cell j, Vi is the velocity vector
in the real cell i adjoining the virtual cell, nj is a unit normal vector to the
canopy surface, and Vw is the canopy velocity vector.

The structure dynamics of the parachute is solved by a mass-spring-damper
(MSD) model[5]. The parachute is modeled as an aggregate of control points
connected by springs and dampers. The spring force acts only when the dis-
tance between two control points is greater than the constructed distance,
since the canopy fabric cannot support compressive forces. The force of grav-
ity and the fluid force supplied by the pressure difference across the surface
act to each control point. The equations to calculate the parachute model are
solved in time using the explicit second-order Runge-Kutta method.
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Fig. 1. Parashute model
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the y/D = 0 cross section

In order to solve the fluid and structure equations simultaneously, the weak
coupling method is employed. The data of structure displacement as well as
the velocity and pressure on the surface are transferred between the flow and
structure solvers.

The present computational model is connected by suspension lines to a
payload and inflated by the freestream. The payload with no mass and no
volume is fixed in the wind tunnel. The initial canopy shape is modeled as
a folded canopy just after deployment, as shown in Fig.2. The fully-opened
canopy shape is a hemisphere with a diameter of 0.15m( D = 0.15). The
actual folded canopy has wrinkles near its edges, but they are neglected in
this simulation; the canopy surface is assumed to be smooth and represented
by 8464 control points.

The freestream velocity is U = 20.0m/s, and the force of gravity acts in
the negative z direction. The Reynolds number is Re = 2 × 105, which is
based on the fully-opened canopy diameter D and the freestream velocity U .
This simulation treats the case where the canopy suddenly appears in the
uniform flow and starts to be deformed.

3 Results

Time variations of the canopy inflation are shown in Fig. 3, where the color
represents the magnitude of pressure differences across the canopy surface,
where the dark color corresponds to high pressure. The canopy keeps open-
ing from t = 0.000sec through t = 0.0619sec by the pressure differences
that increase with time. After the canopy diameter reaches its maximum, D,
(Fig. 3(e)), it decreases due to the inner tension of the canopy(Fig.3(f)).
Eventually, it converges to D, where there is an equilibrium state between
the tensions and pressure differences. The canopy top continues to move in
the negative z direction after t = 0.0619sec. Then, it moves back and the



496 M. Miyoshi, K. Mori, and Y. Nakamura

Fig. 3. Time-variation of canopy
shape

   (a) t= 0.0000 s

   (b) t= 0.0225 s

   (c) t= 0.0450 s

   (d) t= 0.0563 s

   (e) t= 0.0619 s

   (f) t= 0.0675 s

   (g) t= 0.0788 s

   (h) t= 0.113 s

1.0-1.6

Cp

Fig. 4. Velocity vectors and pres-
sure distribution in the x-z plane

canopy takes its regular shape (a hemisphere). In addition, the canopy moves
in the tangential direction to the spherical surface with its center at the
payload location.

Time variations of the velocity vectors and pressure distributions in the
x-z plane are shown in Fig. 4. From t = 0.000sec through t = 0.0563sec,
the bigger the canopy diameter, the smaller the pressure on the outer side
of the canopy is; i.e., the pressure difference between the inner and outer
canopy increases, which accelerates increase in the diameter. After the canopy
diameter reaches it maximum, D, an axisymmetric vortex ring is generated in
the near wake of the canopy and its the negative pressure pulls the apex of the
canopy. At t = 0.0788sec the vortex ring breaks up and a non-axisymmetric
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wake is generated, which causes the side force to act on the canopy. As a
result the canopy is forced to move in the tangential direction to the spherical
surface, the center of which is located at the payload location.

The history of the payload force, which is estimated to act on the payload
from the tensions of the suspension lines, is shown in Fig. 6. The experi-
mental data is also shown for comparison. These experiments are examined
in the low speed wind-tunnel at Nagoya University. The flow condition and
the fully-opened parachute shape are the same as those of the computational
parachute model, but only the direction of the gravity is different in that the
gravity doesn’t act in negative z direction in Fig. 1. Fig. 6. represents that
the computational result and shows qualitative agreement with experimental
data. The maximum opening force is twice as large as the payload force in
the steady state which appears at t = 0.0565sec (during the canopy open-
ing). And it is in good agreement with the measured force in experiments.
It appears (t = 0.0560sec) slightly before the diameter reaches its maximum
(t = 0.0619sec).

4 Conclusions

The deformation and motion of three-dimensional parachute model during
the inflation process is simulated by using Cartesian grid with the immersed
boundary method. The canopy was first inflated in the normal direction to
the uniform flow and then its apex was pulled by a vortex ring produced
above the canopy. At steady state, the canopy comes to take its regular
shape (a hemisphere). After that the canopy started to tilt and the breakup
of a vortex ring near the wake of the canopy take place. The maximum predi-
cated parachute opening force, which governs canopy and payload structural
requirement, is in good agreement with experimental data.
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Summary. An accurate method, using a novel immersed-boundary ap-
proach, is presented for numerically solving linear, scalar convection prob-
lems. Moving interior boundary conditions are embedded in the fixed-grid
fluxes in the direct neighborhood of the moving boundaries. Tailor-made
limiters are derived such that the resulting scheme is monotone. The results
obtained are very accurate, without requiring much computational overhead.
It is anticipated that the method can readily be extended to real fluid-flow
equations.

Keywords: Immersed-boundary method; Hyperbolic conservation laws; High-
order schemes; Monotonicity; Flux limiters.

1 Introduction

The immersed-boundary method, in general, is a method in which boundary
conditions are indirectly incorporated into the governing equations. It has
first been introduced by Peskin [4], and currently many varieties of it exist.

Immersed-boundary methods are very suitable for simulating flows around
flexible, moving and/or complex bodies. Basically, the bodies of interest are
just embedded in non-deforming Cartesian grids that do not conform to the
shape of the body. The governing equations are modified to include the ef-
fect of the embedded boundaries. Doing so, mesh (re)generation difficulties
associated with body-fitted grids, are obviated; and, the underlying regular
fixed grid allows to use a simple data structure as well as simpler numerical
schemes over a majority of the domain.

Our approach uses a cell-centered finite-volume discretization. The govern-
ing partial differential equations are discretized using a standard finite-volume
method (FVM) away from the embedded body (EB). Near the EB, a special
FVM is derived which takes the prescribed interior boundary conditions into
account.

The article begins with the problem description and with some standard
finite-volume results. The following sections detail: the special fluxes that take
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the effects of the embedded boundaries into account, monotonicity domains,
the temporal discretization and time adaptivity. Finally, some numerical re-
sults, based on the present approach, and concluding remarks are given.

2 Model Equation

Consider the scalar, linear convection equation:

ct + fx = 0, f =f(c) :=uc, (1)

where c (x, t) is the scalar field, u the flow velocity, which is assumed to be
constant and positive, and f(c) the flux function. The independent variables
x and t represent space and time, respectively. We take x∈ [0, 1].

Eq. (1) is hyperbolic. The initial solution c(x, 0)=c0(x) simply propagates
unchanged with the velocity u: c(x, t) = c0(x − ut). We consider two initial
solutions, each with two interior, moving EBs. The solution at the left and
right of each EB is prescribed. The two moving embedded-boundaries have
arbitrary initial locations (x1 and x2, x1 �=x2). The initial solutions read:

c0(x)=

{
0, if x1≤x≤x2,
1, elsewhere;

and c0(x)=

{
0, if x1≤x≤x2,
1
2 (1− cos(2πx)), elsewhere.

(2)
The cosine function in (2) exploits the advantage that higher-order accu-
rate numerical schemes have in non-constant, smooth solution regions. Model
equation (1) is approximated in a periodic domain, allowing us to time-step
for as long as we want for a finite spatial domain.

2.1 Standard FVM Results

The unit domain is divided into N non-overlapping cells of uniform size. Let
h = 1/N be the cell width, xi = (i − 1/2)h the cell-center coordinates and
xi+ 1

2
= ih the cell-face coordinates for i=1, 2, ..., N . Let the discrete solution

in cell i, at time level n, be denoted as cn
i = c (xi, t

n). Then the semi-discrete
finite-volume form of (1) reads:

h
dci

dt
+ (fn

i+ 1
2
− fn

i− 1
2
) = 0. (3)

Eq. (3) is solved by approximating the fluxes at the cell faces and by time-
stepping the temporal part. These fluxes, at time level n, are computed (drop-
ping the index n, for convenience) as fi+ 1

2
=uci+ 1

2
, where ci+ 1

2
is the cell-face

state at i+1/2, which can be approximated in a variety of ways. For exam-
ple, for u > 0, ci+ 1

2
= ci and ci+ 1

2
= ci + 1+κ

4 (ci+1 − ci) + 1−κ
4 (ci − ci−1) are

two classical cell-face states, computed with the first-order upwind- and van
Leer’s κ-scheme [6], respectively. Note that, with no EB in the neighborhood,
κ ∈ [−1, 1].
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Fig. 1. Standard finite-volume solutions after one full-period. Red: exact discrete,
blue: first-order upwind, green: unlimited κ = 1

3
, and black: limited κ = 1

3
schemes.

The κ-schemes yield non-monotone discretizations. Several algorithms
have been proposed in the literature that yield higher-order accurate, mono-
tone solutions. Most of these algorithms exploit the inherent monotonicity of
the first-order upwind scheme. The best known representatives of these algo-
rithms are the limited schemes following Sweby’s total-variation diminishing
(TVD) theory [5].

ci+ 1
2

can be written in the limited form as ci+ 1
2

= ci + 1
2φ(ri+ 1

2
)(ci −

ci−1), where φ(r) is the limiter function and ri+ 1
2
= ci+1−ci

ci−ci−1
its monotonicity

argument. Here we specifically adopt the limiter proposed by Koren [3] as
the standard limiter. It gives a monotone third-order accurate net flux in a
cell, by resembling the κ= 1

3 -scheme.
Now, for later comparison purposes, we will show what the solutions are

when using the standard finite-volume discretizations described above, meth-
ods in which no embedded-boundary conditions are imposed. For the time
integration, the three-stage Runge-Kutta scheme RK3b from [2] is employed.
For both initial solutions (2), we consider the locations of the EBs to be at
x1 = 1

3 and x2 = 2
3 . Furthermore, we take u=1, and we compute the solution

at t = 1, the time at which the solution has made a single full-period. For
both the first-order upwind and the κ= 1

3 (unlimited and limited) schemes,
the computations are performed on a grid with 20 and 40 cells. The solutions
are depicted in Fig. 1. The time steps have been taken sufficiently small to
ensure that in all cases the temporal discretization errors are negligible with
respect to the spatial discretization errors.

c
i− 1

2
c

i+ 1
2

c
i+ 3

2

i − 1 i i + 1 i + 2

βh

cl
EB cr

EB

x

Fig. 2. EB situated in cell i at time t, its associated solution values, and the affected
cell-face states
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3 Fluxes with Embedded Moving-Boundary Conditions

The sharp discontinuities of the initial solutions (2) are considered as in-
finitely thin bodies going with the flow and the boundary conditions
associated with these are embedded in the fixed-grid fluxes. Here, the
embedded-boundary conditions are user-specified and enforced to remain in-
tact to the EB and unchanged at all times. The solution values on the left
and right sides of the EB are designated as cl

EB and cr
EB, respectively (Fig. 2).

For an EB situated in cell i, with its coordinate xEB = xEB(t) given, its
relative position with respect to the cell face xi− 1

2
is βh, where:

β =
xEB − xi− 1

2

h
, β ∈ [0, 1]. (4)

There is no information flow across the EB. Fluxes on one side of the EB are
all computed based on the information on the same side and the additional
interior boundary condition on the respective side of the EB. In general, when
considering three-point upwind-biased interpolation for the fluxes, three cell-
face states (ci− 1

2
, ci+ 1

2
and ci+ 3

2
) are affected by the presence of a single

EB (in cell i) and these are the cell-face states of interest that are especially
modified (Fig. 2). ci− 1

2
and ci+ 3

2
are written as optimally blended, three-point

upwind-biased interpolation formulae:

ci− 1
2

= ci−1 + 1
1+2β

1+κ
i− 1

2
2 (cl

EB − ci−1) +
1−κ

i− 1
2

4 (ci−1 − ci−2), (5a)

ci+ 3
2

= ci+1 +
1+κ

i+ 3
2

4 (ci+2 − ci+1) + 2
3−2β

1−κ
i+3

2
4 (ci+1 − cr

EB). (5b)

Since we do not draw information across the EB, no upwind-biased interpo-
lation formula can be derived for ci+ 1

2
. Non-equidistant central interpolation

is applied to compute ci+ 1
2
.

The blending parameters κi− 1
2

and κi+ 3
2

are optimized such that the net
fluxes in cells i−1 and i+2, respectively, are as accurate as possible. The
net flux in cell i cannot be optimized due to the presence of the EB with its
discontinuous solution behavior. Deriving the modified equations in cells i−1
and i+2, and equating the leading term of the truncation errors to zero, we
get:

κi− 1
2
=

7− 6β

9 + 6β
, κi− 1

2
∈ [ 1

15 , 7
9 ] and κi+ 3

2
=

7− 6β

15− 6β
, κi+ 3

2
∈ [19 , 7

15 ]. (6)

The reasons to consider the net flux in cell i+2 instead of that of cell i+1, for
optimizing κi+ 3

2
, are given in [1]. The formulae for the EB-affected cell-face

states are summarized, in terms of the parameter β, as:

ci− 1
2

= ci−1 + 8
(3+6β)(3+2β)(c

l
EB − ci−1) + 1+6β

18+12β (ci−1 − ci−2), (7a)

ci+ 1
2

= cr
EB + 2−2β

3−2β (ci+1 − cr
EB), (7b)

ci+ 3
2

= ci+1 + 11−6β
30−12β (ci+2 − ci+1) + 4

(9−6β)(5−2β) (ci+1 − cr
EB). (7c)
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Note that it is assumed that two successive EBs are sufficiently far apart,
such that a given cell-face state is affected by only one EB. Recall that all
but the EB-affected fluxes are computed with a standard scheme.

4 Temporal Discretization

After substituting the appropriate discretizations for the spatial operator
in the semi-discrete equation (3), it is integrated in time using an explicit
method: either the Forward Euler or the RK3b [2] scheme. The later gives a
third-order accuracy in time.

4.1 Monotonicity and Limiters

Noting that the EB-affected cell-face states (7) are higher-order accurate and
linear, wiggles are imminent. These wiggles can be suppressed by carefully
constraining the convective cell-face states. We define non-standard mono-
tonicity arguments, r̃i− 1

2
and r̃i+ 3

2
, and derive the limited forms of ci− 1

2
and

ci+ 3
2

(see [1] for details). ci+ 1
2
, however, is not limited as we can not define

a monotonicity argument r̃i+ 1
2
. After enforcing appropriate monotonicity re-

quirements [1], the resulting limiter-functions φ̃(r̃) are fully constrained, as:

0 ≤ φ̃(r̃i− 1
2
) ≤ 2

ν
−2 and

φ̃(r̃
i− 1

2
)

r̃
i− 1

2

≤ 1+2β, (8a)

−1 ≤ φ̃(r̃i+ 3
2
) ≤ 3− 2β

ν
−1 and 4− 2

ν
≤

φ̃(r̃
i+3

2
)

r̃
i+3

2

≤ 2, (8b)

where ν = uτ
h is the CFL number. The ν-dependent, EB-sensitive bounds (8)

yield a monotonicity preserving scheme for ν≤ 1
2 . Typical limiters, satisfying

these special bounds, are depicted in Fig. 3.

φ̃

φ̃

r̃i−1
2

r̃i+3
2

1
2

2
ν−2

1
2

2
ν−1

0 1
4

3
ν −

7
2

−2 1
4

3
ν − 2

Fig. 3. Typical EB-sensitive limiters and the corresponding monotonicity domains
for the EB-affected cell-face states ci− 1

2
(left) and ci+ 3

2
(right), for β = 1

2
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Fig. 4. Stencil for local adaptivity in time. The standard, modified and the inter-
mediate cell-face states are designated in green, blue, and red, respectively.
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Fig. 5. Immersed-boundary solutions after one full-period. ◦: exact discrete, �:
unlimited higher-order upwind-biased with Forward Euler, ∗: limited ditto, �: un-
limited higher-order upwind-biased with RK3b, ×: limited ditto.

4.2 Local Adaptivity in Time

If an EB is situated in such a way that xn
EB ∈ [xi− 1

2
, xi+ 1

2
) and xn+1

EB ∈
[xi+ 1

2
, xi+ 3

2
), there is an abrupt change in ci+ 1

2
when going from tn to tn+1

(see Fig. 4). To account for this change, time adaptivity is introduced by first
computing the time fraction α at which the EB crosses xi+ 1

2
, as:

α =
xi+ 1

2
+ ε− xn

EB

uτ
, α ∈ (0, 1). (9)

Next, the intermediate cell-face state cn+α
i+ 1

2
is computed. Note that the EB is

placed at infinitesimal distance ε off xi+ 1
2
, in the direction of the flow. Then

the cell-face state cn
i+ 1

2
is recomputed as the weighted average:

cn
i+ 1

2
:= αcn

i+ 1
2

+ (1 − α)cn+α
i+ 1

2
. (10)

Finally, solution updating, in Forward Euler, is continued everywhere, using
the time-adapted cell-face state, with the regular time step τ . For RK3b,
we do not yet resort to the temporal local-adaptivity. We instead split the
regular time step τ into smaller time steps, depending on the number of EBs
crossing cell faces, and update the intermediate solutions everywhere.
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5 Results and Conclusion

We present numerical results to validate the immersed-boundary approach
introduced in this work. We take the same data as in § 2.1. The results
obtained, shown in Fig. 5, are remarkably accurate. They show a significant
improvement in resolution over those computed using the standard methods
(Fig. 1). For the more discriminating initial solution, the cosine-cavity in (2),
the numerical results of the limited higher-order upwind-biased schemes are
slightly deficient at the peripheries. This is due to the property of limiters that
they clip physically relevant extrema. Apparently, the deficiency diminishes
with decreasing grid size.

The essence of the present approach is that moving bodies are embedded
in a regular fixed grid and specific fluxes in the vicinity of the embedded
boundary are intelligently computed in such a way that they accurately ac-
commodate the boundary conditions valid on the moving EB. Then, over
the majority of the domain, where we do not have influence of the EBs, we
use standard methods on the underlying regular fixed grid. Excellent results
are achieved, without much computational overhead. We foresee that the nu-
merical methods introduced here can readily be extended to real fluid-flow
equations.
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The paper describes the methodology for computing hypersonic non-equilibrium 
shock wave flows of diatomic gases using the Generalized Boltzmann Equation 
(GBE) including both the vibrational - translational (VT) and rotational - transla-
tional (RT) relaxations.  

1   Introduction 

The shock structure in nonequilibrium hypersonic flows that includes both the vibra-
tional - translational (VT) and rotational - translational (RT) energy transfers is 
computed by applying a three-stage splitting procedure to the GBE [Bey2000] 
which is the same as the Wang-Chang Uhlenbeck equation [Che02] except that it 
includes the degeneracy of rotational levels. The three stages consist of the free mo-
lecular transport, VT relaxation, and RT relaxation. For the VT relaxation, GBE is 
always solved. For the RT relaxation, two approaches are employed. In the first ap-
proach, for the RT relaxation GBE is solved. This approach is computationally very 
intensive since it requires solving the complete GBE for both vibrational and rota-
tional degrees of freedom. In the second approach, a two-level BGK type model of 
RT relaxation is employed. The second approach is significantly more efficient 
(about 20 times faster than the first approach). The paper describes the two-level RT 
relaxation model. The model is validated by by comparing the results for the shock 
structure with the complete GBE solution for RT relaxations. Computations are then 
performed for the shock structure at high Mach numbers accounting for both the 
vibrational and rotational excitations; the second approach is employed for comput-
ing the RT relaxations. For solving the GBE, The computational framework avail-
able for the classical Boltzmann equation [Che04] is extended by including both the 
rotational and vibrational degrees of freedom in the GBE. 

2   Technical Approach 

The GBE can be written as  

          i i
i

f f
R

t

∂ ∂+ =
∂ ∂x

ξ                                             (1)                                                
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The collision operator is given by 

       
2

0 0

( )
mb

kl kl
i k l ij i j ij j

jkl

R f f f f P gbdbd d
∞

−∞

= −∑ ∫ ∫ ∫
π

ω ϕ ξ           (2)                                                

Here if  is the distribution function for the energy leveli , kl
ijP is the probability of 

the transfer from levels ,i j to the levels ,k l , and the factor ( ) /( )kl
ij k l i jq q q qω = ; 

iq being the degeneration of the rotational energy level. For simple levels, the GBE 

changes to the WC-UE. We consider molecular Nitrogen having the Lennard-Jones 
potential (6, 12) with the depth of the energy hole91Kε = , degeneration of rota-
tional level 2 1, 0,1,..iq i i= + = ∞ , and the rotational energy of the 

level 0 0( 1), 2.9rie i i Kε ε= + = . The molecular interaction during the collision 

consists of two phases. In the first phase, the molecules interact in an elastic manner 
according to the molecular potential. This stage determines the deviation angle of 
the relative velocity. In the second stage, the modulus of the relative velocity 
changes according to the energy conservation equation. For the transition probabili-

ties
kl

ijP  we apply the formulae given in [Bey2000] that are obtained by fitting the 

experimental data of molecular dynamics simulations of interactions of rigid rotors 
that model 2N molecules. 

0 0 1 2 3 4 3 4
0

1
[ exp ( ) exp ( )]k l kl

ij ijP P ω α
α

= −∆ − ∆ − ∆ − ∆ + − ∆ − ∆ , where  

1 1 2 0| | / tre e e∆ = ∆ + ∆ ,  2 2 12 | | / tote e e∆ = ∆ − ∆  

3 1 04 | | /( )tr rie e e∆ = ∆ + , 
4 2 04 | | /( )tr rje e e∆ = ∆ +  

1 r i rke e e∆ = − , 
2 r j r le e e∆ = − , 

0 00 .4 /t o t t re eα =  

 2
0 / 4tre m g= , 0tot tr ri rje e e e= + + . 

The energy conservation law in a collision selects virtual collisions with non 
zero probability. From the equation 2 2/ 4 / 4ij ri rj kl rk rlmg e e mg e e+ + = + + , it 

can be shown that 0kl
ijP > , if 2 0klg ≥ , otherwise 0kl

ijP = . The elastic collision is 

a particular case of this collision. The probabilities obey the normalization condi-
tion: 

,

1kl
ij

k l

P =∑ . The kinetic equation (1) is solved by the splitting scheme. At a 

time step 0τ τ , where 0τ is a mean inter-collision time, equation (1) is replaced 

by the sequence of equations;  

(a)           0i if f

t

∂ ∂+ =
∂ ∂x

ξ           (b)           i
i

f
R

t

∂ =
∂

 

The collision operator iR  is evaluated at the uniform grid 0S in the velocity 

space by the conservative projection method proposed in [Che06]. 
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3   Two Level Kinetic Model for RT Relaxation in a Gas 

The proposed model equation is aimed at simplifying the simulation of the rota-
tional-translational (RT) energy exchange in a gas. Such simplification is highly 
needed for complex processes in which rotational excitation is accompanied by 
the vibration - translational (VT) energy transfer. The model consists of 2 levels: 

the ground level with the rotational energy1 0ε =  and the exicted level with some 

energy 2 maxTε > , where maxT  is the maximum temperature in the problem under 

consideration. We call the proposed model as “2LRT” model. The distribution 

function is also composed of two parts, 1f and 2f with corresponding populations 

of the levels 1n and 2n . The gas density is 1 2n n n= +  and the rotational energy 

is 2 2rotE nε= .  Let the density of the gas at some point ben , the kinetic en-

ergy kinE  , and the rotational energyrotE . One can then determine the populations 

of the levels by the simple formulas 2 2/rotn E ε=  and 1 2n n n= − . Maximal 

value of rotE  is given by maxrotE nT= , therefore 2 max 2/n nT ε< , and one ob-

tains 20 n n< <  and 1 0n > . Having kinE , one can determine the equilibrium  

temperature, 2( ) / 5eq kin rotT E E n= +  and the equilibrium rotational popula-

tions 2, 2 1, 2,/ ,eq eq eq eqn nT n n nε< = − . These parameters determine the equilib-

rium distribution functions 1,Mf  and 2,Mf . For construction of the model  

equation we begin with the Wang Chang–Uhlenbeck equation (WC-UE) for the 
considered 2 levels system({ , , } 1,2)i j k = . 

                 ,
, ,

, ,

/ ( )k l
i i j k l i j i j j

j k l

f t p f f f f g bdbd dϕ ξ∂ ∂ = −∑∫            (3)                                               

In equation (3), we replace the collision operator by an elastic collision operator 

elQ and the non-elastic operatorrQ . The elastic operator is the same as the 

Boltzmann collision integral for a two-component gas mixture:  

                , ,( ' ' )i el i j i j i j j
j

Q f f f f g bdbd dϕ ξ= −∑∫                  (4)                                               

The non-elastic operator is taken in a relaxation form: 

                 *
, ,( )r i r i i MQ f fν= − −                                           (5)                                                

It was found by a number of numerical experiments that the choice for *
,i Mf  in 

equation (5) as the Maxwellian distribution functions ,i Mf  is possible, but is not 

the best. The function *
,i Mf  represents the elliptic distribution defined by the di-

agonal elements of the temperature tensor. 
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* 3/2 * * * 1/2 2 * 2 * 2 *
, , ( ) ( ) exp( /2 /2 /2 )

2i M i eq xx yy zz x xx y yy z zz

m
f n T T T mc kT mc kT mc kT

kπ
−= − − −  (6) 

where , ,x x y y z zc u c v c wξ ξ ξ= − = − = − , and , ,u v w  are the components of 

the bulk velocity vector. The components *
aaT  of the temperature tensor are de-

fined by self-similar transformation of the initial components as 

                                     
* ( / )aa aa eq kinT T T T=                                         (7)                                               

The use of the function given in equation (6), instead of the Maxwellian, means 

that the inelastic operator rQ preserves to some extent the shape of the distribution 
function in the velocity space. The RT relaxation frequency can be defined as a 
part of the relaxation frequencyν  of the BGK model equation  

                                          1r a vν = .                                                   (8)                                                

The non-elastic operator contributes to the evolution of the velocity distribution 
function toward the equilibrium state. To take into account its influence one 
should diminish the elastic collision operator by a factor

2 2(1 ), 0 1ra aν− < < .  

Finally, the proposed RT relaxation model contains two operators, the inelastic 
operator given by equation (5) with the frequency given by the equation (8), and 

the elastic operator *
, 2 ,(1 )i el r i elQ a Qν= − . The coefficients 1a and 2a  can be de-

termined from comparisons of the solutions of the proposed model with solutions 
of the WC-UE equation.  

4   Computation of Shock Structure 

The shock structure is formed as a final stage of the evolution of a discontinuity in 
the initial distribution function. The problem is considered for the interval 

1 2L x L− ≤ ≤  with the discontinuity at 0x = . The initial distribution function on 
both sides of discontinuity is described by the velocities and spectral levels: 
 

  
1,2 2

1,2 1,2 1,2 3 / 2
1,2 1,2

( ) 2 1
( , ) [ /(2 )] exp[ ] exp( )

2
ri

i
r

em u i
f x n m T

T Q T

ξξ π − += − −  

where 
rQ  denotes the statistical sum. Parameters 1, 2( , , )n T u  are defined by  

the Rankine-Hugoniot relations with 7 / 5γ = . At the boundary, the initial distri-
bution function is kept constant. Figure 1 shows the shock structure in nitrogen for 
Mach 10. Comparison for density distribution at Mach 10 between the computa-
tion and experimental data [Als76] shows excellent agreement. In Figure 1, the 
shock structure in nitrogen was computed for RT relaxation using the complete 
collision integral in the GBE. Next, we perform the same computations with 2LRT 
model. Figure 2 shows the comparison of results between the 2LRT model and the 
solution of GBE. The graphs for flow variables computed with the 2LRT model 
are marked by stars. The agreement is reasonable. It gets better at lower Mach 
numbers.  
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Fig. 1. Shock Structure in nitrogen for M=10 obtained with GBE; n = computed density, n, 
experiment = experiment density, T = total temp, Txx = translational temp, Trot = rota-
tional temp (normalized) 

0

5

10

15

20

25

30

35

40

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6

n*
n

T*
T

Txx*
Txx

Trot*
Trot

 
Fig. 2. Comparison of Shock Structure in nitrogen at M =10 computed with GBE and 
2LRT model (shown by *) 

 
Finally, we consider the gas with both rotational and vibrational degrees of 

freedom. The vibrational spectrum for nitrogen has the energy quantum of 3340K. 
As mentioned above in the introduction, VT transfers are computed using the 
GBE and the RT transfer are computed using the two-level kinetic model for effi-
cient computations. The vibration energy is computed by the expres-

sion
0

mj j

vib vib j
j

E j nε
=

=

= ∑ Assuming that the vibrations possess two degrees of 

freedom, one can associate the vibration energy with the classic vibrational  
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temperature , /vib cl vibT E k= . This temperature measures the amount of energy 

stored in the vibrations. From the viewpoint of quantum mechanics, the vibrations 
form the Bose gas in which the temperature in the thermodynamic equilibrium is 

related to the vibrational energy by the formula
,exp( / ) 1

vib
vib

vib vib q

E
kT

ε
ε

=
−

. 

In the classical limit, one obtains , ,vib q vib clT T→ . In Figure 3, we present both 

vibration temperatures along with the density, kinetic translational, longitudinal 
translational and rotational temperatures. It should be noted that the quantum vi-
brational temperature reaches the thermodynamic equilibrium value, but the clas-
sic vibrational temperature is below this limit.  
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Fig. 3. Shock structure in nitrogen at M =10 with both RT and VT relaxations 
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1 Introduction

During the past decade, the gas-kinetic BGK scheme has been developed
rapidly [1]. The scheme is based on the Bhatnagar-Gross-Krook (BGK) model
of Boltzmann equation. The good performance behavier, such as the positiv-
ity preserving property and the inherent satisfaction of the entropy condition,
guarantees the scheme to yield more reliable numerical results for a wide
range of flow physics [2, 3], including the high-speed turbulent mixing layer
[4] and decaying homogeneous isotropic turbulence [5].

In computational aeroacoustics, it is a challenge to accurately predict the
sound generation. To capture both the amplitude and frequency contents of
the wave, a high-accuracy numerical scheme is required. The same situation
is encountered when simulating the instability of a flow. The BGK scheme is a
finite volume method and mostly second-order both in spatial and temporal
directions, it is thus worth to improve its accuracy to study those flows.
Currently, the genuinely multidimensional scheme has become a hotspot for
its accuracy or efficiency for steady-state flow when compared to classical
finite-volume method. For a gas-kinetic scheme, based on microscopic particle
distribution function, the multidimensional version can be easily constructed
with the inclusion of the tangential slopes of conservative variables in the flux
at a cell interface [6]. The scheme shows better performance in the prediction
of the flow sensitive to the accuracy of the stress or wall variable gradient
calculation, when compared with the corresponding quasi-one-dimensional
extension and directional splitting scheme.

In this paper the high-order accurate multidimensional gas-kinetic BGK
scheme for subsonic flow is developed and, primarily, validated with circular
pulse propagation and the radiation interference from three baffled pistons.

2 A High-Order Accurate BGK Scheme

2.1 Fundamental of Gas-Kinetic BGK Scheme

The BGK scheme is briefly described as follows. First, the BGK-Boltzmann
equation is written as
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∂f

∂t
+ ui

∂f

∂xi
= (g − f)/τ (1)

where i = 1, 2 for two-dimensional flow and τ = µ/p is the particle collision
time. f = f(x, t,u, ξ) is the gas distribution function, and g is the equilibrium
state approached by f , assumed to be a Maxwellian distribution,

g = ρ(λ/π)(K+2)/2e−λ(|u−U|2+ξ2), (2)

where ξ2 = ξ2
1 + ξ2

2 + . . . + ξ2
K represents the internal energy of particles,

and λ = ρ/(2p). The total number of degrees of freedom, K, in ξ is equal to
(4− 2γ)/(γ− 1) for a 2-D flow. During the particle collisions, f and g satisfy
the conservation constraint, ∫

(g − f)ψdΞ = 0 (3)

at any point in space and time for the conservation of mass, momentum and
energy. Here dΞ = du1du2dξ is the volume element in the phase space with
dξ = dξ1dξ2 . . . dξK , and ψ is the vector of moments,

ψ = (ψ1, ψ2, ψ3, ψ4)T = (1,u, (|u|2 + ξ2)/2)T . (4)

From Eqs. (1) and (3), the finite volume formulation of the BGK scheme
is formed as

(Q∗)n+1
lm = (Q∗)n

lm +
1

Slm

∮
∂Ωlm

∫ tn+∆t

tn

F∗dtdl (5)

where Ωlm is a computational cell indexed by l and m with the area Slm

and boundary ∂Ωlm. The superscript ‘∗’ represents the variable in the global
coordinates. The flux F∗ is calculated through the coordinate transformation
from that in the local coordinates F. For convenience, the calculation of F is
presented through an example at a cell interface xl+1/2 = 0, −∆y/2 ≤ ym ≤
∆y/2. The relations between the distribution function f and the macroscopic
conservative quantities Q and the flux F are given by

Q = (ρ, ρU, ρV, ρε)T =
∫

fψdΞ, F =
∫

ufψdΞ. (6)

The BGK equation (1) has the integral solution for constant collision time,

f(x, t,u, ξ) =
1
τ

∫ t

0

g(x′, t′,u, ξ)e−(t−t′)/τdt′ + e−t/τf0(x − ut,u, ξ) (7)

where x′ = x − u(t − t′) is the trajectory of a particle motion and f0 is the
initial gas distribution function at the beginning of each time step (t = 0).

If f0 and g are known, the time dependent distribution function f can be
easily deduced through the above expression, avoiding the great difficulty to
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solve the BGK equation directly. This is adopted by the gas-kinetic BGK
scheme, with the key to construct f0 and g around the cell interface (l +
1/2, m) according to the Chapman-Enskog expansion. Once f is obtained,
the fluxes across the cell interface can be calculated with Eq. (6) and the
conservative variables at the next time step can be calculated via the finite
volume formulation (5). Details can be found in the corresponding reference.

2.2 Extension to High-Order Accuracy

Till now, the existing BGK scheme is mostly second-order accurate both in
spatial and temporal directions. Many attempts were employed to improve
the accuracy, such as that with high-order reconstruction of conservative
variables at cell interface [7], but the scheme is still second-order, due to
the evolution of gas flow, or the distribution function f is only second-order.
In the present study, the high-order accurate f is considered through the
expansion to third-order in both spatial and temporal directions,

f0(x, 0,u, ξ) = g0 [(1 + akxk + (aiaj + bij)xixj/2
− τ (akuk + A + (aiA + Ci + uj(aiaj + bij)xi))] (8)

g(x, t,u, ξ) = g0 [1 + akxk + At + (aiaj + bij)xixj/2
+ (A2 + B′)t2/2 + (akA + Ci)xkt

]
(9)

where g0 is the initial local Maxwellians. The local terms ai, bij , Ci, B
′ and A

are from the Taylor expansion of a Maxwellian and take the form, a = a(α)ψα,
α = 1, 2, 3, 4, where all coefficients, a(α), . . . , A(α), are local constants from
the first and second derivatives of g. These coefficients, as well as g0 are
related to the reconstructed conservative variables Q and their slopes, which
can be evaluated through the condition on Chapman-Enskog expansion, same
as that in BGK-Burnett method [8].

Then the distribution function at the cell interface can be deduced,

f(0, t,u, ξ) = g0

[
(1 − τakuk + (−τ + t)A + (−τt + t2/2)(A2 + B′)

− τt(akA + Ck)uk − τtB′′] . (10)

It should be noted that it is difficult to achieve high-order reconstruction
of macro conservative variables in curvilinear mesh. In the present study,
the least-square method is adopted and the coefficients can be calculated in
advance for only one time to decrease the computational cost. The present
scheme is truely multidimensional, as the solution (7) allows the movement of
particles in any direction. That is, it simulates a multidimensional transport
process across a cell interface.

3 Numerical Results

The scheme is applied to the study of two-dimensional circular pulse prop-
agation and the nonlinear radiation interference from three baffled pistons
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[9, 10]. In the first case, The initial pressure pulse in a uniform fluid is set
as p = 1/γ + 0.01 exp[− ln 2 (x2 + y2)/0.22] with density ρ = 1 and velocity
u = v = 0. Uniform cell size, ∆x = ∆y = 0.05 is adopted. The Reynolds
number Re = ρcL/µ = 5000. Figure 1 shows the results for the first test
case, from which good agreement can be seen with the existing study with
LBM and DNS [9] .

In the second case, three pistons located at y = 0, with the half length a
and the distance between two neighbors d = 4a. They vibrate in a uniform
flow (p = 1/γ, ρ = 1, u = v = 0) with the movement v = V0 cos(ωt) and
ωa/c = 2. The Reynolds number Re = ρac/ν = 5000. 200 × 200 computa-
tional cells are adopted with minimal cell sizes ∆xm = 0.07 and ∆xm = 0.04.
When the vibration of pistons is weak, the linear radiation interference oc-
curs. When the signal strength is moderate, the waves’ dissipation becomes
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Fig. 1. Pressure (top) and velocity (bottom) fluctuations at t=2.5. Solid contours
are positive levels and dashed negative. Six contours are equally distributed between
±2.5 × 10−4 for pressure and ±6.25 × 10−4 for velocity.
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Fig. 2. Radiated wave (pressure contours) from array of the three baffled pistons
at t=12: the top figure is for V0 = 0.01c and the bottom V0 = 0.1c

stronger, and the maxima and minima following the directivity pattern of the
sources can be seen (Fig. 2), agreeing with the study of Popescu et al. [10].

The performance of the multidimensional scheme is also primarily eval-
uated in the present study, compared with the corresponding directional
splitting method and the simple treatment with only the adoption of high-
order-accurate interpolation in the reconstruction of conservation variables
at a cell interface [7]. For the simulation of circular pulse propagation with a
coarse mesh, the present study shows that the high-order multidimensional
scheme can yields much better results.

It should be mentioned that the explicit reconstruction in the present new
scheme, as well as the usual BGK scheme, is correlated with only several cells
around a cell interface, thus the scheme inherits the good parallel performance
when compared with a compact finite-volume scheme [11].

4 Conclusions

The high-order accurate gas-kinetic BGK scheme is presented developed
through the expansion of velocity distribution function to high order in both
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spatial and temporal directions. Primary test cases show that the present
scheme is a good choice when investigating the flow with multiscale struc-
ture, such as aeroacoustics. However, for flow with discontinuity, the high-
order scheme required further study.
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1 Introduction

Microfluidics deal with the manipulation and the control of liquids in chan-
nels about a hundred of microns. The consideration of various experimental
configurations leads to several regimes of flows: jets, droplets or plugs [3]. In-
deed, the use of coflows or drippings find his interest in various applications
([6], [4]): ink jet printing or spray atomization for example. So, it is necessary
to control the evolution of a diphasic jet in a view to produce droplets of
different shapes and volumes. The created microdroplets are often employed
for their internal dynamic to mix products that are generally toxic and ex-
pensive. In this work, numerical results of diphasic flows in square micro
channels are presented. At the scale, the flow are generally laminar and the
movement of the interface between the two fluids is controlled by the effect
of the surface tension.

As the breaking jet, due to the Rayleigh-Plateau instability, is only ob-
servable thanks to a tridimensional modeling. All numerical simulations are
done in tridimensional cartesian meshes. So, the aim is first to study the
breaking jet phenomenon, when confinement and effects due to the surface
tension are predominant. Then, the second point is to analyze the internal
dynamic of the created droplets. Finally, a numerical result corresponding
to the coalescence of microdroplets is shown. The interface liquid-liquid is
followed thanks to the Level Set method coupled to the one-fluid formulation
of Stokes equation for diphasic flows.

2 Modeling

2.1 The Stokes Equations for Diphasic Flows in Microfluidic

We consider the Stokes equations for two fluids in a bounded domain Ω ∈ R3.
The two fluids, respectively called internal (i) and external (e), occupy at each
time t the domains Ωi(t) and Ωe(t) such that Ω = Ωi(t)∪Ωe(t). The interface
Γ (t) between the two fluids is defined like Γ (t) = Ω̄i(t) ∩ Ω̄e(t).
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So, the hydrodynamic model is the following{
div(2ηD(U)) = ∇P + γκδΓnΓ in Ω
∇.U = 0 in Ω

(1)

where D(U) is the deformation rate tensor given by D(U) = ∇U+(∇U)T

2 , η is
the dynamic viscosity such that

η =
{

ηi in the internal flow
ηe in the external flow (2)

and γκδΓnΓ denotes the surface tension contribution at the interface with γ
the surface tension coefficient between the two fluids, κ the mean curvature
of the interface Γ , δΓ is the Dirac mass on Γ

δΓ =
{

1 at the interface,
0 elsewhere, (3)

and nΓ is the unit vector normal to the interface Γ .

2.2 The Level Set Method: Parametrization of the Interface

Our objective is to follow the evolution in the time interval (0, T ) of the
interface between the two fluids. Several methods could have been chosen
(VOF, Lagrangian, Level Set ..). In our work, the interface is modeled by the
level function φ(t, x, y, z) [7]. At the initial time, φ is zero at the interface,
negative in one phase and positive in the other:

φ(0, x, y, z) =

⎧⎨
⎩

< 0 in flow i,
> 0 in flow e,
0 at the interface Γ.

(4)

Its motion is governed by an advection equation{
∂tφ + (U.∇)φ = 0 in Ω × (0, T )
φ(t = 0) = φ(0, x, y, z) in Ω

(5)

Such a modeling implies the properties of the Level Set function to be
respected at each time step. In particular, the fact that the interface is rep-
resented by the zero value of the function φ:

∀t ≥ 0, Γ (t) = {(x, y, z), φ(t, x, y, z) = 0} . (6)

When φ is known, the unit normal nΓ at the interface and the curvature
κ are computed as follow,

nΓ =
∇φ

|∇φ|

∣∣∣∣
φ=0

and κ = ∇.

(
∇φ

|∇φ|

)∣∣∣∣
φ=0

. (7)
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3 The Numerical Method

Now, we proceed to the discretization of the equations introduced in the
previous section. For the presentation of the whole algorithm, we refer the
reader to [8].

3.1 The Advection Equation

The time discretization of the advection equation (5) is explicit and a classical
Euler scheme is used:

φn+1 = φn −∆t(Un.∇)φn (8)

with ∆t the time step, n+1 the new iteration at tn+1 = (n+1)∆t. This choice
is associated to a restriction on the time step (the classical CFL condition)
in order to ensure the stability and so the convergence.

The space discretization is made with a five order WENO scheme [5].

3.2 The Hydrodynamic Part

The discretization of the incompressible Stokes equations is classical. The finite
volume method on structured staggered grids is considered (Patankar, 1980).
Although, the Stokes equation is a stationary equation, an explicit time dis-
cretization of the capillary unknowns is proposed with the following scheme:

∇.(2ηnD(Un+1)) = ∇Pn+1 + γκnδ(φn)∇φn,
∇.Un+1 = 0.

(9)

In the Stokes equation, the explicit treatment of the term associated to
the surface tension required a stability criterion to maintain the convergence
of the method. Commonly, the criterion proposed by Brackbill, Kote and
Zemach is used [1]. Recently, a less restrictive stability condition was proposed
by Galusinski and Vigneaux [2].

4 The Rayleigh-Plateau Instability

4.1 Experimental Considerations

The numerical simulations proposed are based on the following experimental
configuration [3], the jet is generated with a cylindrical capillary centred in
a square capillary.

In this configuration, several kinds of microdroplets can be observed vary-
ing the internal or the external flow rate of the fluids.
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Fig. 1. From left to right: an oscillating jet, a succession of droplets and a plug

4.2 Jets, Droplets and Plugs

Numerically, the same configuration is adopted. The external microchannel
has a square section Sc = 550 µm and the radius of the cylindrical tube is
Ri = 105 µm. The inner fluid has a viscosity ηi = 55mPa.s and the outer one
ηe = 235mPa.s. The surface tension between the two fluids is γ = 24mN/m.
In Fig. 1, the flow rates are the following: (Qi = 7500µL/h, Qe = 6000µL/h),
(Qi = 2500µL/h, Qe = 3000µL/h) and (Qi = 2500µL/h, Qe = 5500µL/h).
According to these flow rates, differents regimes are respectively observed as
in the experiments: an oscillating jet, droplets and a plug.

In microfluidic experiments, the droplets are confined and the surface ten-
sion drives their shapes. These droplets are used as microreactors or mi-
cromixers. To understand their internal dynamic, it is interesting to know
the droplets velocity field in their own referential. The shape of the previous
plug is plotted on (Fig.2). It shows the effects due to the square section of the
external capillary. In the plane (x,y), the shape of the plug is not anymore
circular (Fig. 2 on the right) and the external flow circulates only by the
corners of the microchannel.

Fig. 2. Example of the use of droplets as micromixers (shape of the droplets in
different slices, velocity field in the droplet frame of reference and few stream-
lines). Left: shape and velocity field in the plane(x,z); right: view of the plug in the
plane(x,y).
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Fig. 3. Relation between the section of the injector and the volume of the created
droplet: representation of three different configurations

4.3 Discussions

In [8], it is proposed an approach based on the linear theory of stability
to introduce a stability criterion. Thanks to this one, the flow regime (jet or
droplet) can be predicted knowing the dimension of the external capillary and
the properties of the two fluids. In addition, the stability length corresponding
to the length of the jet just before the creation of the microdroplet can be
computed. However, the study is based on the knowledge of the steady state
and the perturbation of this one. In order to be as realistic as possible, it
could be necessary to take into account the radius of the internal injector. In
Fig. 3, three representations of the flow are plotted. The properties of the two
fluids are defined in subsection 4.2. The external capillary is about 650µm
of section and the diameter of the injector is respectively 60µm, 120µm and
273µm. These numerical results show that there exists a stability area since
the stability length is approximately the same in each case. Generally, for this
kind of configuration, the jet tends towards the steady state solution before
the break-up. In addition, the smallest injector creates the smallest droplet
that it is explained by the higher velocity and the fact that the stability
length is a little bit higher.

5 The Particular Case of a T-Junction

The analysis of the break-up of a diphasic jet shows that the Level Set method
manages well the topological changes. At the stage, the study of the micro-

Fig. 4. Coalescence of two microdroplets in a T-junction
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droplets is expanded to an other configuration frequently employed for bench
by scientists: the coalescence of the droplets. The technical points (meshing
generation and implementation) are presented in [8]. In a T-junction (Fig.4),
the continuous phase is injected by two branches of the T and is ejected by
the third one.

6 Conclusion

The Level Set method proposed by Osher and Sethian is used in order to
follow the interface between two flows such that their movement is mostly
governed by the pressure gradient and the surface tension. This method gives
results in good agreement with the experiments because the main quantities
like the curvature and the unit normal are well computed. This study allows
to analyze the breaking jet phenomenon and gives access to quantities like
the pressure and the velocity of the droplet when it is created. We take a
special care on the representation of the internal capillary employed as an
injector and we can in this way compared the volumes of the microdroplets
for several radius of injectors. First results concerning the coalescence of two
microdroplets in a T-junction are proposed.
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Abstract. Chain-length and tacticity effects on conformations of poly(methyl 
methacrylate) (PMMA) thin films on an Au (111) substrate at room temperature 
were investigated by means of molecular dynamics (MD) simulations. The MMA 
oligomers were found to exhibit a flattened conformation parallel to the Au sub-
strate in the contact region and a little flattened conformation in the surface region 
for both the short-chain and the long-chain thin films. The flattened conformation 
remains in the bulk region for the long-chain case, but it is not present in the bulk 
region of the short-chain film. 

1   Introduction 

Conformations of poly(methyl methacrylate) (PMMA) thin films on a solid sub-
strate are an interesting issue of researchers. In a recent study, Zhang et al. 
[Zha02] employed reflection-absorption infra-red and surface-enhanced Raman 
scattering spectroscopy to examine the orientation of the bulk and the interface of 
an atactic PMMA thin film dip-coated onto a silver-particle deposited substrate.  

Regarding the numerical studies, the molecular dynamics (MD) simulation 
technology is a powerful numerical method. It can offer detailed interfacial behav-
ior, at an atomic level, of a polymer thin film on a solid substrate. Recently, Lu 
and Tung [Lu05] have utilized an MD simulation technique to examine the tactic-
ity effect on the free volume morphology of PMMA membranes.  

In this paper we investigated conformations of an MMA-oligomer thin film on 
an Au (111) substrate. The influence of the chain length and tacticity of MMA 
oligomers on the conformations was examined. 

2   Simulation Model 

The MD simulation model used in the present research consists of an MMA-
oligomer thin film and an Au substrate on which the MMA oligomers are depos-
ited. There are three different groups of interactions existing in the simulation 
                                                           
* Corresponding author. 
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model, including 1) the intra- and intermolecular interactions of MMA oligomers; 
2) the interaction of Au atoms; 3) the interaction between the MMA oligomers and 
the Au atoms. In the current MD simulations, three different potentials were em-
ployed to model the three groups of interactions. First, the ENCAD (Energy  
Calculations and Dynamics) potential [Lev95] was chosen to model the atomic 
interactions between the intra- and intermolecular interactions of the MMA oli-
gomers. The interactions between the Au atoms of the substrate were described by 
the tight-binding potential [Cle93], whereas the Dreiding force field [May90] was 
used to model the interactions between the MMA oligomers and the Au atoms. 

The MMA-oligomer thin film was assumed to be made of MMA oligomers 
having m repeat units (i.e., with a chain length of m). Three kinds of MMA-
oligomer thin films with m = 5 and 20, respectively, were considered in the cur-
rent study to examine chain-length effects on the conformations of the thin films. 
A total number of 1200 repeat units of the MMA monomer were used for each 
kind of the MMA-oligomer thin film. For investigation of tacticity effects on the 
conformations, three types of MMA-oligomer thin films were examined. They 
were supposed to be made of the three stereoisomers of PMMA (i.e., the isotactic, 
syndiotactic, and atactic isomers), respectively. The substrate consists of 8976 Au 
atoms and has a length of 110 Å, a width of 98 Å, and a thickness of 14 Å. Peri-
odic boundary conditions in the in-plane (x-y) directions were imposed in the  
present simulations.  

At the beginning of the MD simulations, velocities of all atoms were randomly 
assigned according to a Maxwell distribution, and the velocity-rescaling thermo-
stat [Hai92] was used to maintain the Au substrate at the target temperature. The 
thermostat was implemented by assigning the top five layers of the Au substrate as 
the thermal control layers, with the bottom layer of the Au substrate being as the 
fixed layer. The time integration of Newton’s equations of motion was carried out 
with the aid of the Verlet algorithm [Hai92] to obtain the new velocity and posi-
tion of each atom. A time step of 10-15 s (1 fs) was selected during the time  
integration. In addition, a canonical (NVT) ensemble was employed in the MD 
simulations. The simulations lasted for 500 ps at the target temperature and data 
from the last 50 ps were collected and averaged to examine the simulation results. 

3   Results and Discussion 

To examine conformations of the MMA-oligomer thin films, mean square radii of 
gyration of the MMA oligomers along the film thickness were utilized. For obser-
vation of mean square radii of gyration of the MMA oligomers along the film 
thickness, the thin film was split into several layers parallel to the Au substrate 
with a layer thickness of 5 Å. 

Through-thickness variations in the in-plane and the transverse components of 
the mean square radii of gyration for the short-chain MMA-oligomer thin films 
(with m = 5) of different tacticity are shown in Fig. 1. It should be noted that all 
the values in the figure have been normalized with respect to the mean square ra-
dius of gyration of the corresponding thin film. As can be seen, there are five pairs 
of data for each case of the figure. The first pair is in the contact region, the mid-
dle two pairs are in the bulk region, and the last two pairs are in the surface region. 
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Fig. 1 Components of mean square radii of gyration for the short-chain thin films with m=5 
of different tacticity; (a) isotactic, (b) syndiotactic, (c) atactic 

It is evident that the in-plane component of the mean square radius of gyration 
in the contact region is much larger than the transverse component, regardless of 
tacticity of the MMA-oligomer thin films. This indicates that the MMA oligomers 
in the contact region have a conformation that is compressed in the transverse (z) 
direction and elongated in the in-plane (x-y) direction. Namely, they exhibit a  
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Fig. 2. Components of mean square radii of gyration for the long-chain thin films with 
m=20 of different tacticity; (a) isotactic, (b) syndiotactic, (c) atactic 

flattened conformation parallel to the Au substrate. In the bulk region, the MMA 
oligomers have nearly equal in-plane and transverse components of the mean 
square radii of gyration, irrespective of tacticity of the thin film. This implies that 
the flattening conformation in the contact region is not present in the bulk region 
and the MMA oligomers have a conformation resembling that of bulk PMMA, in 
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which the PMMA molecules orientate in a random manner. The MMA oligomers 
in the surface region were found to have the in-plane components of mean square 
radii of gyration greater than the transverse components. This signifies that the 
oligomers in the surface region also have a quite flattened conformation. However, 
as can be seen from Fig. 1, the flattened conformation of the surface oligomers is 
less parallel to the Au substrate as compared to that for the contact region. The 
conformations attained in the present study for the short-chain MMA-oligomer 
thin films were found to much resemble those of an MMA-monomer thin film 
deposited on an Au (111) substrate, which was examined in our previous research 
[Ju07]. This may suggest that a short-chain MMA-oligomer thin film behaves like 
an MMA-monomer thin film when they are deposited on an Au substrate  
individually. 

Fig. 2 shows the in-plane and the transverse components of the mean square  
radii of gyration for the long-chain MMA-oligomer thin films (with m = 20) of 
different tacticity. As in the short-chain case, the in-plane component of the mean 
square radius of gyration in the contact region was noticed to be much greater than 
the transverse component, regardless of tacticity of the thin film. The MMA oli-
gomers in the contact region hence have a flattened conformation parallel to the 
Au substrate. 

As opposite to those for the short-chain case (Fig. 1), the in-plane component of 
the mean square radius of gyration for the MMA oligomers in the bulk region of the 
long-chain thin film is also much greater than the transverse component. This indi-
cates that the MMA oligomers in the bulk region of the long-chain thin film also 
have a flattened conformation parallel to the Au substrate, as against the random 
orientation of the oligomers in the bulk region of the short-chain thin film. The flat-
tened conformation is ascribed to the difficulty for the long molecular chain to orien-
tate randomly in the bulk region of the long-chain thin film. It was noticed that the 
flattened conformation in the bulk region is similar to that observed in the bulk  
region of a PMMA thin film deposited on a silver substrate [Zha02]. 

The MMA oligomers in the surface region of the long-chain thin film was also 
found to have a quite flattened conformation but less parallel to the Au substrate, 
as can be seen from the comparison of the in-plane and the transverse components 
of the mean square radii of gyration for the MMA oligomers in the surface region 
of the long-chain thin film. From results of Fig. 2, it should be noted that tacticity 
of the long-chain thin film also has unclear effects on the conformations of the 
MMA oligomers.  

4   Conclusions  

From the results of the present simulations, it is clear that the MMA oligomers 
were observed to have a flattened conformation parallel to the Au substrate in the 
contact region and a little flattened conformation in the surface region for both the 
short-chain and the long-chain thin films. The flattened conformation prevails in 
the bulk region of the long-chain thin films, but it does not appear in the bulk re-
gion of the short-chain thin film, in which the MMA oligomers have almost equal 
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mean square radii of gyration in the in-plane as well as the transverse directions 
and thus have a random orientated conformation—a characteristic resembling bulk 
MMA.  
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1 Introduction

A numerical method which can be applied to the simulation of flows of arbi-
trary substance in arbitrary conditions is presented. This method is based on
the preconditioning method proposed by the authors [1]. The preconditioning
method can enable compressible flow solvers to calculate incompressible flow
problems. Natural convection can be also calculated by the preconditioning
method without the Boussinesq approximation.

Substances have their own thermophysical properties. Those properties
are changed according to bulk conditions. Most of the existing flow solvers
assuming ideal gas or incompressible fluid cannot calculate such real flow
problems. We should introduce additional mathematical models approximat-
ing those thermophysical properties to simulate flows of arbitrary substance
in arbitrary conditions accurately. We have calculated carbon-dioxide flows
in a square cavity and in a pipe using the preconditioning method [2] and
Peng-Robinson equation of state. All of numerical approaches we know ap-
plying to flows of arbitrary substance seem to employ a flow solver and an
equation of state specialized to each flow of a substance. It means that the
equation of state should be changed if the substance is changed. We guess
that the development of the new code spends a lot of times and costs.

In this paper, we employ a database for thermophysical properties named
PROPATH [3] developed by Kyushu University. In PROPATH, thermophys-
ical models for 48 substances are programmed in wide-range pressure and
temperature conditions. All of these models have been verified and validated
as the most accurate model in chemical engineering. For examples, equation
of state(EOS) for carbon-dioxide employed in PROPATH was standardized
by International Union of Pure and Applied Chemistry(IUPAC) [4]. As EOS
for water, a unified model at the International Association for the Properties
of Water and Steam(IAPWS) IF-97 [5] is employed. PROPATH can cover
all the states except for solid, that is gas, liquid and supercritical fluid. Each
model is defined as a function of pressure and temperature. All the ther-
mophysical properties used in the present computational code are referred
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from PROPATH as a function. The most distinguished point of the present
work is the coupling between the preconditioning method and PROPATH.
All of thermophysical properties such as density, thermal conductivity, spe-
cific heats, and molecular viscosity in the code are replaced by the functions.
Also all the derivative functions such as those of density and enthalpy with
respect to temperature and pressure are also calculated by the combinations
among functions in PROPATH. As one of special features in PROPATH, the
name of each function is specified as a same name in all substances. The
set of functions for each substance is contained in one library file. Therefore,
the working substance can be easily changed to a different substance only
if the library file is changed to that for the different substance when the
computational code is compiled with the library file, *.lib for the substance.

The present method is applied to flows of arbitrary substance in several con-
ditions to show the capability and the extensity of the method. As gas condi-
tions at atmospheric pressure and temperature, natural convective problems of
carbon-dioxide, water vapor, methane, and helium in gas conditions, are first
calculated and compared with each other. As a special liquid condition at at-
mospheric pressure and temperature, natural convection assuming cold water
near 4◦C is calculated and compared with the experimental and numerical re-
sults. As a two-phase flow condition between supercritical fluid and subcritical
liquid, a mixing flow of supercritical water and water liquid in a T-shaped chan-
nel is calculated and compared with flows in different conditions.

2 Numerical Methods

The present preconditioning method is applied to the 2D compressible Navier-
Stokes equations in curvilinear coordinates. The detail expression was pre-
sented in Ref [1]. The numerical flux is derived as a preconditioned flux-vector
splitting form. This form is further extended to an implicit scheme as the pre-
conditioned LU-SGS scheme.

All the thermophysical models programmed in the present computational
code are referred from PROPATH as an external function. Thermophysical
properties for 48 substances are prepared in PROPATH. Most of those models
are approximated by equations derived as a polynomial from the existing
theoretical equations or experimental data.

As a typical model, that for carbon-dioxide is only explained herein. Equa-
tion of state(EOS) for carbon-dioxide was standardized by International Union
of Pure and Applied Chemistry(IUPAC) [4]. The EOS model is defined by

p = ρRT [1 + ω
9∑

i=0

Ji∑
j=0

aij(τ − 1)j(ω − 1)i] (1)

where ω = ρ/ρ∗ and τ = T ∗/T . The coefficients aij and the number Ji are
defined in Ref. [4]. Actually in this case, ρ∗ = 468[kg/m3] and T ∗ = 304.21[K].
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PROPATH can calculate thermophysical properties for 48 substances ac-
curately. Thermophysical properties such as specific heat at constant volume
and that at constant pressure can be derived using Eq.(1).

As another substance, EOS for water was standardized by International
Association for the Properties of Water and Steam(IAPWS) IF-97 [5].

The molecular viscosity and the thermal conductivity for carbon-dioxide
and water are also defined by a polynomial equation.

3 Numerical Examples

As the first numerical example assuming a gas condition at atmospheric tem-
perature and pressure, natural convective problems in a square cavity for
different substances are calculated and those calculated results are compared
with each other. The working substances are carbon-dioxide, water vapor,
methane, and helium. The length of the boundaries is fixed to 0.020[m].
The bulk pressure is 0.104[MPa]. The temperature at the left and the right
boundaries are 420[K] and 380[K], respectively. In these conditions, all cases
result in natural convection of gas.

Figure 1 shows the calculated temperature contours for four substances.
Almost the same distributions are obtained in the cases of carbon-dioxide,
water vapor, and methane. Exactly, the Rayleigh numbers in these cases are
slightly different from each other, but the numbers are close to Ra = 104.

Fig. 1. Calculated temperature contours of natural convection in a square cav-
ity(atmospheric gas conditions) (Upper left: carbon-dioxide, upper right: water
vapor, lower left: methane, lower right: helium)



548 S. Yamamoto and T. Furusawa

It is found that the gradient of temperature contours near the center of the
convection is slightly different from each other.

On the other hand in the case of helium, the distribution is quite different
from other three substances. This result suggests that the thermal conduc-
tivity dominates the flow field significantly compared with the convection.
The Rayleigh number of the present case for helium results in a very lower
number than those in other three cases.

As a liquid condition at atmospheric temperature and pressure, natural
convection assuming cold water near 4◦C is calculated. Generally, water liq-
uid in atmospheric conditions may be calculated as an incompressible fluid
without compressibility. However, water has trivial compressibility exactly
even though it is liquid. Especially, an anomalous property of cold water
near 4◦C has been reported by Banaszek et al. [6]. It is due to the struc-
ture of the molecular combination between hydrogen and oxygen atoms. The
density of water liquid has a maximum peak value at 4◦C. As boundary con-
ditions, the temperatures at the left and the right boundaries are fixed to
10◦C and 0◦C. The bulk pressure is 0.104[MPa].

Figure 2(a) shows the calculated temperature and the corresponding veloc-
ity vectors. The temperature distributions in Fig.2(a) indicate that the water
liquid near 4◦C induces a gravitational flow and the flow separates toward
left and right directions near the bottom boundary. Buoyancy effect usually
induces an uprising flow when the fluid is heated. If water is cooled locally,
the local water moves downward also due to the gravity force. However in this
case, water liquid located near the corner at the right and bottom boundaries
moves upward, although the temperature at the right boundary is 0◦C which
is colder than that at the left boundary. An additional smaller vortex near
the corner is observed as well as a main convective vortex. This flow property
may be due to a gravitational flow where the temperature is near 4◦C and
the water has a little higher density.

Figure 2(b) shows the calculated vertical velocities on the horizontal cen-
terline compared with the experimental and the numerical results reported by
Banaszek et al. [6]. Two computational grids which have 61x61 and 101x101
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(a) Flow schematic (b) Supercritical inlet (c) Subcritical inlet

Fig. 3. Schematic and calculated temperature contours

grid points are used in the present calculations. Both calculated values ob-
tained by the present method are in better agreement with the experiments
than those calculated by Banaszek.

As the last case, the calculation of a two-phase flow of supercritical water
and water liquid through a T-shaped channel is introduced. This flow prob-
lem is currently one of topics for chemical engineers to make nano particles in
supercritical water. The flow schematic is shown in Fig.3(a). A laminar flow
without the gravity force is assumed. The longitudinal channel is a main chan-
nel and the lateral channel is a sub-channel connected to the main channel.
Inlet temperature and the pressure of the main channel are fixed to 730[K]
and 30[MPa]. These values indicate that the flow through the main channel
is in a supercritical condition. Inlet temperature of the sub-channel is 293[K]
and the pressure is the same value with that of the main channel. The flow
through the sub-channel is in a liquid condition. Therefore, the supercritical
water through the main channel is to be interacted with the water liquid from
the sub-channel.

Figure 3(b) shows the calculated temperature contours. The water liquid
encounters the supercritical water at the T-junction and the two-phase flow
streams downward. The flow has a periodical oscillation originally generated
near the T-junction. In the mixing region, the critical point between the
supercritical water and the water liquid is certainly located. At the transi-
tional region, thermophysical properties change rapidly.

On the other hand, Fig. 3(c) shows the calculated temperature contours
of the flow in a liquid condition. The inlet temperature of the main channel
is reduced to 530[K]. As compared with Fig. 3(b), the temperature shown in
Fig.3(c) has no oscillated pattern. The difference between Fig.3(b) and 3(c)
may be due to the density difference in the two-phase flow. In the case of
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Fig. 3(b), the density changes rapidly at the critical point and the magnitude
is quite large. Also we obtain that the specific heat has relatively high and
peak values at the critical point.

4 Conclusion

The preconditioning method developed by the authors was applied to a new
method coupled with the database of thermophysical properties, PROPATH,
and the present method could calculate flows assuming several substances in
several conditions. In the case of natural convection assuming cold water near
4◦C in atmospheric conditions, the calculated results were in good agreement
with the experimental data reported by Banaszek et al. and the anomalous
property observed in the cold water could be accurately simulated. In the case
of the T-shaped channel, a two-phase flow between supercritical water and
water liquid was successfully captured by the present method. Rapid changes
for thermal properties such as density, thermal conductivity, and the specific
heat at the critical region could be also calculated without any numerical
problems.
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A new interface tracking method for all-speed multi-fluid flows is intro-
duced. The key feature of the method is that the interface motion and
fluid dynamics are fully-(non-linearly)-coupled, which allows to completely
eliminate operator-splitting temporal errors. The direct benefits of this
treatment are a) the method is L-stable, permitting time steps controlled
only by accuracy requirements; b) the method is high-order-accurate in
time; c) the method is fully-conservative, even at the interface, and ro-
bust (no pressure-velocity oscillations, in difference to previous attempts
for conservative interface tracking). The keys to these advantages are the
high-order sharp cut-cell-based interface treatment combined with implicit
Runge-Kutta (ESDIRK) scheme within the physics-based-preconditioned
Jacobian-free Newton-Krylov method (JFNK) [KK03]. Interfaces are tracked
by hybridizing the Lagrangian Marker tracking with the Eulerian JFNK-
based Re-Distancing/Level-Set algorithm (MRD/LS) [NKMK08]; all non-
linearly coupled with the JFNK-based “recovery Discontinuous Galerkin”
(rDG-JFNK) for all-speed fluid flows [NTPMK08, PNMK08].

1 Introduction

This work is motivated by the need for Direct Numerical Simulation (DNS)
of boiling multiphase flows in nuclear reactor safety applications. Among the
usual DNS-requirements for high-fidelity of spatiotemporal discretization, we
would like to account for compressibility of both liquid and gas (vapor), in a
wide range of Mach numbers. Conservation of mass, momentum and energy is
of outmost importance – especially at the interface with phase change, which
makes the traditional explicit non-conservative treatment of the compress-
ible multi-material interface [AK01, NDT06] unacceptable. Furthermore, it
is required to properly account for viscosity and heat conduction effects, as
well as phase change (boiling/condensation). These stringent physical mod-
eling requirements impose severe limitations on the currently available multi-
fluid flow simulation methods, all based on operator-splitting of the interface
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motion (modeled by either Level Set, Volume Tracking or Front-Tracking)
and fluid dynamics (explicit Godunov-based; semi-implicit SIMPLE- or Ap-
proximate Projection-based) algorithms.

We approach this challenge by developing the fully-coupled algorithm (de-
noted hereafter as I-SIM, or Implicit Sharp Interface Method). The whole
non-linear system (interface tracking + cut-cell remeshing + fluid solver) is
solved using an implicit Runge-Kutta scheme [BCVK02], within the frame-
work of the Jacobian-Free Newton-Krylov method [KK03]. This allows us
to avoid stability issues due to the stiffness of the compressibility effects,
diffusion (viscosity/heat conduction) operators, high-acoustic impedance in-
terface, and phase change. Interface jump conditions are treated sharply, with
the 3rd-order accuracy in space [NLT08].

The contribution/outline of the current paper is the following. First, we de-
scribe the basic principles of the I-SIM, in Section 2. Second, we demonstrate
the benefits (robustness, accuracy, conservation) of the fully-coupled simula-
tions using multi-fluid 1D manufactured and shock-tube problems, in Section
3. Finally, in Section 4, we show preliminary results for two-dimensional simu-
lations, focussing here on sharp implicit interface kinematics treatment with a
hybrid of the marker tracking and the Level-Set-based re-distancing algorithm
(MRD/LS).

2 Numerical Method (Summary)

The basic idea of our implicit interface tracking method is outlined in Fig. 1.
Interface kinematics is treated in a Lagrangian framework, by placing mark-
ers at the interface, as in Front Tracking (FT) algorithms. However, in

Fig. 1. Outline of the implicit interface tracking algorithm (I-SIM)
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difference to FT, the markers are not connected, to avoid complexity. Instead,
the interface topology and geometry are treated in an Eulerian framework,
by “wrapping” a signed distance function ϕ (Level Set, LS) around markers,
re-distancing/anchoring (RA) LS each time the markers move. This RA op-
erator is designed in such a way, so the markers reside on the zero-level of
ϕ (by “anchoring” the LS, [NKMK08]) and ϕ satisfies the Eikonal equation,
|∇ϕ| = 1 (by re-distancing the LS). This is achieved by combining the PDE-
based re-initialization with the 3rd-order interpolation at interfacial cells. The
RA operator is convergent in pseudo-time, which ensures the 1st-order spa-
tial convergence in curvature [NKMK08]. This is in contrast to traditional
LS treatments (PDE-RI/LS), which do not converge in pseudo-time due to
the interface drift problem, and are non-convergent (spatially) in curvature.
To enforce efficiency, we developed the implicit pseudo-time discretization
within the JFNK method, as described in [NKMK08].

Marker-field motion is treated implicitly, fully-coupled with the fluid dy-
namics solver and the MRD/LS algorithm, within the JFNK framework
[KK03], see Fig. 1. This allows us to eliminate operator-splitting temporal er-
rors, and makes the method high-order-accurate in time. Moreover, since the
L-stable Explicit, Singly Diagonal Implicit Runge-Kutta (ESDIRK) scheme
is employed for temporal discretization, the method is robust and suitable for
problems with multiple time scales. As a fluid dynamics solver, we developed
the all-speed fully-coupled implicit method, based on recovery Discontinuous
Galerkin (rDG) spatial discretization of both hyperbolic and diffusion (vis-
cous stress and heat conduction) operators. In the present study, we show
only one-dimensional examples for coupling interface (marker) motion with
fluid dynamics (Section 3). Two-dimensional rDG-JFNK all-speed solver is
presented in [PNMK08]. Its coupling with the MRD/LS interface tracking
and 2D cut-cell treatments [NLT08] will be presented elsewhere.

3 One-Dimensional Tests

First, we demonstrate that our method is indeed high-order-accurate in both
time and space, using a “Manufactured Problem” introduced in [NTPMK08].
This is a problem for traveling disturbances in density and velocity, with two
embedded characteristic time scales for pressure waves, and it includes both
significant viscous dissipation and heat conduction. Spatial convergence is
shown in Fig.2a. It can be seen that our high-order rDG method is very accu-
rate, converging with nearly-theoretical convergence rates at the asymptotic-
grid range (the 3rd-order for piecewise-constant, the 6th-order for linear, the
9th-order for quadratic and the 12th-order for cubic rDG). Temporal conver-
gence is shown in Fig.2b, which also demonstrates that the method converges
with nearly-theoretical rates, and operator-splitting errors are completely
eliminated.

Multi-fluid shock-tube problems are presented in Fig.3. As one can see,
the method is very accurate and robust in a wide range of shock speeds and
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Fig. 2. Low-speed (M ≈ 0.1) manufactured solution [NTPMK08]. a) Convergence
in space. b) Convergence in time.

Fig. 3. a) Two-gas Sod’s test; b) Stiff two-gas shock tube problem; c) Stiff liquid-gas
shock tube problem; d,e) Implicit shock tracking problem.
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stiffness of the interface. Importantly, our algorithm is fully-conservative (to
machine accuracy), and robust, without well-known pressure-velocity oscilla-
tion problems [AK01]. This is achieved by combining the cut-cell treatment
of near-interfacial cells with the implicit ESDIRK discretization. Due to the
implicit discretization, we can step over the CFL stability limits, choosing
the time step based on accuracy requirements (in the example of Fig.3(d,e),
it was the resolution of the (slow) shock speed).

4 2D Interface Kinematics by MRD/LS

Our final numerical example is a modified “Time-reversed single-vortex prob-
lem”, originally introduced by Rider&Kothe. The dynamics of the severe in-
terface (ellipse) stretching/tearing computed with our MRD/LS algorithm is
shown in Fig.4(a-e). By the time t = 4, the interface becomes sub-grid. The
usual LS method will result in severe mass losses. Our method however works
very well, as the interface kinematics is controlled by marker-field, which is
very easy/cheap to ensure well-resolved. As one can see from Fig.4e, by the
end of the stretching cycle (t = 8), the mass and shape of the interfacial

Fig. 4. a-e) Performance of the implicit MRD/LS algorithm for a time-reversed
single vortex problem (T = 8, h = 1

100
) [NKMK08]. f) Grid convergence for the

Level Set, Normals (Hamiltonian) and interface curvature – a comparison of the
MRD/LS and the PDE-RI/LS methods.
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structure are fully preserved. We would like to emphasize, that the distance-
property of the LS is well-maintained, by converging the re-distancing op-
erator to a complete pseudo-time steady-state. Thus, we can demonstrate
convergence in curvature, Fig.4f. In contrast, the PDE-RI/LS method is di-
verging in curvature, as the steady-state is not achievable, setting the “floor”
of temporal discretization errors. More on comparison of the MRD/LS and
the PDE-RI/LS can be found in [NKMK08].

5 Conclusion

We have demonstrated that the high-fidelity fully-coupled implicit multi-fluid
simulations are possible, and advantageous; providing the robustness and
accuracy needed for Direct Numerical Simulations of compressible (all-speed)
multiphase flows. While significantly more complex compared to traditional
methods, the benefits of fully-coupled non-linear solvers for multi-fluid flows
are evident, enabling to robustly and accurately incorporate viscous, heat
transfer and phase change effects, necessary for realistic simulations of boiling
multiphase flows.

Acknowledgement. This manuscript has been authored by Battelle En-
ergy Alliance, LLC under Contract No. DE-AC07-05ID14517 (INL/CON-08-
14470) with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes.

References

[AK01] Abgrall, R., Karni, S.: Computations of compressible multifluids. J.
Comp. Phys. 169, 594–623 (2001)

[BCVK02] Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time
integration schemes for the unsteady compressible Navier-Stokes
equations: laminar flow. J. Comp. Phys. 179, 313–329 (2002)

[KK03] Knoll, D.A., Keyes, D.: Jacobian-Free Newton-Krylov methods: A
survey of approaches and applications. J. Comp. Phys. 193, 357–397
(2003)

[NLT08] Nourgaliev, R.R., Liou, M.-S., Theofanous, T.G.: Numerical predic-
tion of interfacial instabilities: Sharp Interface Method (SIM). J.
Comp. Phys. 227, 3940–3970 (2008)

[NDT06] Nourgaliev, R.R., Dinh, T.-N., Theofanous, T.G.: Adaptive
characteristics-based matching for compressible multifluid dynam-
ics. J. Comp. Phys. 213, 500–528 (2006)



Fully-Implicit Interface Tracking for All-Speed Multifluid Flows 557

[NTPMK08] Nourgaliev, R.R., Theofanous, T.G., Park, H., Mousseau, V.,
Knoll, D.: Direct numerical simulation of interfacial flows: Implicit
Sharp-Interface Method (I-SIM). In: AIAA 2008-1453, 46rd AIAA
Aerospace Sciences Meeting and Exhibit, January 7-10, Reno, NV,
USA (2008)

[NKMK08] Nourgaliev, R.R., Kadioglu, S., Mousseau, V., Knoll, D.A.: Marker
Re-Distancing/Level Set (MRD/LS) method for high-fidelity im-
plicit interface tracking. SIAM J. Scientific Comp. (under review)
(2008)

[PNMK08] Park, H., Nourgaliev, R.R., Mousseau, V., Knoll, D.: Recovery Dis-
continous Galerkin – Jacobian-Free Newton Krylov (rDG-JFNK)
method for all-speed Navier-Stokes equations. In: Intern. Conf. on
Comput. Fluid Dyn., ICCFD5, Seoul, Korea, July 7-11 (2008)



“This page left intentionally blank.”



Development of Surface-Volume Tracking
Method Based on MARS

Taku Nagatake, Zensaku Kawara, and Tomoaki Kunugi

Department of Nuclear Engineering, Kyoto University, Yoshida, Sakyo,
Kyoto 606-8501, Japan

1 Introduction

The MARS (Multi-interfaces Advection and Reconstruction Solver)[1] is one
of the direct numerical methods for multiphase flow solvers with a volume
tracking procedure for free surface or interface deformation. The main feature
of the MARS is 1) a precise conservation of volume of fluid (VOF), 2) a
surface-volume tracking procedure with a precise linear interface calculation
and 3) a representation of the interface/surface within one or two control
volumes. Since this method has been developed on a staggered structure-
grid system, it is difficult to perform the computation with high accuracy
in a complicatedcomputational domain. Therefore, it is necessary to develop
a new version of the MARS on the unstructured grid system. In this study, a
new version of the MARS based on collocated structure-grid system has been
developed. In order to validate this procedure, the well-known as the “Dam
breaking problem” was chosen and unmerically solved. On the other hand,
the experiments of this problem with the same configuration of the solution
domain as the numerical simulation were conducted, and the numerical and
experimental results were compared with each other.

2 Numerical Method

The first version of the MARS on unstructured grid system has been de-
veloped on collocated structure-grid system (see figure1). If the staggered
grid system on unstructured grid system is used, the numerical algorithm
will be very complicated and need a lot of computational memory. However,
it is well-known that the “checker board error” of pressure field when the
pressure Poison equation is solved is inevitable if all variables are defined on
the same collocation point due to the uncoupling of velocity and pressure.
In order to avoid this error, the solver of the pressure Poison equatin based
on a fractional-step method is modified by Rhie & Chow method (1983)[2].
The actual precedure is as follows: 1) Velocity is calculated at a cell center
at first, 2) Velocity at a cell-face can be interpolated by using this cell-center
velocity. The direction of this cell-face-center velocity is normal to the cell
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Fig. 1. Variable location

face, 3) Pressure poison equation can be solved by using this cell-face-center
velocity, and 4) Cell-face-center velocity and pressure at the new time step
are corrected, and 5) Cell-center velocity can be interpolated by using the
cell-face velocity. In this interpolation procedure, the mass flow rate at the
cell-face is expressed by the following equation:

ũi+1/2 =
ρiũi + ρi+1ũi+1

ρi + ρi+1
(1)

In the MARS, the VOF function f is transferred by below equation:

∂F

∂t
+ (u · ∇) =

∂F

∂t
+ ∇ · (Fu) − F∇ · u = 0 (2)

From the viewpoint of the conservation VOF function, it is necessary that
the velocity field u has to be satisfied a solenoidal condition based on the
pressure Poison equation. Therefore, the velocity at cell-face-center is used
for solving the equation1.

In the MF analysis, it is necessary to include a surface tension force as a
body force in the momentum eqeuation. In this study, the CSF model (Con-
tinuum Surface Force model, Brackbill, et al, 1992)[3] was applied. In the
CSF model, there are two methods for the calculation of surface normal vec-
tor: ALE-like and MAC-like definitions. The ALE-like surface normal vector
is defined at a node and at a cell-face-center as for the MAC-like definition.
In this study, the ALE-like definition was chosen because of the accuracy.

3 Validation of the Algorithm with Dam Breaking
Problem

In order to validate the present numerical procedure, the numerical simulation
and the experiments were carried out for the “Dam breaking problem”. Figure
2 shows the calculation domain. The computational domain is height of liquid
column 2L0 = 5.0[cm] (L0 = 2.5[cm]), the time step 1.0 × 10−4[s], and the
mesh number is 50 (in width) ×100 (in length) ×100 (in height). The no-slip
velcity conditions are imposed on the walls. The working fluids are the air
for the gas and the water for the liquid.
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The flow visualization experiment was performed using the same shape and
sizes as the computationaldomain.The acrylic resin containerwas used as a test
section. This container was divided into two sections (a liquid column section
was filled with water and a vacancy section with air)by a partition plate covered
with a rubber to prevent the water leakage from the end of this plate put on the
bottom wall of the container. The water level in the liquid column section was
kept constant before its break by pulling-up the partition plate quickly.

In this study, the time period of pulling the plate up is set 0.024 [s] (case1
and case2) and 0.042 [s] (case3). The time period of the bottom edge of
the plate reaches on the top of the liquid column. In the case2, the rubber
with hydrophobic coating was used. The water behaviors in the container
were recorded with an ultra high-speed video camera (Phantom 7.1, vision
Research Co. with maximum 160 kfps). In this experiment, since the leakage
of water was inevitable during the time period of pulling the partition plate
up, this leakage caused to misread the speed and the position of the flowing
water-front on the bottom wall of the container. In order to remove these
errors, the experimental results were corrected by removing the length of the
leaked water existed in front of the “real” water-front in the recorded images.

Fig. 2. Calculation domain

Fig. 3. The shapes of gas-liquid interface at 0.1[s] (a)Experimental result
(b)Numerical result
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4 Results and Discussion

Figure 3 shows the shape of interface: (a)numerical result and (b)experimental
one (case1) at t = 0.1[s]. Figure 4 shows the comparison of the water-front
position varying with time between the numerical and experimental results.
In this figure, the horizontal axis denotes the non-dimensional time T ∗ and
the vertical axis denotes the non-dimensional water fromt position X∗. These
non-dimensional parameters are defined as follows:

X∗ = X/L0 (3)

T ∗ = T
√

ng/L0 (4)

where X is the water-front position, T time, n the aspect ratio of liquid
column and g is gravity acceleration. In this study, n is 2.0. In the early
stage (T ∗ < 2.0), the numerical results are different from the experimental
data. This is because the leakage water volume is inevitable in the experiment
during the pulling-up period of the partition plate. In the developed stage
(T ∗ > 2.0), the numerical result almost agrees with the experimental data
in case2. Figure5 shows the comparison of the water-front velocity. In this
figure, the horizontal axis denotes the dimensionless time and the vertical
axis denotes the dimensionless velocity dX∗/dT ∗. In the developed stage, the
numerical results in case1 and case2 agree well, and it measn that the terminal
velocity of the water-front in these cases are the same. This is because the
time period of pulling the plate up was longer than ohter cases, and the plate
affected the behavior of water surface. The processes of pulling the plate up
in cases 1 and 2 did not affect the behavior of water surface than that in
case3.

In order to correct these results, the effect of the process of pulling the plate
up is removed from the experimental results as follows (see figure 6): When the
opening area between the partition plate and the bottom wall of the container
is small, i.e., in the early stage, the hydrostatic pressure works the water at

Fig. 4. Time histories of water-front
position

Fig. 5. Time histories of water-front
velocity
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Fig. 6. Correction of liquid flow shape

Fig. 7. Time histories of corrected water-front position

this area and some water leaks before the main water movement: the recorded
water-front is ahead of an ideal one. Since it is difficult to predict the ideal po-
sition of the water-front, the ideal water-front position was measured by using
the spline fitting curve of the water surface to be intersected at the bottom
wall. If the opening area becomes large, the water leakage volume compared
to total water movement volume becomes negligible, and the water surface
becomes close to the ideal shape. Next in the developed stage, it seems that
the length of water leakage volume is just added at the ideal water-front po-
sition because both velocities of the leakage and main water parts are almost
the same. Therefore, the length of the leakage water volume in the early stage
can be subtracted from the water-front position recorded in the images.

Figure7 shows the copmarison between the numerical results and corrected
experimental data. In this figure, the numerical simulations were performed
with the present collocated grid system and the staggered grid system (i.e.,
the original MARS), respectively. Both numerical results are in very good
agreement with the experimental results in cases 1 and 2. In the early stage,
the water-front based on the staggered grid system is developed faster than
that based on the collocated one. In the developed stage, the water-front
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result based on the collocated grid is developed faster than that based on
the staggered one. The water-front in case3 is different from other results
because that, as mentioned before, the process of pulling the plate up affects
the water behavior for long time compared to other cases. This effect cannot
be removed in this correction method, so that this is a big remaining issue of
this kind of experiments in the future.

5 Conclusion

In the present study, the collocated MARS was developed and validated with
the “Dam Breaking Problem.”

1) Dam breaking experiment was performed, and the correction method of the
experimental results was considered. This correction method can be removed
the effect of pulling the partition plate up on the water surface behavior.
2) It is confirmed that the algorithm based on the collocated grid system
proposed in this study can be performed with high accuracy compared to the
original MARS by validating the “Dam break” experimental data.

It is expected that the unstructured/collocated MARS developed in this study
can be applied to many MF problems with enough accuracy in the future.
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Abstract. A novel adaptive mesh refinement (AMR) strategy based on the
Moment-of-Fluid (MOF) method for volume-tracking dynamic interface compu-
tation is presented. The Moment-of-Fluid method is a new interface reconstruction
and volume advection method using volume fraction as well as material centroid.
The mesh refinement is performed based on the error indicator, the deviation of
the actual centroid obtained by interface reconstruction from the reference centroid
given by moment advection process. Using the AMR-MOF method, the accuracy
of volume-tracking computation with evolving interfaces is improved significantly
compared to other published results.

Keywords: Adaptive Mesh Refinement (AMR), Volume-of-Fluid (VOF), Moment-
of-Fluid (MOF), Volume Tracking, Multi-phase flow, Multi-material flow.

1 Backgrounds

One of popular strategy of improving accuracy in computational physics is
using adaptive mesh refinement (AMR). Although the flows with evolving in-
terface is considered a very appropriate class of problem with potential
adaptivity, the application of AMR on such problem is relatively rare compared
to the flow problems without interfacial phenomena. Here, we present a novel
adaptive mesh refinement technique based on the moment-of-fluid method
(AMR-MOF) for multi-phase/multi-material interfacial flow simulation.

The MOF method [1, 2, 4, 5] can be thought of as a generalization of VOF
method. In VOF method, volume (the zeroth moment) is advected with local
velocity and the interface is reconstructed based on the updated (reference)
volume fraction data. In MOF method, volume (zeroth moment) as well as
centroid (ratio of the first moment with respect to the zeroth moment) are ad-
vected and the interface is reconstructed based on the updated moment data
(reference volume and reference centroid). In the MOF method, the computed
interface is chosen to match the reference volume exactly and to provide the
best possible approximation to the reference centroid of the material.
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By using the centroid information, the volume tracking with dynamic in-
terfaces can be computed much more accurately. Furthermore with this con-
ceptual extension of using the moment data, the interface in a particular
cell can be reconstructed independently from its neighboring cells. With the
advantages of MOF method over the VOF method, our opinion is that the
MOF method is a next generation volume-tracking interfacial flow computa-
tion method evolved from VOF method.

In this paper, we present a very accurate and efficient adaptive mesh re-
finement strategy for volume-tracking interfacial flow computations based on
the moment-of-fluid method.

2 AMR-MOF

In general required level of mesh adaptation has to depend on the complexity
of the interface, two immediate examples being curvature and topology of the
interface. Fig. 1 illustrates representative interface features.

We note that all features illustrated in Fig. 1 are in subcell scale (their
length scale is less then those of unrefined mesh) and also independent from
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Fig. 1. Subcell scale interface features with different curvature and topology. Top
row – material configuration, bottom row – possible AMR-MOF refinement pattern.
Four representative interface features within a square cell are illustrated: (a) one
piece of the material inside the cell — interface is the segment of the straight
line (curvature is zero); (b) two disjoint pieces of the white material — subcell
thickness filament of dark material, curvature has meaning only for each segment
of the straight line and equal to zero, but one curvature per cell does not make
sense; (c) one piece of dark material with complicated shape, only average averaged
curvature makes sense; (d) disjoint pieces of dark material (subcell size droplet),
each of pieces has high average curvature.
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the features of their neighboring cells (neighboring cell may not have similar
features). It is interesting to note that after we have created illustrative Fig. 1.

3 Static Interface Reconstruction

The statement of the problem for AMR-MOF static interface reconstruction
is as follows: for given original material configuration, represent the recon-
structed material region by PLIC on adaptively refined mesh.

The flow-chart for the static AMR-MOF interface reconstruction of a given
geometry is presented in Fig. 2. We note that the static AMR-MOF interface
reconstruction, described in Fig. 2 is only for the initial representation of
given material configuration on AMR mesh. In this Section we present static
interface reconstruction for multi-element airfoil configuration. The AMR-
MOF reconstruction starts with a single cell [0, 1]2 - level-0 mesh. Adaptive
refinement is performed up to level-8 from the level-0 mesh. First six levels
of AMR-MOF interface reconstruction is displayed in Fig. 3.

Next AMR iteration

Refine cells with Ec
MOF >− Etol

NO

YES

E Etolc <MOF

Finish

Static AMR−MOF Module

Start

Compute Reference Moments
by intersection

Reconstruct Interface
by MOF

Fig. 2. Flow-chart for static AMR-MOF interface reconstruction for initial repre-
sentation of material configuration on AMR mesh

4 Dynamic Interface Reconstruction

The algorithm of the AMR-MOF for dynamically evolving interface is illus-
trated in Fig. 4.

The reversible vortex problem is presented with longer period, T = 8.
Time steps of ∆t = 1

32 (total number of time stepping, nt = 256) is used for
all AMR-MOF computation. The result of AMR-MOF computation, with
maximum refinement up to level-4, is displayed in Fig. 5 at various time
steps.
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level-1 level-2 level-3

level-4 level-5 level-6

Fig. 3. AMR-MOF interface reconstruction of multi-element airfoil configuration
starting with one cell, i.e. the level-0 mesh is 1 × 1 covering the domain of [0, 1]2.
Different levels of AMR-MOF reconstruction process are displayed. Etol = 1.e-15
is used as the refinement criterion.

Next AMR iteration

Refine cells with

Advect Reference Moments

E Etol

E Etol

c
MOF

c
MOF

>−

<

YES

NO

Dynamic AMR−MOF Module

Reconstruct Interface
by MOF

Coarsen Cells

Next Time Step

Fig. 4. Flow-chart for dynamic AMR-MOF interface reconstruction and moment
advection. The difference of the dynamic AMR-MOF module from the static AMR-
MOF module, as shown in Fig. 2, is reference moment computation step. For dy-
namic case, the reference moment is computed by advection step, as indicated with
gray box.
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perspective view close-up view

ti
m

e
=

0.
0

ti
m

e
=

4.
0

ti
m

e
=

8.
0

Fig. 5. Single vortex flow, T = 8. Level-0 mesh is 322 and maximum 4 level of
AMR is allowed (maximum effective mesh resolution is 5122). Etol = 1.e-20 is used
as the refinement criterion
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5 Conclusion

A new adaptive mesh refinement strategy based on the moment-of-fluid
method was presented. Numerical examples demonstrate that error in the
centroid position can correctly detect not only regions with high curvature
of the interface but also regions with subcell structures like filaments. In
[3] we have coupled standard MOF without AMR with with incompressible
Navier-Stokes solver for two materials. In the future we planning to couple
AMR-MOF with incompressible Navier-Stokes AMR solver.
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1 Introduction

In flip-chip packaging technology, the underfill encapsulation is one of the
important processes to obtain a significant improvement in fatigue lifetime
for the solder joints between IC chip and substrate. The advanced design
of electronic devices aiming at the enhancement of the performance involves
the increase of the number of solder bumps, smaller size of the IC chip and
smaller gap height between IC chip and substrate. That leads to making
various problems caused by the flow behavior, such as voids in underfill and
mis-placed IC chip. The numerical analysis is more and more strongly re-
quired for simulating the underfill flow behavior, including the condition of
dispensing the underfill material on the substrate. In fact, it is desirable to
predict the filling time, the final fillet shape formed around IC chip and the
occurrence of air trap especially around the solder bump in the underfill
process, considering the effect of contact angle, viscosity and surface tension
of the underfill material for increasing the reliability of flip-chip packaging.

We developed a numerical method for simulating the underfill flow in flip-
chip packaging, especially for designing the optimum condition of solder joint
performance [1]. The two types of processes for applying the underfill encap-
sulant to the gap between IC chip and substrate are presented. One is conven-
tional capillary flow type and the other is no-flow type. The both underfilling
processes are illustrated in Fig. 1. In the capillary flow type, multiple pro-
cessing steps are involved. The solder joints between IC chip and substrate
are formed, which is called solder bump reflow, and then thermosetting epoxy
resin is driven into the cavity by capillary action. After the resin is completely
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Fig. 1. The underfilling processes of conventional capillary flow type (left) and
no-flow type (right)

filled, the assembly is taken to an oven where the resin is cured. On the other
hand, the no-flow type was invented to reduce the processing steps in the
capillary flow type, which provides cost savings. The epoxy resin is directly
dispensed on the substrate and is compressed by pre-heated IC chip. While
the IC chip is mounted on the substrate, the solder joints are formed with
curing of the resin. We need to understand the flow behavior and filling time
of underfill material for various solder bump patterns; solder bump diame-
ter, bump pitch and gap height, taking the drag force acting on the solder
bump into account. In the underfill flow analysis, the governing equations for
three-dimensional incompressible flow are solved by using the finite difference
method (FDM) incorporating the pseudo compressibility approach [2] on a
non-uniform Cartesian grid. In the numerical method, a central difference
scheme with artificial dissipation is used for the spatial discretization. The
forward Euler explicit method is used as an iterative scheme in the pseudo
time integration method. Our basic concept of numerical approach to the un-
derfill encapsulation process can be found in [3, 4]. The level set method [5] is
used as an interface capturing algorithm to represent the gas-liquid interface.
The continuum surface force (CSF) model [6] is used for treating the surface
tension. It is assumed that temperature distribution in the underfill material
is uniform. The power-law model is adopted as a constitutive equation for
treating the mould flow behavior of non-Newtonian fluid. The simulations
especially in the no-flow type are carried out by coupling the Navier-Stokes
equations and the equations of motion of IC chip.

In this paper, the effect of capillary action, viscosity and surface tension
on the flow behavior in the underfilling process of conventional capillary flow
type are discussed.
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2 Numerical Simulation of Capillary Flow Undefill

As one of the analytical models for the conventional capillary flow type,
as shown in Fig. 2, a semi-spherical liquid dispensed on the substrate near
the IC chip is driven into the cavity with a gap height between IC chip
and substrate by capillary action. The solder bump in the gap is modeled
as the rectangular cylinder. In this model, the surface tension is caused by
prescribing the contact angle on the surface of IC chip and substrate. The
effect of gravity force is included. The dimension of die is about 1.0mm ×
1.0mm, and the gap height between IC chip and substrate is about 0.1mm.
The array pattern of solder bump is 5 × 5. The bump diameter is 0.1mm
and the bump pitch is 0.2mm. The number of grid points is about 37000. By
using this model, the fillet shape formed around the IC chip and the effect
of contact angle, viscosity and surface tension on the underfill flow behavior
were investigated. In the properties of gas and liquid, the density, viscosity
and surface tension are shown in Table 1.

Fig. 2. The analytical model for the conventional capillary flow type

Table 1. Viscosity and surface tension

solder bump pattern viscosity [Pa · s] surface tension [N/m]

case1 - 1.5 × 10−2 1.0 × 10−2

case2 5 × 5 1.5 × 10−2 1.0 × 10−2

case3 5 × 5 1.5 × 10−3 1.0 × 10−2

case4 5 × 5 1.5 × 10−3 1.0 × 10−3

case5 5 × 5 1.5 × 10−2 1.0 × 10−1
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Fig. 3. The comparison of propagating interface at 0.1s (left) and the final fillet
shape (right) for the different three contact angles (case1)

3 Numerical Results

In the case1, the solder bump between IC chip and substrate is neglected and
the flow front profile and filling time are evaluated by changing the contact
angle. The filling times of the contact angles of 30◦, 45◦ and 60◦ are about
1.0s, 1.2s and 1.4s, respectively. The instantaneous propagating gas-liquid
interface at 0.1s and the final fillet shape obtained from the three contact
angles are compared in Fig. 3. It is observed that as the contact angle becomes
larger, the filling time is longer due to decrease of the flow velocity, and that
the final fillet shapes for the three contact angles are different, depending
on the collapse of semi-spherical liquid and the spread especially in the plus
direction of x-axis. It is found that the effect of capillary action on the flow
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Fig. 4. The final fillet shape (case2) Fig. 5. The close-up view of propagating
interface (case2)

Fig. 6. The final fillet shape (case3) Fig. 7. The close-up view of the final fillet
shape (case3)

Fig. 8. The final fillet shape (case4) Fig. 9. The final fillet shape (case5)

behavior is one of the most important factors in predicting the filling time and
the final fillet shape. In the case2-5, the solder bump of rectangular cylinder
between IC chip and substrate is considered and the effect of viscosity and
surface tension of liquid on the flow behavior is investigated, fixing the contact
angle 30◦. In the case2, where the viscosity and surface tension are the same
as the case1, the final fillet shape and the close-up view in the instantaneous
flow front are shown in Fig. 4 and Fig. 5, respectively. The filling time is
about 3.5s. It is confirmed that the curve of flow front is a meniscus. In the



578 T. Hashimoto et al.

case3, only the viscosity in the case2 is changed by a factor of 0.1. The final
fillet shape and the close-up view are shown in Fig. 6 and Fig. 7, respectively.
The filling time is about 1.5s, which becomes shorter than that of the case2
due to increase of the flow velocity. It is observed that some air traps occur
in the rear of solder bump, especially on the center line indicated by a dotted
line in Fig. 2.

It is considered that when an air is trapped around a solder bump, the flow
front attach the neighboring solder bump in the downstream direction before
the flow goes around completely along the solder bump. That is the reason
why the flow velocity in the minus direction of x-axis becomes much faster
than that in the direction of y-axis. In the case4, only the surface tension in
the case3 is changed by a factor of 0.1. The filling time is about 1.0s, which
becomes shorter than that of the case3. The good final fillet shape is obtained
as shown in Fig. 7, because the spread of liquid is smaller than those obtained
from the case2-3 and there is no air trap as can be seen in the case3. In the
case5, only the surface tension in the case2 is changed by a factor of 10.0. The
final fillet shape is shown in Fig. 8. This result shows that the gap between
IC chip and substrate can not be completely filled with the liquid.

4 Conclusions

It is observed that the capillary action, viscosity and surface tension are
important factors affecting on the filling time and final fillet shape. It is
possible to simulate the occurrence of air trap around the solder bump. In
the future work, the numerical results should be confirmed by comparing
with the available experimental data.
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Lagrangian Blocks on Eulerian Mesh (LBEM) simulations of water advancing
over dry bed are conducted using blocks as the computational elements. The
non-negative nature of the blocks have allowed the LBEM simulation to be
carried out without the oscillation problem that has limited the applicability
of many existing computational schemes. At the leading edge of the water, the
velocity is maximum and friction is the dominant effect. The simulation for
the dominant friction effect at the wave front is carried out for the release of
water from (i) dam-break outflow, (ii) levee overflow, and (iii) sump overflow.
Despite the geometric difference, all three flows have the maximum velocity
at the wave front following identical asymptotic trend at large time.

1 Introduction

Prediction of the water advancing over dry bed is crucial to understanding
a variety of engineering problems including flooding over lands and wave
run-up over beaches. Since velocity usually is highest at the leading edge,
the frontal region is often the area of significant erosion. Reliable and ro-
bust computational schemes are required before the erosion problem can be
correctly simulated [BS07, FC02, RBT03]. In a finite-volume formulation,
as a consequence of spurious numerical oscillations, the water depth at the
leading edge of the front may become negative leading to collapse of the
computation. Flux limiters are required to control the numerical oscillations,
and an artificial wet bed also is required to prevent the water depth from be-
coming negative during the simulation. Figure 1 shows the simulation of the
dam-break waves by finite volume method (FVM). Flux limiters (MINMOD,
MUSCL, SMART, Superbee, Ultimate-Quickest, Ultra-Quick, and Van Leer)
and an artificial wet bed are employed to suppress the spurious oscillations.
The wet bed produces an artificial surge waves which may affect the accu-
racy of the numerical simulation. The surge height is 0.67m for an artificial
wet-bed depth of 0.01m, and 0.24m for a wet-bed depth of 0.001m, under a
10m height of water behind the dam [Sto57]. The selection for the wet-bed
is part of the task in the simulation by the FVM. The depth must be small
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Fig. 1. Results obtained by FVM using three artificial wet bed depths hw = 0.01 m,
0.001 m, and 0.0001 m; friction coefficient cf = 0.0038 at t = 2.5 s and 5.0 s

enough to prevent significant formation of the surge, but must not be too
small to avoid the collapse of the computation. The decision for the depth of
the wet bed is particularly a difficult task, when the simulation is for water
over variable topography.

Numerical methods have been developed for simulation of the wave front
without the artificial wet bed. The Lagrangian Blocks on Eulerian Mesh
(LBEM) is one such methods. It is an extension of the Lagrangian Block
Method (LBM), which has been successfully implemented in the turbulence
simulations [CA01, CA02]. The method is complimentary to other interface-
tracking algorithms, including the level-set and the volume-of-fluid methods.
Figure 2 shows the LBEM simulation obtained using large blocks. The LBEM
is stable and robust despite the very large blocks used in these simulations.

Fig. 2. LBEM simulations of the wave fronts on dry bed produced by the release
of water from (a) dam-break outflow, (b) levee overflow, and (c) sump outflow
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Figure 2a shows the close agreement of dam-break wave simulation with
the exact solution by Ritter [Rit92]. The non-negative nature of the blocks
has allowed the LBEM simulation to be carried out without the numerical
oscillation problem.

2 LBEM Formulation

The Lagrangian blocks are contiguous elements defined to satisfy the require-
ment of fluid continuity. Figure 3a shows the blocks on the Eulerian mesh.

A block of fluid is defined by its depth hi and width wi. At the beginning
of the computation time step t, the edges of the blocks fit the Eulerian mesh,
i.e. xn

i = xi, xn
i+1 = xi+1 and wn

i = xn
i+1 − xn

i . At the end of the time step
t + ∆t, the block will either be stretched or compressed as the edges of the
block moves to the new positions xn+1

i and xn+1
i+1 . The forces on the blocks

are calculated assuming hydrostatic pressure variation over depth (Fig. 3b).
To satisfy the continuity for volume conservation,

(xn+1
i − xn+1

i+1 )hn+1
i = (xn

i − xn
i+1)h

n
i (1)

The edge position of the block xi at time t+∆t are calculated by integrating
the following momentum equation with time using the Lagrangian method:

Dui

Dt
= −g

hi − hi−1

xn
i+1 − xn

i

− gSf , (2)

where ui = dxi/dt = velocity, and Sf = cfui|ui|/(2gh) = friction slope. The
mass and momentum in the blocks are recasted onto the Eulerian mesh at
each time step by the second moment method [EM72].

hi
n+1

wi
n+1

ai

xi
n+1 x i+1

n+1

Fig. 3. (a) Movement of the Lagrangian blocks and redistribution of the mass
in the blocks onto the fixed Eulerian mesh (b) Hydrostatic pressure forces on the
upstream and downstream faces of the blocks
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3 Friction Effect on Dam-Break Wave

Figure 4 shows the LBEM simulation results obtained for the dam-break
wave. At the leading edge of the advancing front, the water depth is zero and
the velocity is the highest. The wave front would advance on the horizontal
bed with a velocity equal to 2

√
gh0 according to Ritter, if friction were ignored

[Rit92]. In reality, friction is always the dominant effect at the front. The role
of the friction, and the inertia effect, have been discussed by Whitham using
the boundary-layer approximation [Whi55], by Hogg and Pritchard in terms
of inner-and-outer expansion [HP04], and by Sakkas and Strelkoff using the
method of characteristics [SS73]. The relationship of these previous analytical
and semi-analytical results with the present numerical results is important
to understand the erosional processes at the front, and has been presented at
length in the conference.

The outflow is maximum at the location of dam removal. If friction is
ignored, this maximum outflow is

qmax =
8
27

√
gh3

0 (3)

Friction reduces this flowrate once the friction effect at the front has reached
the location of the dam’s removal (see Fig. 4c). In fact, the asymptotic profile
of the advancing front is determined by this outflow qmax.

Fig. 4. Resistance effect on dam-break wave of h0 = 0.22 m, cf = 0.0038 and dx
= 0.01 m; (a) depth (b) velocity (c) discharge, and (d) acceleration profiles, at
τ = n∆τ (n = 1, 2, 4, 8, 16, 32, 64, 128) where τ = cf/2

√
g/h0t and ∆τ = 0.0127
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Fig. 5. Maximum erosional velocity over frictional bed cf = 0.0038. Simulation
results obtained for (a) dam-break outflow (dashed line), (b) levee overflow with
height of levee = 1.0 (red), and (c) sump overflow with rising velocity = 1.6 (blue)

4 Summary of Results Based on qmax

To demonstrate the dependence on qmax, a number of numerical simulations
has been conducted for wave fronts produced by other outflow geometries.
The conditions of these simulations for (i) dam-break outflow, (ii) levee over-
flow, and (iii) sump overflow are summarized in Table 1.

Figure 5 shows the results correlated with the outflow rate qmax. All simu-
lation results fall onto the same curve when the maximum wave front velocity
is normalized by the velocity scale 3

√
gqmax, and the time normalized by the

Table 1. Physical problems considered in obtaining a unified result of dimensionless
frictional time scale for water advancing over dry bed

Parameters Dam-break outflow Levee overflow Sump overflow

Friction coefficient 0.0038 0.0038 0.0038
cf 0.019 0.019 0.019

0.038 0.038 0.038

Height of levee 1.00
hL/ 3

√
q2
max/g 0.50

0.25

Rising velocity 1.6
vR/ 3

√
gqmax 0.8

0.4
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time scale 1/[(cf/2) 3
√

g2/qmax]. The asymptotic behaviour of the front is de-
termined by the maximum rate qmax, of the outflow at the control section.

5 Conclusion

The wet-and-dry interface across the water wave front has been successfully
simulated by the LBEM without the use of flux limiter and artificial wet
bed. The results for the dam-break outflow are consistent with the analyti-
cal and semi-analytical solutions to the problem [TC07]. The simulations of
levee overflow and sump overflow using large blocks have demonstrated the
versatility of the method for practical applications. The method is now ready
for generalization to two-dimensional outflow on complex terrains.
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Abstract. A time-derivative preconditioned system of equations suitable for
the numerical simulation of single and multicomponent inviscid flows at all
speeds is formulated. For low speed multicomponent flow, a preconditioned
nonconservative discretization method is described which preserves pressure
and velocity equilibrium across fluid interfaces. This method is extended to
transonic and supersonic flows using a hybrid approach that combines con-
servative and nonconservative formulations. Both multicomponent (multiple
fluids) and multiphase (same fluid in different phases) can be solved using
the proposed methods.

1 Introduction

Many propulsion related flow applications require modeling of multicompo-
nent and multiphase flows over a wide range of Mach numbers. For example,
the low speed flow of liquid propellants through the Low Pressure Fuel Tur-
bopump (LPFTP) in the Space Shuttle Main Engine (SSME), see Kiris et al.
[1]. Another example is the ignition overpressure suppression system activated
during the launch of a space vehicle. As a first step towardsmodeling these com-
plex flow applications, a time-derivative preconditioned numerical method for
the simulation of inviscid multicomponent and multiphase compressible fluids
obeying an arbitrary equation of state is described.

Time-marching numerical methods used to solve the compressible equa-
tions become inefficient and lose accuracy when applied to low speed flow
applications, see Merkle and Choi [2]. In addition, application of conservative
numerical methods to multicomponent flows produce nonphysical pressure
and velocity oscillations across fluid interfaces, see Karni [3]. In this work,
a time-derivative preconditioned system of equations for inviscid multicom-
ponent flow is described along with a characteristics-based nonconservative
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numerical method, which eliminates nonphysical behavior across fluid inter-
faces. The nonconservative method is an extension of the Split Coefficient
Matrix (SCM) method, developed by Chakravarthy et al. [4], to low speed
flows. In order to model flows containing shocks, a novel hybrid approach
which combines a conservative and nonconservative method is described.

2 Governing Equations

The time-derivative preconditioned system of equations for an inviscid N -
component mixture of compressible fluids written in strong conservation law
form for a two-dimensional generalized curvilinear coordinate system are

Γp
∂Q̂

∂s
+

∂Ŵ

∂t
+

∂F̂

∂ξ
+

∂Ĝ

∂η
= 0 (1)

where

Q̂ = J−1 (p, u, v, T, Y1, · · · , YN−1)
T ,

Ŵ = J−1 (ρ, ρu, ρv, ρH − p, ρY1, · · · , ρYN−1)
T

,

F̂ =
(
ρÛ , ρÛu + ξ̂xp, ρÛv + ξ̂xp, ρÛH − ξ̂tp, ρÛY1, · · · , ρÛYN−1

)T

Ĝ =
(
ρV̂ , ρV̂ u + η̂xp, ρV̂ v + η̂xp, ρV̂ H − η̂tp, ρV̂ Y1, · · · , ρV̂ YN−1

)T

Standard notation is used for the fluid dynamic variables p pressure, (u, v)
Cartesian velocity components, T temperature. The mixture fluid properties
ρ mixture density, H = h+(u2+v2)/2 mixture total enthalpy, and Yi the mass
fraction of the ith fluid component for i = 1, · · · , N−1. Note the N th compo-
nent mass fraction is given by the saturation condition YN = 1 −

∑N−1
i=1 Yi.

The mixture properties and their partial derivatives with respect to pressure
and temperature, along with the scaled metric terms and contravariant ve-
locities, are described in Housman [5]. Additionally, the local time-derivative
preconditioning matrix is derived in Housman [6] for a single component fluid
and extended to a multicomponent fluid in [7] and [8].

3 Numerical Method

Three discretization strategies are outlined for the convective flux derivatives.
These include a well known conservative precondition Roe method (PROE),
a novel nonconservative preconditioned Split Coefficient Matrix method
(PSCM), and a hybrid conservative/nonconservative method (HYBR) which
combines the two approaches and is approapriate for multicomponent flow
problems at all speeds. Once the spatial derivatives have been discretized
using one of three methods, efficient time marching numerical methods are
used to solve either the steady or unsteady equations.
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3.1 Conservative Formulation

The conservative preconditioned Roe method, described in van Leer, Lee,
and Roe [9], utilizes the standard conservative finite difference form of the
discrete equations where the preconditioned numerical flux is

F̃j+1/2 =
1
2

[
F̂ (Qj+1) + F̂ (Qj)−

(
Γp|Γ−1

p Â|
)

j+1/2
(Qj+1 −Qj)

]
, (2)

where Γp and |Γ−1
p Â| = R̂ξ|Λ̂ξ|R−1

ξ are evaluated at the density weighted
symmetric average.

3.2 Nonconservative Formulation

The nonconservative formulation is based on a preconditioned version of the
SCM method which starts with the quasi-linear form of the equations. Once
the preconditioned flux Jacobians have been factored using their eigenvalue
decomposition, and split into there positive and negative eigenvalue contribu-
tions, the nonconservative positive and negative flux derivatives are defined as

(
∂F̂/∂ξ

)± .= R̂ξΛ̂
±
ξ R̂−1

ξ (∂Q/∂ξ) . (3)

These positive and negative flux derivatives are then discretized using an
upwind biased method.

3.3 Hybrid Formulation

The hybrid method, which combines the conservative preconditioned Roe and
the nonconservative preconditioned SCM methods, uses local changes in the
mass fraction variable to determine if a sharp interface is present, see Karni
[10]. Once a sharp interface is detected the discrete equations are locally
switched from conservative to nonconservative form, such that pressure and
velocity equilibrium across the fluid interface is preserved. The hybrid method
can formally be written as

∂Q̂

∂s
+ φΓ−1

p [PROE] + (1− φ) [PSCM] . (4)

Using any of the three approaches the semi-discrete form of the equations
are discritized in pseudo-time s using an implicit Euler discretization and
solved using an inexact Newton method with alternating line implicit Jacobi
relaxation. Typically three relaxation sweeps are taken at each nonlinear
iteration. Details of the algorithm and the dual time stepping procedure used
for unsteady cases are described in Housman [5].
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4 Results

In order to test the accuracy of the different appoaches, two multicomponent
Riemann problems are solved, and an exact solution is used for comparison.
First order discretization in both space and time are used to observe the
true dissipative nature of the approaches. To distinquish between the meth-
ods the preconditioned Roe method is denoted PROE, a nonpreconditioned
Roe method by QROE, the preconditioned SCM method by PSCM, and
the hybrid method by HYBR. Next the steady single phase flow of air over
a NACA0012 airfoil is computed for varying Mach numbers to demonstrate
the Mach independent convergence of the PROE and PSCM methods. Which
are the two methods combined to form the hybrid method, it is important
to recall that the hybrid method reduces to the conservative PROE method
when applied to single phase flows. Finally, the noncavitating and cavitating
flow of liquid water through a channel containing a NACA0015 hydrofoil is
simulated and compared to experimental data. The two dimensional results
are computed with third-order upwind biased differencing in space and the
minmod limiter for flows containing sharp fluid interfaces.

4.1 Riemann Problems

As alluded to in the introduction, conservative methods produce nonphysical
pressure and velocity oscillations across moving component contact disconti-
nuities when both γ and the temperature vary across the interface. Two one-
dimensional Riemann problems are used to demonstrate this. The initial data
for the first case is given by (ρL, uL, pL, YL, γL)T = (1.0, 1.0, 1.0, 1.0, 1.6)T and
(ρR, uR, pR, YR, γR)T = (0.1, 1.0, 1.0, 0.0, 1.2)T . Figure 1 plots the pressure
and velocity at t = 0.25 seconds. The second case consists of a left moving
rarefaction, a right moving contact, and a right moving shock. The initial data
is (ρL, uL, pL, YL, γL)T = (1.0, 0.0, 1.0, 1.0, 1.6)T and (ρR, uR, pR, YR, γR)T =
(0.125, 0.0, 0.1, 0.0, 1.2)T . Figure 2 plots the velocity over the domain and

Fig. 1. Results for Riemann problem I: Pressure (left) and Velocity (right)
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Fig. 2. Results for Riemann problem II: velocity (left) and close-up of velocity
(right)

close-up to the non-physical jump. This nonphysical pressure and velocity
jump across the contact, incurred by the conservative methods, is clearly ob-
served in both solutions. While the nonconservative approach preserves the
pressure and velocity equilibrium the Rankine-Hugonoit jump conditions are
not satisified across the shock in the second case. The superiority of the hy-
brid approach is demonstrated, in that correct shock jumps and locations are
obtained and nonphysical jumps across the fluid interface are suppressed.

4.2 NACA0012 Airfoil

Simulations of external flow of an inviscid single component gas (air) around
a NACA0012 airfoil, for a wide range of subsonic free-stream Mach numbers
are reported. The purpose of this case is to demonstrate the Mach indepen-
dent convergence of the PROE and PSCM methods for subsonic flow and
compare the solutions of the conservative and nonconservative approaches
at low speeds. Note the HYBR method is equivalent to the PROE method
for single component flows. The case was originally proposed by Rizzi and
Viviand [11] and modified here by considering a series of subsonic free-stream

Table 1. Number of iterations required to reduce the maximum residual eight
orders of magnitude for steady flow around a NACA0012 airfoil

Mref QROE PROE PSCM

0.5 306 306 331
0.1 325 262 228

0.01 > 1000 262 228
0.001 > 1000 336 257
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Mach numbers. A single structured C-grid consisting of 169× 65 grid points
clustered near the airfoil is used. Convergence results for free-stream Mach
numbers of Mref = 0.5, 0.1, 0.01, 0.001 and zero angle of attack are reported
in Table 1. Both Mach independent convergence and approximately the same
convergence rates are acheived by the conservative and nonconservative pre-
conditioned methods, while the nonpreconditioned method fails to converge
as the Mach number approaches zero.

4.3 NACA0015 Hydrofoil

In this case liquid water flowing through a channel containing a NACA0015
hydrofoil is simulated at both noncavitating and cavitating conditions. This
case was proposed as a benchmark problem by Salvetti and Beux [12] as part
of the Numerical Workshop conducted as the conference on Mathematical and
Numerical Aspects of Low Mach Number Flows. For details on the test case,
the phase change model, and the particular equations of state used, see Hous-
man [5]. A structured overset grid system consisting of 22205 grid points is
used to discretize the domain. Figure 3 displays the CP curves on the surface
of the airfoil for both the noncavitating and cavitating cases. It is observed
that similar results are obtained using either the PROE, PSCM, or HYBR
methods, and each compare well with the experimental results. While simu-
liar solutions are obtained, superior sub-iteration convergece was obtained
using the nonconservative and hybrid methods for cavitating conditions.

Fig. 3. Coefficient of pressure on the upper and lower surface of the NACA0015
hydrofoil contained in a channel: (left) noncavitating and (right) cavitating

5 Summary

A time-derivative preconditioned system of equations appropriate for mul-
ticomponent/multiphase flows is described, along with three discretization
strategies. Each of the preconditioned methods achieve Mach independent
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convergence. The hybrid method was shown to preserve pressure and ve-
locity equilibrium across fluid interfaces and obtain the correct weak solu-
tion when shocks are present, and cavitating multiphase capabilities were
demonstrated.
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1 Introduction

A spectacular example of free surface flow is the impact of a solid object on
a liquid: At impact a splash is created and a surface cavity (void) emerges
which then collapses creating an upwards and downwards jet at singularity
and entraining a giant bubble [1, 3]. The impact of a circular disc leads to
an especially impressive jet. Using boundary-integral techniques we illucidate
the mechanism that turns the diverging radial motion of the collapsing cavity
into the vertical upshoot of a fast and thin jet.

Jet formation in the present context stands out from previously stud-
ied mechanisms. It does not originate from a flow pattern whose principal
direction prior to jet formation already points along the jet axis, such as
the collapse of bubbles near a solid wall, jetting induced by pressure waves
or the thick Rayleigh jets observed for raindrops falling on a lake surface
in e.g. [4]. Neither is it created by concurrence of capillary waves – as for
“champagne bubbles” rupturing near a free surface – or Faraday waves in a
vertically shaken fluid container. Instead, the purely inertial focussing makes
the present phenomenon more reminiscent of the very violent jet of fluidized
metal observed during the collapse of ”lined cavities” in military and mining
operations, see e.g. [2].

2 Methods

Since the process admits a potential flow description we choose an axisym-
metric boundary-integral method including surface tension. This method is
very powerful for accurately predicting the evolution of complicated free sur-
faces with high computational efficiency as it requires information only from
the fluid boundaries. Careful surface surgery is required as the cavity pinches
off and the purely radial flow almost instantly diverts into the vertical mo-
tion of the up- and downward jets. To resolve the small-scale features during
pinch-off and jet formation adaptive grid refinement is employed with node
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densities spanning four orders of magnitude. While boundary-integral meth-
ods are very powerful in describing surface phenomena they are known to
be vulnerable to numerical instabilites, which we overcome by innovative
smoothing techniques. Numerical tracer particles visualize the distribution
of liquid during jet formation.

3 Results

The process of impact and jet formation is illustrated in Fig. 1. The disc speed
is constant throughout. After impacting on a semi-infinite water pool a cavity
several disc radii deep emerges (a). Hydrostatic pressure pushes the surface
inward leading to the pinch-off of a large bubble halfway down the cavity
(b). This pinch-off point constitutes a finite-time singularity with diverging
radial velocity. The energy contained in the mass of inwards rushing fluid is
thus focussed on a single point leading to the two enormously fast and thin
fluid jets shooting up- and downwards from the pinch-off point in Fig. 1 (c)
and (d).

Immediately after cavity closure the pinch-off location turns into a stag-
nation point surrounded by a locally hyperbolic flow pattern. Intuitively one
might expect the incoming liquid being deflected by the stagnation point to
cause the formation of the two jets. Our results show that this is not the
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Fig. 1. Surface profiles (black) showing the cavity created after the impact of
the disc (red) in (a), its collapse due to hydrostatic pressure (b) and the resulting
creation of two thin and fast jets, (c) and (d). Note the extremely short time scale
of jet formation: the jet grows above the original surface in less than 1% of the total
time after impact. Units are normalized by the disc radius R0 = 2cm, the impact
speed is V0 = 1m/s.
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Fig. 2. The material acceleration a = DV/Dt is confined to a small region around
the jet base. As the liquid rushes in towards the axis of symmetry its radial momen-
tum is diverted upwards into the jet. The stagnation point at (0,0) is not shown,
since it lies far too deep to influence the process longer than in the first instances
after pinch-off.
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Fig. 3. A line of tracer particles is placed at the base of the jet (a). Going forward
in time, these particles would move upwards into the jet. Reversing the flow field
and stepping backwards in time, (b) and (c), allows us to follow the tracers and
to illustrate their region of origin (d). Repeating this process for different starting
times demonstrates that the entire jet originates from a similar thin band straddling
the surface of the collapsing bubble (not shown here for clarity).

case. Jet formation turns out to be a very local process with the vertical
acceleration of the fluid occuring almost exclusively around the base (surface
minimum/maximum for the upward/downward jet, respectively) of the jet
as shown in Fig. 2.
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This result implies that the liquid contained in the jet cannot originate
from an extended bulk region around the pinch-off point, but rather from a
very thin layer of fluid straddling the surface of the original collapsing bubble,
see Fig. 3.

4 Conclusions

Using boundary integral simulations we illucidate the mechanism responsible
for the ejection of thin high-speed jets after the impact of solid objects on
a water surface. Surprisingly, the formation of the jet is not related to the
stagnation point at the closing location of the collapsing cavity, but due only
to the inertial focussing of the colliding liquid at the base of the jet. Despite
the whole liquid bulk being set into motion by hydrostatic pressure, the jet,
nevertheless, is shown to feed exclusively from a very thin layer of fluid on
the surface of the collapsing cavity.
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Practicing engineers are constantly confronted with the prospect of solving com-
plex gas-liquid bubbly flow problems in real industrial systems. The use of popu-
lation balance models coupled with the two-fluid model presents the most viable 
way of handling such flows. The homogeneous MUltiple-SIze-Group (MUSIG) 
model has recently become a widely adopted population balance approach 
whereby the continuous bubbles size range can be represented by a series of dis-
crete classes. The improved inhomogeneous MUSIG model extends the capability 
of accounting different bubble shapes and travelling gas velocities. Conversely, 
the Average Bubble Number Density (ABND) model represents another simpler 
approach in handling bubble interactions in complex gas-liquid bubbly flow. The 
capability of these three population balance models is assessed. Particular empha-
sis is directed towards the possible handling of bubbly-to-slug transition flow con-
ditions. Numerical predictions are compared against experimental data obtained 
from Lucas et al. [1] and Hibiki et al. [2]. Shortcomings and applicability of these 
models for industrial applications are also discussed.  

1   Introduction 

Complex gas-liquid bubbly flow structures are featured in many practical applica-
tions. Industrial systems that purposefully promote large interfacial areas for gas-
liquid mass transfer and efficient mixing for competing gas-liquid reactions are 
extensively employed especially in the chemical, petroleum, mining and pharma-
ceutical industries. The population balance approach, which allows the evaluation 
of averaged bubble size distribution with appropriate considerations of bubble 
interactions, is increasingly being adopted to model the aforementioned systems. 

The recent numerical studies based on the MUltiple-SIze-Group (MUSIG) 
model has typified the application of population balance approach in bubbly flow 
simulations [3-5]. In the homogeneous MUSIG model, the continuous size range 
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of bubbles can be discretized into a number of discrete size classes. For each class, 
a scalar equation is solved to accommodate the population changes caused by in-
tra/inter-group bubble coalescence and break-up. The capability of the MUSIG 
model can be further extended to account different bubble shapes with different 
travelling velocities. The inhomogeneous MUSIG model developed by Krepper et 
al. [6], which consisted of sub-dividing the dispersed phase into N number of ve-
locity fields, demonstrated the practicability of such an extension. This flexibility 
represents a robust feature for bubbly flows modelling. 

Excessive computational calculations to solve a large number of bubble classes 
with the inclusion of different bubble shapes with different travelling velocities 
may however significantly overwrite the potential benefits that the MUSIG mod-
els originally intended to achieve. Recently, an Average Bubble Number Density 
(ABND) equation, which is equivalent to the interfacial area transport equation, 
has been proposed in our previous study [7]. The ABND aims at condensing the 
representation of the bubble size distribution into a single average scalar (i.e. bub-
ble number density) –another simpler approach for solving the population balance 
equation. The main focus in this paper is directed towards comparing the capabil-
ity of the three population balance approaches (i.e. homogeneous MUSIG, inho-
mogeneous MUSIG and ABND models) to resolve various isothermal various 
flow conditions. Predictions of these models are compared against two different 
experimental data of isothermal gas-liquid bubbly flow by Lucas et al. [1] and 
Hibiki et al. [2]. 

2   Mathematical Models 

The three-dimensional two-fluid model is adopted to solve the ensemble-averaged 
of mass and momentum equations governing each phase. Denoting the liquid as 
the continuum phase (αl) and the vapour (i.e. bubbles) as disperse phase (αg), these 
equations can be found as follow 

( ) ( ) 0=⋅∇+
∂

∂
iii

ii uαρ
t

αρ
                               (1) 

( ) ( ) ( )( )[ ] i
T

ii
e
iiiiiiiii
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∂        (2) 

The total interfacial force Fi is formulated according to appropriate considera-
tion of different sub-forces affecting the interface between each phase. For the 
liquid phase, the total interfacial force is given by: 

dispersion
lg

nlubricatio
lg

lift
lg

drag
lglg FFFFF +++=                        (3) 

The sub-forces appearing on the right hand side of the above equation are: drag 
force, lift force, wall lubrication force and turbulent dispersion force. More detail 
descriptions of these sub-forces can be found in Anglart and Nylund [8]. Note that 
for the gas phase: Fg= -Flg. 
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2.1   Population Balance Approaches 

Averaged Bubble Number Density (ABND) Model 
 
In the ABND model, the population balance of dispersed bubbles is represented 
by an average quantity of bubble number density, n, which is mainly governed by 
the bubble coalescence and breakage mechanism. The average bubble number 
density transport equation can be thereby expressed as follow: 

( ) TI
n

RC
ng nu

t

n φφ +=⋅∇+
∂
∂

                                     (4) 

where RC
nφ and TI

nφ  are the bubble number density changes due to random colli-

sion and turbulent induced breakage. The phenomenological mechanism of coa-
lescence and breakage source terms need closure to describe the spatial evolution 
of the gas phase. The coalescence and breakage kernels proposed by Yao and  
Morel [9] are employed and incorporated within the ABND model. 
 
MUltiple SIze Group (MUSIG) Model 
 

For the MUSIG model, to ensure overall mass conservation for all poly-dispersed 
vapour phases, the above bubble number density equation can be re-expressed in 
terms of the volume fraction and size fraction of the bubble size class i, 

],1[ jMi∈ , of velocity group j, [ ]Nj ,1∈  according to: 

( ) ijjijg
ijj Sufαρ

t

fαρ
,=⋅∇+

∂
∂

                            (5) 

On the right hand side of the equation, the term ( )BCBCij DDPPS −−+=,  

represents the net mass transfer rate of the bubble class i resulting from the source 
of CP , BP , CD  and BD , which are the production rates due to coalescence and 

breakage and the death rate due to coalescence and breakage of bubbles evaluated 
according to the kernels proposed by Prince and Blanch [10] and Luo and Svend-
sen [11] respectively. 

3   Numerical Details 

The generic CFD code ANSYS-CFX 11 was utilised to handle the two sets of 
equations governing conservation of mass and momentum. Numerical simulations 
of two experiments were performed on a 60o radial sector of the pipe with symme-
try boundary conditions imposed at the end vertical sides. At the pipe outlet, a 
relative averaged static pressure of zero was specified. In modelling bubble in-
duced turbulent flow, the Shear Stress Transport (SST) model was adopted while 
the effect of bubbles on liquid turbulence was handled by the Sato’s bubble-
induced turbulent viscosity model. For the simulation of Hibiki’s experiment [2], 
uniformly distributed superficial liquid and gas velocities, void fraction and  
bubble size (i.e. 3mm) were specified at inlet. Bubble size in the range of 0-10 mm 
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was discretised into 10 bubble groups. These 10 size groups were further divided 
into two velocity fields in the inhomogeneous MUSIG model. For the TOPFLOW 
experiment by Lucas et al. [1], bubbles were injected from 12 equally-spaced mass 
point sources at circumvent of the pipe while the bubble size were specified ac-
cording to experimentally measured size. Twenty bubbles groups were employed 
to discretized the bubble range from 0-60mm where the first 2 groups assigned to 
the first velocity field and the other 18 to the second velocity field. Reliable con-
vergence were achieved within 2500 iterations when the RMS (root mean square) 
pressure residual dropped below 1.0×10-7. A fixed physical time scale of 0.002s 
was adopted for all steady state simulations. 

4   Results and Discussions 

Fig. 1 depicts the measured and predicted bubble size distribution and radial gas 
volume fraction profiles for the test case TOPFLOW 118 with two different gas 
 

Fig. 1. Predicted and measured bubble gas volume fraction and bubble size distribution 
profiles for the test case TOPFLOW 118 with gas injection inlet locations 0.335m (left) and 
1.552m (right) 
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injection inlet locations (i.e. 0.335m and 1.552m). In general, predicted gas vol-
ume fraction profiles of both ABND and inhomogeneous MUSIG model are in 
satisfactory agreement with the experimental result, while results of the inhomo-
geneous MUSIG model appear marginally superior to those of the ABND model. 
Evolution of the bubble size distribution is adequately captured by the inhomoge-
neous MUSIG model. Meanwhile, the ABND model tends to under-predict the 
Sauter mean diameters (see also in figure). 

 

Fig. 2. Predicted and measured Sauter mean bubble diameter (left) and gas volume fraction 
profile (right) at the measuring station of bubbly-to-slug transition flow condition 
<jg>=0.242m/s and <jf>=0.986m/s 

 
The measured and predicted local radical gas volume fraction and Sauter mean 

bubble diameter profile at the measuring station (i.e. z/D=53.5) for experiment by 
Hibiki et al. [2] are illustrated in Fig. 2. Comparing the predicted Sauter mean 
diameters, the inhomogeneous MUSIG model was found to yield comparatively 
better prediction when compared against the measured data. This could be attrib-
uted to the means of splitting the bubble velocity with two independent fields 
which facilitated the model to re-capture the separation of small and big bubbles 
caused by different lift force actuation. Nevertheless, notable discrepancies were 
found when comparing against the gas volume fraction profile. As depicted, vol-
ume fractions of both models were obviously over-predicted at the channel core 
but under-predicted at the wall region. This could be attributed to the interfacial 
force models which have been developed principally for isolated bubbles rather 
than on a swarm or cluster of bubbles. Direct applications of these models for high 
void fraction conditions, where bubbles are closely packed, become invalid and 
introduce uncertainties in the model calculations [12]. Moreover, the existing  
kernels which only featured coalescence due to only random collision and break-
age due to turbulent impact for spherical bubbles may have to be extended to  
account for additional bubble mechanistic behaviours for cap/slug bubbles in bub-
bly-to-slug transition flow conditions. 
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5   Conclusions 

The ABND model, coupled with the two-fluid model is presented and compared 
against the MUSIG model and two experimental data by Lucas et al. [1] and 
Hibiki et al. [2]. The comparison shown that ABND models can be considered as a 
viable option especially for industrial practitioners who demand a rapid design 
tool in simulating bubbly flows with reasonable accuracy. For the case of acquir-
ing highly accurate mean bubble Sauter diameter distribution, the homoge-
nous/inhomogeneous MUSIG model serves as a better alternative approach in 
handling such flows. 
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A numerical method for gas-liquid two-phase flow is applied to solve shock-
bubble interaction problems. The present method employs a finite-difference
Runge-Kutta method and Roe’s flux difference splitting approximation with
the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is
used. By this method, a Riemann problem for shock tube was computed
for validation. Then, shock-bubble interaction problems between cylindrical
bubbles located in the liquid and incident liquid shock wave are computed.

1 Introduction

Cavitation is well encountered in the flow of hydromachines. When cavitation
occurs and collapses near solid surfaces, it causes the noise, vibration and
damage to hydraulic machine systems.

To understand the behavior of collapsing of cavitation bubbles, some ef-
forts to propose cavity flow model for numerical simulations [1-3] and, analyt-
ical and experimental method for shock-bubble interaction problems [4] have
been made. Recently, present author has proposed a mathematical cavity
flow model [5,6] based on a homogeneous equilibrium model taking account
of the compressibility of the gas-liquid two-phase media. With this model,
the mechanism of developing cavitation has been investigated through the
application to a couple of cavitating flows around a hydrofoil [7,8].

The purpose of this paper is to extend to a shock-bubble interaction
problem with a high-order Runge-Kutta method and MUSCL TVD solu-
tion method for stable and accurate treatment of gas-liquid nterfaces consid-
ered by contact discontinuity. As numerical examples, one-dimensional (1-D)
gas-liquid two-phase shock tube problems are computed to investigate de-
tailed unsteady shock wave phenomena. And then, numerical investigation
for shock-bubble interaction problems between cylindrical single cavitation
bubble located in the liquid and incident liquid shock wave are solved.
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2 Homogeneous Cavitation Model

Gas-liquid two-phase flow of cavity flow is possible to model into an pseudo
single-phase flow by using concept of the homogeneous equilibrium model [3]
in which thermodynamic equilibrium is assumed and velocity slip between
both phases is neglected.

Under this model concept, the pressure for gas-liquid two-phase media is
determined by using a combination of two equations of state for gas phase
and liquid phase, that is written as follows:

ρ =
p(p + pc)

K(1 − Y )p(T + Tc) + RY (p + pc)T
(1)

3 Numerical Method

By using above cavitating flow model the 2-D governing equations for the
mixture mass, momentum, energy and the gas-phase mass conservation can
be written in the curvilinear coordinates (ξ, η) as follows:

∂Q

∂t
+

∂E

∂ξ
+

∂F

∂η
=

∂Ev

∂ξ
+

∂F v

∂η
+ S (2)

where Q is an unknown variable vector, E, F are flux vectors and Ev, F v

are viscous terms. S is the source term. For instance, Q, E and Ev are [8],

Q = J

⎛
⎜⎜⎜⎜⎝

ρ
ρu
ρv
e

ρY

⎞
⎟⎟⎟⎟⎠ , E = J

⎛
⎜⎜⎜⎜⎝

ρU
ρuU + ξxp
ρvU + ξyp

ρUH
ρUY

⎞
⎟⎟⎟⎟⎠ , Ev = J

⎛
⎜⎜⎜⎜⎝

0
ξxτxx + ξyτxy

ξxτyx + ξyτyy

ξxT11 + ξyT22

ξx�Yx + ξy�Yy

⎞
⎟⎟⎟⎟⎠

The hydraulic flow with hydraulic transients and hydroacoustics such as
cavitating flow has compressible flow characteristic at low Mach number. For
this kind of flow, a compressible flow model that includes a preconditioning
method is advantageous.

Applying the preconditioning method to Eq.(2), we obtain 2-D precondi-
tioned governing equations with unknown variablevectorsW = [p, u, v, T, Y ]T

written in curvilinear coordinates as follows [8]:

Γ−1 ∂W

∂τ
+ Γ−1

w

∂W

∂t
+

∂(E − Ev)
∂ξ

+
∂(F − F v)

∂η
= S (3)

In this study, τ is pseudo-time and Γ−1
w is a transform matrix of the Ja-

cobian matrix ∂Q/∂W . The preconditioning matrix Γ−1 is formed by the
addition of the vector θ[1, u, v, H, Y ]T to the first column of the Γ−1

w .
Fundamental equations (2) and (3) are solved by using appropriate numeri-

cal methods such as finite-difference method with TVD Runge-Kutta method.
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Then, Roe’s flux difference splitting (FDS) method with the MUSCL-TVD
scheme [9] is applied to enhance the numerical stability, especially for steep
gradients in density and pressure near the gas-liquid interface. Therefore, the
derivative of the flux vector, for instance, E with respect to ξ at point i can
be written with the numerical flux as (∂E/∂ξ) = (Ei+1/2 −Ei−1/2)/∆ξ and
then, the approximate Riemann solver based on the Roe’s FDS is applied as
shown in Ref[8].

In the numerical integration of governing equations (3), the 4th-order TVD
Runge-Kutta explicit method is used.
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Fig. 1. Computational results of pressure, density, velocity and temperature dis-
tribution for ideal gas at α = 100%
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tribution for gas-liquid 2-phase media at α = 20%
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4 Numerical Results

At first, the present computational method has been validated by using the
Riemann problem suggested by Sod[10] as a standard test problem. The
domain is x[−10m, 10m]. In this case Eq. (3) is reduced to 1-D Euler equation
without preconditioning. Initial conditions of left (L)- and right (R)-hand side
at discontinuous surface (x = 0m) at T = 300K are as followings.

pL = 0.1MPa, uL = 0 m/s, αL = α

pR = 0.01MPa, uR = 0 m/s, αR = α

Figure 1 shows comparisons with exact solution for shock tube problem of
ideal gas (α = 100%) with the ratio of specific heats γ = 1.4 at t = 0.01s. The
results obtained by present high-order numerical method for gas-liquid two-
phase flow with grid points of 10000 are almost coincide with exact solutions.
The result by 100 points is also fairly well predicted except small dissipation
at discontinuity. In this figure symbols represent computed results on the real
grid points obtained by third-order MUSCL TVD scheme. Results by both
second-order and third-order show a monotonic solution without numerical
oscillation. But, third-order is closer to the exact solution than the second-
order even they have same grid points of 100.

Based on the validity of the present method, the present high-order method
was applied to compressible gas-liquid two-phase shock tube flow in thermal
process with arbitrary void fraction to investigate the characteristics of pres-
sure waves propagating in the gas-liquid two-phase medium.

Figure 2 shows calculated results for gas-liquid two-phase medium at void
fraction of α = 20%. In this case compression wave is propagating with
decreasing the void fraction because the compression wave compresses the
two-phase medium. However expansion wave shows the opposite behavior
with increasing the void fraction, resulting the contact discontinuity exists
and propagates toward right-hand side by the wave induced velocity. In this
computation, the result obtained by using 10000 grid point is regarded as
a exact solution. According to the present investigation, induced velocity
showed a tendency of increasing at large void fraction.

Next, present numerical method applyed to shock-bubble interaction prob-
lems between stationary or incident liquid shock wave and cylindrical cavita-
tion bubbles located in the liquid. A square domain with a base of 4 times of
bubble diameter (d) and 401 × 401 grid points are used. As an initial condi-
tion, a single bubble with void fraction of α = 1 is located in the center of a
stationary flow field with α = 0 at isothermal condition. The initial pressure
of gas in bubble was taken as 0.1MPa. A uniform pressure of 10MPa was
given around the bubble. Figure 3 shows a time evolution of bubble collaps-
ing process. Bubble is gradually shrunken by the initial pressure difference
up to almost terminal stage of collapse. At this time preessure in the bubble
reaches maximum value around 240MPa and a rebound shock wave occurs.
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Fig. 3. Collapse of a bubble in a hydrostatic pressure field and a rebound (red:
240MPa, Green: 10MPa, blue: 0.1MPa)

Fig. 4. Time evolution of velocity vectors and void fraction distribution (red: α =
1., blue: α = 0.)

Then this wave propagates to liquid region and the bubble is expended with
time.

Another shock-bubble interaction problem between cylindrical bubble lo-
cated in the liquid and incident liquid shock wave are computed. In this case,
in the flow field with uniform pressure of 0.1MPa incident liquid shock wave
with a high pressure of 100MPa is placed at 3d upstream from single bubble
center. Figure 4 shows time evolution of velocity vectors and void fraction dis-
tribution around cavitation bubble in the collapsing process. When incident
shock wave impacts on the bubble the shock wave is diffracted around bubble
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and it propagates toward downstream. Due to the pressure difference between
back and forth of shock plane, the bubble is asymmetrically contracted with
concave shape. A sort of microjet is formed and eventually it impinges on
the rear surface of the bubble with reflection shock wave. Bubble collapsing
behavior, shock-bubble interaction and shock transmission/reflection pattern
are well simulated in these applications.

5 Conclusions

A high resolution numerical method for gas-liquid two-phase flow is applied to
solve shock-bubble interaction problems. From the numerical example of gas-
liquid two-phase 1-D shock tube problems, it is confirmed that the present
numerical method quite well simulates unsteady phenomena of the shock
waves. It showed a successive application to two-phase shock tube flows in
comparison with exact solutions. At shock-bubble interaction problems bub-
ble collapsing behavior is investigated and shock-bubble interaction and shock
transmission/reflection pattern are well simulated.
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1 Introduction

The kinetic schemes [Des95], also known as Boltzmann schemes are based on
the moment-method-strategy, where an upwind scheme is first developed at
the Boltzmann level and after taking suitable moments we arrive at an up-
wind scheme for the governing Euler or Navier-Stokes equations. The Kinetic
Flux Vector Splitting (KFVS) scheme [Des86], which belongs to the family
of kinetic schemes is being extensively used to compute inviscid as well as
viscous flows around many complex configurations of practical interest over
the past two decades. To resolve many flow features accurately, like suction
peak, minimising the loss in stagnation pressure, shocks, slipstreams, triple
points, vortex sheets, shock-shock interaction, mixing layers, flow separation
in viscous flows require an accurate and low dissipative numerical scheme.
The first order KFVS method even though is very robust suffers from the
problem of having much more numerical diffusion than required, resulting in
very badly smearing of the above features. However, numerical dissipation
can be reduced considerably by using higher order kinetic schemes. But they
require more points in the stencil and hence consume more computational
time and memory. The second order schemes require flux or slope limiters in
the neighbourhood of discontinuities to avoid spurious and physically mean-
ingless wiggles or oscillations in pressure, temperature or density. The limiters
generally restrict the residue fall in second order schemes while in first or-
der schemes residue falls up to machine zero. Further, pressure and density
contours or streamlines are much smoother for first order accurate schemes
than second order accurate schemes. A question naturally arises about the
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possibility of constructing first order upwind schemes which retain almost all
advantages mentioned above while at the same time crisply capture the flow
features. In the present work, an attempt has been made to address the above
issues by developing yet another kinetic scheme, known as the low dissipative
modified KFVS (m-KFVS) method [Ani08] based on modified CIR (MCIR)
splitting with molecular velocity dependent dissipation control function.

2 m-KFVS Method

We now present the basics of m-KFVS method with respect to 1D Euler equa-
tions. Consider the modified CIR (MCIR) split [RD07, Ani08] 1D Boltzmann
equation in the Euler limit

∂F

∂t
+

v + |v|φ
2

∂F

∂x
+

v − |v|φ
2

∂F

∂x
= 0 (1)

where, F is the Maxwellian distribution function and φ is the dissipation
control function, given by φ = e−α|v|. The corresponding modified partial
differential equation is given by

∂F

∂t
+ v

∂F

∂x
=

∆x

2
|v|φ∂2F

∂x2
+ O (∆x)2 (2)

It can be observed that α = 0 gives the first order KFVS method while
α → ∞ corresponds to central differencing scheme, which is unstable. A
detailed mathematical analysis and the relevant physical arguments for the
choice of φ are presented in [Ani08]. Taking moments of eq. (1), we get the
m-KFVS Euler equations

∂U

∂t
+

∂

∂x

(
Gm+

)
+

∂

∂x

(
Gm−) = 0 (3)

Here, Gm± are the modified KFVS fluxes, which are functions of the dissipa-
tion control parameter,α. When α = 0, we regain the usual KFVS fluxes. Thus,
by suitably choosing α (0 ≤ α <∞), the numerical dissipation at each point or

kfvs

entropy,  min = 0,  max = 0.0269315

m-kfvs

entropy,  min = 0,  max = 0.0022103

q-kfvs

entropy,  min = 0,  max = 0.000166269

Fig. 1. Subsonic flow past a circular cylinder, M∞ = 0.38 and AoA = 0o. From
left to right: Entropy contours based on first order KFVS, low dissipative m-KFVS
and second order accurate q-KFVS methods.



A Low Dissipative Discrete Adjoint m-KFVS Method 621

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−2

−1

0

1

2

3

4
Cp − distribution on the cylinder

x

−C
p

KFVS
m−KFVS
q−KFVS

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mach number variation on the cylinder

x

M
ac

h 
nu

m
be

r

KFVS
m−KFVS
q−KFVS

Fig. 2. Subsonic flow past a circular cylinder, M∞ = 0.38 and AoA = 0o. From
left to right: Cp distribution and Mach number variation on the cylinder surface
based on KFVS, m-KFVS and q-KFVS methods.

kfvs-pr mkfvs-pr qkfvs-pr

Fig. 3. Transonic flow past bi-NACA airfoil, M∞ = 0.85 and AoA = 0o. From left
to right : Pressure contours based on KFVS, m-KFVS and q-KFVS methods.

cell in the computational domain can be reduced considerably by still using the
first order stencil. The dissipation control parameter α at grid point or cell cen-
tre (in finite volume method) constitute a dissipation control vector. We then
have a distributed control on the numerical diffusion or equivalently on the en-
tropy generated by numerical diffusion. The cell-centred finite volume method
based on m-KFVS has been successfully applied to many standard test cases
for inviscid flows and some of the results are presented in Figs. (1), (2) and (3).
These plots clearly show that the m-KFVS method captures the flow features
much more accurately than the first order KFVS method and are comparable
to second order accurate q-KFVS method.

3 Optimal Control of Numerical Dissipation

Although, the m-KFVS method resolves the flow features more accurately
compared to KFVS and near second order accuracy has been achieved in
smooth regions, the numerical dissipation generated may not be minimal
and hence the dissipation control parameter, α is in general not optimal.
It is tempting therefore to ask a pertinent question, whether we can find
optimal α-distribution, which gives minimum numerical dissipation. One of
the ways of attaining the above objective is by posing the minimisation
of numerical dissipation in m-kFVS method as an optimal control problem
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kfvs

entropy,  min = 0,  max = 0.000505714

m-kfvs-ad

entropy,  min = 0,  max = 0.000160531

q-kfvs

entropy,  min = 0,  max = 6.7084e-05

Fig. 4. Low subsonic flow past NACA 0012 airfoil, M∞ = 0.1 and AoA = 0o.
Left to right : Entropy contours Based on KFVS, m-KFVS-adjoint and q-KFVS
methods.

kfvs m-kfvs m-kfvs-adjoint q-kfvs

Fig. 5. Transonic flow past NACA 0012 airofoil, M∞ = 0.85 and AoA = 1o. Left to
right : Entropy contours based on KFVS, m-KFVS, m-KFVS-adjoint and q-KFVS
methods.

kfvs m-kfvs m-kfvs-adjoint q-kfvs

Fig. 6. Transonic flow past NACA 0012 airfoil, M∞ = 0.85 and AoA = 1o. Left to
right : Pressure contours based on KFVS, m-KFVS, m-KFVS-adjoint and q-KFVS
methods.

[ARO07, Ani08], where the control variables are the dissipation control vec-
tor, α. The number of control variables is equal to the number of cells in
the computational domain, as each cell has one dissipation control variable.
In the present work, the objective is to minimise the numerical dissipation
generated by m-KFVS method and hence a natural choice for the cost func-
tion is a measure of change in entropy, which has to be minimised subject
to the governing state equations as constraint. The discrete form of the cost
function [ARO07, Ani08] is defined as the sum of the squares of change in
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entropy at all cells in the computational domain, that is,

I = I {U (α)} =
N∑

i=1

(
∆S

R

)2

i

,

(
∆S

R

)
i

= ln

(
p

ργ

)
i

− ln

(
p

ργ

)
∞

(4)

Here, U is the conserved vector, α is the dissipation control variable, N is the
total number of cells in the computational domain and ∆S

R is the change in en-
tropy at any cell. The conditions at∞ are given by freestream conditions. The
cost function has to satisfy the governing state equations as constraint. In the
present work, we have used the gradient based optimisation method, which re-
quires the evaluation of sensitivity gradients to obtain the minimum value of
cost function. The sensitivity gradients of the cost function w.r.t. the control
variables are obtained by using discrete adjoint approach. The automatic dif-
ferentiation tool Tapenade [HP04] has been used to ease the development of
discrete adjoint solvers. The method of steepest descent is used as an optimi-
sation solver to find the direction, which results in optimal α.

In isoentropic flows, the only contribution to the cost function comes from
the numerical change in entropy as the physical change in entropy is zero.
Therefore, the cost function can be driven to its minimal value zero on that grid
using optimisation solver. In flows with discontinuities such as shocks, both
the physical and numerical entropy contribute to the cost function. Also, the
numerical entropy cannot evidently be driven to zero. However, it can be driven

kfvs m-kfvs-adjoint q-kfvs

Fig. 7. Supersonic flow past NACA 0012 airfoil, M∞ = 1.2 and AoA = 0o. Left to
right : Pressure contours based on KFVS, m-KFVS-adjoint and q-KFVS methods.

Fig. 8. Transonic flow past Onera M6 wing, M∞ = 0.84 and AoA = 3.06o. Left
to right: Pressure contours on the upper surface of the wing based on KFVS and
m-KFVS-adjoint methods.
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Table 1. Low subsonic flow past NACA 0012 airfoil, M∞ = 0.1 and AoA = 0o.
Comparison of maximum entropy change in the computational domain.

Scheme KFVS m-KFVS m-KFVS-adjoint q-KFVS
Max. entropy 5.0571 × 10−4 2.3984 × 10−4 1.6053 × 10−4 6.7084 × 10−5

Table 2. Supersonic flow past a NACA 0012 airfoil with M∞ = 1.2 and AOA = 0o.
Comparison of lift and drag coefficients.

Scheme KFVS m-KFVS m-KFVS-adjoint q-KFVS AGARD
CL 0.000168 0.000049 0.000039 0.000063 0.0
CD 0.1023 0.0966 0.0958 0.0968 0.0946 - 0.0960

to entropy produced by shocks plus a small amount necessary for stability and
for obtaining wiggle free solution near shocks. The numerical results based on
m-KFVS-adjoint method are shown in Figs. (4) to (8) and Tables (1) and (2).
These results clearly demonstrate that the optimisation procedure further re-
duces the numerical dissipation in m-KFVS method and hence results in more
accurate solution. It has been observed that the number of optimisation cy-
cles, which results in minimal numerical dissipation depends on the initial α-
distribution. Numerical experiments have shown that 2− 3 cycles of optimisa-
tion are adequate if initial α-distribution is chosen from the convergedm-KFVS
solution. The present work can be referred as numerical scheme optimisation.

On the whole, it can be summarised that the m-KFVS method, which
is formally first order accurate inherits robustness, smoothness of contours
and high residue fall from first order KFVS, and has accuracy, crispness and
sharpness of second order q-KFVS method.
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Summary. We compute the analytical Hessian for an optimal shape design
problem governed by the quasi-one-dimensional Euler equations. We derive
the Hessian explicitly for this case, and propose two formulations that can
be applied in general to CFD. One method is less costly than the other but
may be less stable as the analysis indicates. We present results pertinent to
a problem involving a shock showing the interest of using second order infor-
mation in the minimization.

Keywords: Aerodynamic Optimization, Hessian, Adjoint method, Com-
pressible Euler Flow.

1 Introduction

Industrial aerodynamic optimization problems are large scale ill-conditioned
problems, with many inequality constraints, that require significant computa-
tional resources. In reality there are not enough resources and time to achieve
complete convergence and only improved design is possible. The state-of-the-
art practice is to use the adjoint method to compute the reduced gradient, and
quasi-Newton method is used to accelerate the convergence. Quasi-Newton
approximates the Hessian (or its inverse) by a low rank update method (rank-
2 in most cases), taking the identity matrix to be the initial guess. That choice
corresponds to having the gradient as the initial search direction in the opti-
mization process, which can serve as a very poor search direction.

In industrial aerodynamic design the number of design variables is in the
hundreds, and there are not enough resources for more than O(10) opti-
mization iterations, resulting in poor convergence of rank-2 quasi-Newton
methods. Therefore, we think that a better approximation of the Hessian
is essential to achieve convergence. Such an approximation can serve as the
initial guess for a quasi-Newton method.
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The Hessian for such problems is typically highly ill-conditioned as ana-
lyzed for example by Arian & Ta’asan (1999). For such problems the gradient
pre-multiplied by the approximated inverse of the Hessian serves as an excel-
lent search direction close enough to the solution as demonstrated by Arian &
Vatsa (1999). However, the techniques used in these references are not prac-
tical in the industrial setting in which the governing state equations are more
difficult to analyze. In practice we would like to use the available informa-
tion, such as sensitivities and adjoint solutions, to generate an approximated
Hessian numerically.

To this end, in this work we report three different ways to compute the
Hessian for an optimal shape design problem governed by the quasi-one-
dimensional Euler equations. That model problem is simple enough to be
solved analytically but still retain the complexity of fluid dynamics that
makes it interesting. The first approach is specific to the problem under
scrutiny, whereas the other two can be applied in general. All of the ap-
proaches are consistent, as shown in [arianiollo]. In this paper we actually
use the analytical Hessian in an optimization problem with shocks, to demon-
strate its application and its effectiveness on convergence

2 Problem Definition

We consider the compressible Euler equations in a quasi-one-dimensional ap-
proximation. The flow takes place inside a nozzle of height h(x), where x is
the spatial coordinate. The optimal design problem consists of minimizing an
objective function, J(U), subject to state equations:

minh(x) J(U)
R(U, h) = 0 (1)

with
R(U, h) =

d

dx
(hF )− dh

dx
P, (2)

and

U = (ρ, ρq, ρE)T , F = (ρq, ρq2 + p, ρHq)T , P = (0, p, 0),

where p is the static pressure, and ρH is the total enthalpy density.
In the following numerical example, the objective function is defined to

be the integral of the negative pressure distribution across the domain. The
reduced gradient and Hessian are calculated by first and second order pertur-
bations, respectively, to the non-linear problem at a given design point. The
perturbation of the original minimization problem results in the following
linear sub-problem:

minh̃ J(U + u)
Lu− f = 0 (3)
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where U is given, u is a perturbation to U , f = f(h̃), and h̃ is perturba-
tion of h. The channel height, h(x), is composed of a seed height function,
h0(x), perturbed by a sum of N fixed shape basis functions, hi(x), with the
coefficients, ci, serving as the design variables:

h(x) = h0(x) +
N∑

i=1

cihi(x).

The linear operator, L, has the following explicit form,

Lu =
d

dx
(hAu)− dh

dx
Bu,

where A = ∂F/∂U and B = ∂P/∂U . The right hand side of the linearized
problem has the following explicit form:

f =
dh̃

dx
P − d

dx
(h̃F ) (4)

The boundary conditions for the above perturbation equations, Lu− f = 0,
depend on the boundary conditions of the unperturbed problem.

3 Direct and Adjoint Based Methods for Hessian
Computation

In this simple model problem the gradient as well as the Hessian can be
computed by the implicit function theorem, since the solution of the flow in
the nozzle can be computed at the cost of solving a non-linear equation in the
flow variables at each point of the domain, see [arianiollo] for details. Indeed,
in the case of flows with shocks, it is possible to compute first and second
derivatives of the shock position with respect to the design variables.

In practice the Hessian can not be calculated directly. We propose two
methods to approximate the Hessian by solving sensitivity and adjoint equa-
tions. These methods can be applied for massive problems for which the flow
is approximated using CFD. The first method requires solving the adjoint-
sensitivity equations in addition to the standard sensitivity equations and
adjoint equation (O(2N + 1) linear solutions) while the second method re-
quires only the sensitivity and adjoint equations (O(N +1) linear solutions).
Both methods use the following representation of the Hessian,

d2J

dcidcj
=
∫

Ω

[( dv

dcj

)T

fi + vT dfi

dcj

]
dx, (5)

where v satisfies the adjoint equation L∗v = ∂p
∂U , fi = ∂R

∂ci
depends on the

state solution.
We observe that the term fi is discontinuous at the shock (Heaviside func-

tion) and the adjoint v has a log singularity at the throat but is continuous



628 E. Arian and A. Iollo

at the shock. The term dfi/dcj contains a delta function at the shock since
it contains a derivative of the pressure, p, that in turn contains a Heaviside
function.

The first method consists of a manipulation of the above formula taking
advantage of the adjoint problem to the governing problem, see [arianiollo]
for details. The second method uses a representation that can be derived from
Eq.5 by further analysis of the adjoint-sensitivities, dv/dcj , and eliminating
the need to solve N linear equations for these sensitivities. In this case, the
Hessian can be represented in the following matrix-vector form:

d2J

dcidcj
=
∫

Ω

[
dU
dci

1

]T
{[

∂2p
∂U2

T
0

0 0

]
− v ⊗

[
∂L∗

∂U
∂L∗

∂cj
∂L
∂ci

0

]}[ dU
dcj

1

]
dx (6)

The notation ⊗ is introduced in order to clarify the application of the oper-
ators in the integrand on the sensitivities and adjoint variables. It should be
interpreted as follows:

v ⊗ ∂L∗

∂U

dU

dcj
=

∂L∗

∂U

(dU

dcj

)
· v

v ⊗ ∂L∗

∂cj
=

∂L∗

∂cj

(
v
)

v ⊗ ∂L

∂ci

dU

dcj
= v · ∂L

∂ci

(dU

dcj

)

where the parenthesis A(x) denotes the action of an operator A on x, and
the dot v · x denotes a dot product between v and x.

The cost of the second method consists of solving N linear sensitivity
equations, and 1 additional adjoint equation, all together O(N + 1) linear
equations. Although the second method seems to have an advantage over the
first with regards to computational cost, we suspect that it is likely to be more
unstable in practice, since some of the terms involve multiplication of delta
functions at the shock. This is not the case for the Hessian representation of
the first method given in Eq.(5).

4 Numerical Test Demonstrating the Impact of the
Hessian on Convergence of Transonic Optimal Design

We demonstrate the effectiveness of the second order sensitivity information
on an optimal shape design problem governed by the quasi-one dimensional
Euler equation. In the numerical test we compute the Hessian using the direct
approach as described in detail in [arianiollo]. Total enthalpy is set to 4, total
pressure at inlet is 2, the pressure at the exit is 1.6. That choice of parameters
and the initial shape guarantees the flow to be transonic and that it contains
a shock. We minimize the following objective functional,
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min
ck

∫ 1

−1

−pdx + µ

N∑
i=1

c2
i ,

where the first term is the integral of the (negative) pressure, and the second
term is a regularization term to prevent highly oscillatory solutions (we choose
µ = 1/20). The coefficients ck are relative to a spline representation of the
perturbation of the initial geometry h0(x). The collocation points of such
splines are N = 12 in this case, and they are uniformly distributed between
1/10 and 1/2, i.e., the interval where the geometry is perturbed. We have that
∀x ∈ Ω, Ω = [−1, 1] and h0(x) = 2 for −1 ≤ x < −1/2, h0(x) = 1+sin2 (πx)
for −1/2 ≤ x ≤ 1/2, and h0(x) = 2 for 1/2 < x ≤ 1.

Minimizing the negative pressure term in the objective function is equiv-
alent to maximizing the pressure, which tends to increase the region of the
nozzle that has relatively high pressure.

We apply both Newton’s method and gradient descent method. For the
Newton’s method the Hessian is determined exactly at every iteration. The
convergence results are shown in Fig. 1, depicting the L2 norm of the error,
in log scale, as a function of iteration number. Using the Hessian the error
is reduced by a factor 0.1 at every iteration, after the first three iterations,
while only by a factor of about 0.85 when using the gradient only.

In Fig. 2, the error (depicted by ‘o’) is compared with the negative gradient
‘+’, and gradient pre-multiplied by the inverse of the Hessian ‘*’. Clearly the
inverse of the Hessian is “correcting” the gradient direction to point to the
error.

Finally, in Fig. 3 and Fig. 4 the nozzle hight h(x) and the pressure distribu-
tion p(x) are given, respectively. The dashed line depicts the quantities before
optimization and the solid line depicts the optimal solution. Since the initial
geometry is obtained by a random perturbation of the splines coefficients, the
initial shape is oscillatory, whereas the final result is much smoother thanks
to the regularization term.
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Fig. 1. Convergence history in a Log plot using Gradient Descent and Hessian
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Fig. 2. After three Newton iterations the gradient is give by ‘+’, the error by ‘o’,
and the gradient pre-multiplied by the inverse of the Hessian is depicted by ‘*’.
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Fig. 3. The initial geometry, h(x), is depicted by dashed line, and the optimal
solution is depicted by the solid line
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Fig. 4. The initial pressure distribution, p(x), is depicted by dashed line, and the
optimal solution is depicted by the solid line
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1   Introduction 

Recently, aerodynamic shape design works with adjoint approach are popularly 
carried out by many researchers because the adjoint formulation can provide accu-
rate sensitivities without additional computational time cost accompanied with the 
increase of the number of design variables. [LKJ04]  

However, the adjoint approach still has several unsettled problems to be exten-
sively applied to various aerodynamic shape optimization applications. Most of all, 
the adjoint solver often shows too poor convergence characteristics to provide 
sufficiently accurate gradient information in complicated configuration design 
problems. The convergence of the adjoint solver is mainly affected by that of 
baseline flow solver. Therefore, the flow phenomenon itself such as a severe flow 
expansion, large separation and strong shock waves or the numerical schemes 
applied to the baseline solver can be the causes. In addition, the convergence char-
acteristics of an adjoint solver are extremely affected by the poor mesh quality 
from grid generator or modifier during the design process.  

In the present study, the increase of robustness in the sensitivity analysis with 
discrete adjoint formulation is achieved by introducing volume-integrated objec-
tive functions and a numerical dissipation term to enhance the diagonal dominance 
of the adjoint Jacobian matrix. The performances of present approaches are vali-
dated through 2- and 3-D sensitivity analyses and design applications where the 
adjoint solver hardly converges.  

2   Sensitivity Analysis via Volume Integrated Functions 

The differentiation of surface-integrated objective functions have conventionally 
non-zero value only on the wall boundary of adjoint formulation as given in 
Eqs.(1)-(2). In the inner computational domain the adjoint vectors are evaluated 
by Eq.(1). 

T T

m

VL

I R R

J t Q Q
+

∂ ∂
∆Λ = − Λ

∆ ∂ ∂

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠                       

       (1) 
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Here, the matrix I indicates an identity matrix and J is Jacobian. The van-Leer flux 
Jacobian which is conventionally used in the flow solver is indicated by[ ]R Q∂ ∂ . 

The boundary condition on the surface can be given as follows. 

{ }0
T T

TB

B

RR F

Q Q Q
=

∂∂ ∂
Λ + Λ +

∂ ∂ ∂

⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎩ ⎭

     (on the wall)          (2) 

where subscript B represents the boundary cell. R, Q and F denote the discrete re-
sidual equation, flow variable vector and the objective function respectively. The 
differentiated objective function term,[ ]F Q∂ ∂ , has non-zero value on the wall 

boundary only. Therefore, the time-marching processes on the inner computational 
domain and other boundary regions except wall boundary region are mainly gov-
erned by the differentiated flux terms,[ ]R Q∂ ∂ , of the discretized governing equa-

tions. Thus, any discontinuous perturbation of the differentiated flux terms caused 
by highly non-linear flow phenomenon and/or low quality of mesh distribution may 
affect stability of the time marching process of adjoint vector. On the other hand, 
the volume-integrated objective functions can play a role of a constant-valued 
source term which can stabilize the time marching process as given in Eq.(3).  

T T T

m

VL

I R R F

J t Q Q Q
+

∂ ∂ ∂
∆Λ = − Λ −

∆ ∂ ∂ ∂

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

                            (3) 

In Eq.(3), the objective function, especially drag coefficient, can be defined in 
the inner computational domain by a volume integrated form. The drag coefficient 
via volume-integration of entropy variation derived by Paparone et al.[LR03] can 
be given by Eq. (4).  

( )F V gV dρ∞ Ω
= ∇ ⋅ Ω∫                                    (4) 

where Ω defines the computational domains divided by the sensing terms into 
wave and viscous drag regions. The entropy variation function g is defined by 
Eq.(5) as follows.  

( ) 2
1 2/ ( / ) ( / )s sg s f s f s∆ = − ∆ − ∆                          (5) 

Here, fs1 and fs2 correspond to the coefficients of the first and the second order 
terms of Taylor series expansion for non-dimensional velocity with respect to  
entropy variation.  is the universal gas constant and s denotes entropy. In the 
present paper, the effects of volume-integrated drag coefficient for sensitivity 
analysis codes are presented for a 2-D transonic airfoil. Figure 1 shows the com-
parison of the residual history of the present adjoint solvers via surface integrated 
and volume integrated drag coefficients. The time iterative calculation is per-
formed with a same CFL number over NACA0012 airfoil at the free-stream condi-
tion that Mach number is 0.7, angle of attack is 3.1° and Reynolds number is 9 
million. The size of O-type mesh system is (320x128) which is too fine to provide 
the flow solver with sufficient amount of numerical dissipation for securing good 
convergence. Conventionally, in case that good convergence characteristics of  
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Fig. 2. Comparison of Pressure Contours [Baseline(Left) and Designed (Right)] 

flow solver is not secured even though the solution shows fairly good accuracy, 
the adjoint solver hardly converges as shown in Fig. 1. On the other hand, the vol-
ume integrated objective function case converges very well. In this test case, the 
design optimization with gradient based method can be carried out by the volume 
integrated objective function case only. For the test case, a drag minimization with 
maintaining lift coefficient is performed. Through 12 design iterations, drag coef-
ficient can be diminished by 32% during the lift coefficient slightly increases. The 
shock waves on the upper surface of the airfoil are weakened fundamentally by 
comparing it with the baseline model as shown in Fig. 2. 

3   Enhancement of Diagonal Dominance of Adjoint Matrix 

For the second strategy, a Jameson-type numerical dissipation is considered for 
the discrete adjoint formulation. In case that the solution from the baseline solver 
is evaluated using 5 stencils for 3rd order spatial accuracy which is common in 
conventional CFD solvers, the adjoint Jacobian matrix for 1-D problem can be 
represented by Eq. (6) 
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where 0ε = in case of original adjoint formulation and 0ε > in case of the modi-
fied adjoint formulation. To modify the adjoint matrix to have more diagonal 
dominance, a difference type symmetric equation such as numerical dissipation is 
needed. In the present work, 4th order numerical dissipation which is represented 
by the variable G is considered as shown in Eq.(7).  

            (7) 

where 1/2iε +  is the coefficient term for dissipation at the cell interface and a newly 

defined variable for dissipation G is  

                                               (8) 

The dissipation term is added to RHS of the discrete adjoint equation as an anti-
diffusion term to enhance the diagonal terms as shown in Eq.(9). 

The diagonal dominance of the adjoint Jacobian matrix can be tested by a con-
ventional stability condition as shown in Eq. (10). The ratio, A’, of the diagonal 
term to the summation of off-diagonal terms for the modified Jacobian matrix can 
be easily known that it is always smaller than that of original adjoint Jacobian 
matrix, A. The condition represents that the modified adjoint matrix can have more 
diagonal dominance and it is directly related to the stable convergence characteris-
tics of adjoint solver.  
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The definition of the coefficient for the dissipation can be given by 
Eqs.(11)~(14). The proper scaling of the dissipative terms is accomplished 
through the factors as follow.  

(4)
1/2 1/2i iCε ε+ += , and 

11/2

1

2 i iiC C Cξ ξ++ ⎡ ⎤= +⎣ ⎦
, 

where C eξ ξ ξϕ= , and 1 ( )e e σ
ξ η ξϕ = + (2-D case)                         (11) 

Moreover, e is the spectral radius of the flux Jacobian matrices in the body-
fitted curvilinear directions that conform to the body surface. A conservative esti-
mate of this spectral radius is constructed according to the following formula,  

2 2ˆ
x ye u n a n n= ⋅ + +                                           (12) 

where a is the speed of sound at the center of the cell, and n is the average of the 
directed area vectors of the two faces in the ξ -direction. The 2nd and 4th order 

coefficients are as follow. 

(2) (2)
, 1,max( , )i j i jkε ν ν +=                                          (13) 

where 
1, , 1,

1, , 1,

1, , 1,

,

1, , 1,

2

,

2

i j i j i j

i j i j i j

D D D

i j i j i j

i j

D D D

i j i j i j

C C C

p p p

C C C

p p p

ν

+ −

+ −

+ −

+ −

∂ ∂ ∂
− +

∂ ∂ ∂
=

∂ ∂ ∂
+ +

∂ ∂ ∂

and 
,i jDC is the volume integrated drag coefficient 

on Cell (i,j). The 4th order coefficient can be given by Eq.(14).   

(4) (4) (2)max(0,( ))kε ε= −                                          (14) 

In order to prevent the deterioration of the accuracy by the dissipation term, the 

coefficient, (2)ε is taken proportional to the normalized 2nd difference of volume 
integrated sensitivity which acts as a sensor that turns off around the boundary of 
entropy drag. 

In order to quantify an adequate size of dissipation, the gradients according to 
the coefficients are compared with those of no dissipation case in a low anlge of 
attack case in Fig. 3. As shown in Fig.3, the k(4) =1/128 case shows quite reason-
able accuracy. Therefore, hereafter, the sensitivity analysis and design works in 
the present work are performed with k(4) =1/128 case. However, the determination  
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Fig. 5. Comparison of Pressure Contours [Baseline(Left) and Designed (Right)] 

of the coefficient is still problem-dependant. According that the dissipation in-
creases, the adjoint Jacobian matrix can have more diagonal dominance but the 
accuracy of the gradients decreases. The sensitivity analyses and design optimiza-
tion works are carried out for transonic flows in 2- and 3-D applications where the 
flow solver shows residual oscillation just below 4th order and the adjoint solver 
diverges. The test case of 2-D problem is same to the volume integrated adjoint 
problem. In 3-D case, the present approach is tested in the free-stream condition 
that Mach number is 0.84, angle of attack is 5.6°, the Reynolds number is 14.6 
million. As shown in Fig. 1 and 4, in both cases, the modified adjoint formulation 
via numerical dissipation show good convergence characteristics in comparison 
with the original adjoint form. A drag minimization with maintaining lift coeffi-
cient is carried out for 3-D wing design problem. Figure 5 shows the pressure  
distributions around the baseline and designed wings. Through the design optimi-
zation, the drag coefficient can be diminished by 17.5% while the lift coefficient 
remains at the initial value.  



        Strategies for Robust Convergence Characteristics of Discrete Adjoint Method 639
 

4   Conclusion 

Two strategies for improving the convergence characteristics of discrete adjoint 
solver are suggested. The volume integrated objective function can play a role of 
source term for the discrete adjoint formulation which can stabilize the conver-
gence characteristics. By using the volume integrated form of drag coefficient, 
sensitivity analysis and design optimization can be successfully performed with 
the low quality mesh system where the adjoint solver with surface integrated ob-
jective function hardly converges. However, the volume integrated form for the 
lift and induced drag is not known yet. It needs further studies to be extended to 3-
D problems. As an alternative, the adjoint Jacobian matrix can be modified to 
have more diagonal dominance by using the Jameson-type numerical dissipation. 
The stability condition can reveal the modified adjoint matrix can have more di-
agonal dominance than the original adjoint matrix has. Through 2- and 3-D sensi-
tivity analyses and design optimization applications, the present approach shows 
that it can secure robust convergence characteristics for discrete adjoint solver.  
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In this study, the reliability analysis was performed for the aerodynamic
analysis. Among various reliability analysis methods, the moment method
was used and results were compared with other reliability methods. The reli-
ability of aerodynamic analysis of a 2D airfoil and a 3D wing were considered.
In the case of the 2D airfoil, the reliability was computed by parameterizing
an airfoil shape using the PARSEC function and considering uncertainties of
its shape. In the case of 3D wing, the reliability was computed by considering
uncertainties of flow conditions. Compared with other methods, it was found
that the moment method predicted the probability accurately.

1 Introduction

Reliability analysis computes how much the system is reliable using statistical
methods. Reliability analysis becomes popular because it reflects more phys-
ical phenomena which possess uncertainty. Popular reliability analysis meth-
ods are MCS(Monte Carlo simulation), FORM(first order reliability method)
and moment methods.

Reliability analysis is commonly used in the structural analysis and its use
in the aerodynamic analysis is recent. Possible uncertainty of aerodynamic
analysis is a wing shape and flow conditions. It will be useful to consider such
uncertainty in the aerodynamic analysis. Ahn et al. conducted RBDO of a
3D wing using FORM[Ahn2005]. In their study, parameters related with the
planform shape only such as the sweepback angle and the taper ratio were
considered. Recently Sobieczky proposed the PARSEC function to approxi-
mate the shape of an airfoil with certain parameters[Sobieczky98].

In this study, reliability analysis was performed for the aerodynamic anal-
ysis using the moment method. Reliability of aerodynamic performances was
computed by considering uncertainty of an airfoil shape and uncertainty of
flow conditions of a 3D wing.
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2 Reliability Analysis

In reliability analysis, the reliability is defined as follows:

Reliability = 1 − Pf (1)

In (1), Pf is called the probability of failure and it is the probability of a
limit state function g being violated. If the region which satisfies g > 0 is a
feasible region, the probability of failure is defined as follows:

Pf = P (g ≤ 0) (2)

2.1 Monte Carlo Simulation

MCS computes the reliability with a repeated random sampling and it re-
quires a large number of computations. MCS computes the probability of
failure with the following formula:

Pf =
1
N

N∑
i=1

I [g(x(i))] (3)

where N is the sample size , x(i) is the ith random variable, and I is an indicator
function whose value is 1 when g > 0, zero otherwise. Since random numbers
used in MCS can be different according to the algorithm of the random number
generation, the prediction of MCS can be placed within a certain range. It is
called a confidence interval and calculated with the following formula:

Pf −
√(

Pf (1 − Pf )
N

)
∗ zα ≤ Pf ≤ Pf +

√(
Pf (1 − Pf )

N

)
∗ zα (4)

where zα is called as z critical value and its value is assumed as 1.96 for the
97.5% confidence interval[Devore2000].

2.2 First Order Reliability Method

FORM is a method that approximates the limit state function as a linear
equation and finds the most probable point(MPP) in a reduced space and
it is the nearest point to satisfy the limit state function. FORM requires to
find β which means a distance from the origin to MPP and it is called the
reliability index. It is defined as

β = ‖u‖ =
√

uT u (5)

In (5), u is a n× 1 vector and it is called a transformed variable and defined
as follows:

u =
x − µ

σ
(6)

where x is a random variable, µ is a mean vector, and σ is the standard
deviation vector. When x has a normal distribution, the probability of failure
is computed as follows:

Pf = Φ(−β) (7)
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2.3 Moment Method

Moment methods directly find the probability distribution from statistical
moments. Statistical moments are defined as follows:

Mk =
∫ ∞

−∞
(x − µ)k f(x)dx (8)

Mk is the kth central moment, x is the random variable, and f(x) is the
probability distribution or probability density function(PDF). (8) can be cal-
culated numerically with a quadrature rule.

E{gk} =
∫ ∞

−∞
[g(x)]k φ(x)dx ∼=

m∑
i=1

wi [g(li)]
k (9)

where wi means the ith integration weight and li means the ith integration
point. Rahman and Xu proposed a method to determine the general levels and
weights for non-normal distribution, which is called MBQR[Rahman2004].

After computing li and wi, the statistical moments of the limit state function
is calculated by quadrature rule. From the calculated moment, the PDF of the
limit state function is estimated by the Pearson system. It finds the probability
density function f which satisfies the following differential equation.

df(x)
f(x)dx

= − x + a

c0 + c1x + c2x
2 (10)

where x means x − µ. There are 7 types of solutions depending on the
roots of c0 + c1x + c2x

2 and more thorough explanations can be found in
references[Seo2002, Lee2006]. The current moment method will be denoted
as the Pearson system.

3 Flow Analysis

A parallelized flow solver for the Navier-Stokes equations is used in the aero-
dynamic analysis. The governing equations are as follows:

∂q

∂t
+

∂fi

∂xi
=

∂fvi

∂xi
(11)

q =

⎛
⎜⎜⎜⎜⎝

ρ
ρu1

ρu2

ρu3

ρE

⎞
⎟⎟⎟⎟⎠ , fi =

⎛
⎜⎜⎜⎜⎝

ρui

ρuiu1 + δi1p
ρuiu2 + δi2p
ρuiu3 + δi3p

ρuiH

⎞
⎟⎟⎟⎟⎠ , fvi =

⎛
⎜⎜⎜⎜⎝

0
σijδi1

σijδi2

σijδi3

ujσij + k ∂T
∂xi

⎞
⎟⎟⎟⎟⎠ (12)

The flow region is discretized spatially by the finite volume method and the
Roe’s FDS and TVD are used in calculating the numerical flux. The multigrid
method with mesh sequencing is used to accelerate the convergence of the
steady calculation[Park2004]. DACE tool is used to replace the flow analysis
when the computing time is large[Lophaven2002].
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4 Reliability of Flow Analysis

4.1 2D Airfoil

For the numerical test, the reliability analysis was applied to a two-dimensional
aerodynamic analysis. To consider the uncertainty of airfoil shape, the PAR-
SEC function is used. RAE2822 was used in the aerodynamic analysis. The
Mach number was 0.73 and the angle of attack was 2.78◦. The limit state func-
tion was assigned for the lift coefficient to be greater than a reference value.

Pf = P (Cl − Cl,Ref ≤ 0) (13)

All parameters are assumed as standard normal random variables. At first,
4 parameters were tested for different DOE(design of experiment) levels and
their means and standard deviations are shown in Table 1.

Table 1. Mean and standard deviation of 4 parameters

Xup Zup ZXXup rle

µ 0.42896 0.06301 -0.42818 0.008187
σ 0.01 0.001 0.01 0.001

Table 2. Probability of failure for 4 parameters, Cl,Ref = 0.98Cl,µ

Level Pearson MCS
(97.5% confidence interval)

3 0.1032 0.107
5 0.0957 (0.0878,0.1262)
7 0.0971

Test results are shown in Table 2. Cl,Ref is assumed as 98% of Cl at the
mean value. In the moment method, the probability of failure converged near
the lower bound of confidence interval of MCS as the DOE level increases.

4.2 3D Wing

The reliability analysis was applied to the aerodynamic analysis of a 3D wing.
Since the computing time is large in this case, the DACE is used to replace
the flow analysis. The k−ω turbulence model is used to consider the effect of
viscosity[Park2004]. Probabilities of failure of following limit state functions
are calculated.

Pf,CL = P (CL − CL,Ref ≤ 0) (14)
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Table 3. Mean and standard deviation of flow conditions

M AOA

µ 0.8395 3.06
σ 0.01 0.01

Level

P
f

3 5 7
0.412

0.414

0.416

0.418

0.42

0.422

FORM
Pearson
MCS

Level

P
f

3 5 7
0.19

0.192

0.194

0.196

0.198

0.2

FORM
Pearson
MCS

Fig. 1. Probability of failure for the lift and the drag

Pf,CD = P (−CD + CD,Ref ≤ 0) (15)

Parameters considered here are Mach number and the angle of attack. Mean
values and standard deviations are as follows:

Test results are shown in Fig. 1. Both FORM and the moment method
predict the probability of failure within the confidence intervals of MCS. The
drag shows a higher probability of failure, and it may be originated from the
generation of a shock which will be sensitive to the flow conditions.

5 Conclusion

The reliability of aerodynamic analysis was computed using the Pearson sys-
tem. The probability of failure of the aerodynamic performance was com-
puted and the prediction was compared with MCS and FORM. Comparing
with FORM, the Pearson system predicted the probability of failure rela-
tively accurately. It is expected that the Pearson system can be used for the
reliability based design optimization.
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CFD has been successfully used in the optimisation of aerodynamic surfaces
using a given set of parameters such as Mach numbers and angle of attack.
While carrying out a multidisciplinary design optimisation one deals with
situations where the parameters have some uncertainty attached. Any op-
timisation carried out for fixed values of input parameters gives a design
which may be totally unacceptable under off-design conditions. The chal-
lenge is to develop a robust design procedure which takes into account the
fluctuations in the input parameters. In this work, we attempt this using a
modified Taguchi approach. This is incorporated into an evolutionary algo-
rithm with many features developed in house. The method is tested for an
UCAV design which simultaneously handles aerodynamics, electromagnetics
and maneuverability. Results demonstrate that the method has considerable
potential.

1 Introduction

This paper develops a methodology for uncertainty based Multidisciplinary
Design Optimisation (U-MDO) and is an extension to Lee et al. [1], and
Srinivas et al. [2]. It couples a CFD software, a Radar Cross Section (RCS)
analysis tool, an advanced evolutionary optimiser and the concept of ro-
bust/uncertainty strategy [3] to produce a set of optimal -stable designs.
The approach is demonstrated on its application to Unmanned (Combat)
Aerial Vehicle (UAV/UCAV) to maximise its performance and survivability.
UCAVs have high industrial demands in the area of military and natural dis-
aster monitoring (forest fire, flood, earthquake, etc.). For this optimisation,
four main objectives are considered; the first is to maximise an aerodynamic
performance at cruise condition, the second is to produce a low observability
at mono and bi-static radar signature aircraft against enemy radar system.
The third is to have extreme manoeuvrability. Finally the fourth is to have
a robust design that has good characteristics in terms of performance and
sensitivity at variable flight conditions and frequencies.
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2 Methodology

The method couples the Hierarchical Asynchronous Parallel Multi-Objective
Evolutionary Algorithms (HAPMOEA software) with several analysis tools.
The HAPMOEA [7] is based on the well known Darwinian principle and im-
plemented with Evolution Strategies [4]. The core of this method incorporates
the concepts of Covariance Matrix Adaptation, CMA [5], Distance Dependent
Mutation, DDM [4]. At the top level of this method, the asynchronous parallel
computation [6], multi-fidelity hierarchical topology and Pareto tournament
selection are implemented. In the bottom level, the method does two major
search operations (Mutation and combination) under Pareto-game strategy.
In the middle level, the method couples evolutionary optimiser (HAPMOEA),
analysis tools and statistical design tool taking into account uncertainty.

3 Real World Design Problem

Analysis and Formulation

The vehicle considered is a Joint Unmanned Combat Air Vehicle (J-UCAV)
that is similar in shape to Northrop Grumman X-47B [9]. The wing planform
is assumed to be of an arrow shape with jagged trailing edge. The aircraft
maximum gross weight is approximately 21,045 kg and empty weight is 16,955
kg. The wing design parameters for the baseline wing configuration are illus-
trated in Fig. 1. In this test case, the fuselage extends from 0 to 25% of the
half span. The crank positions are at 46.4% and 75.5% of half span. The in-
board and outboard sweep angles are 55o and 29o, while the taper ratios are
20 and 2% of cRoot. It is assumed that the baseline design contains three types
of aerofoils at root (NACA 66-021), crank1 (NACA 67-1015), crank2 (NACA
67-008) and tip (NACA 67-008). The mission profile of UCAV considers
Reconnaissance, Intelligence, Surveillance and Target Acquisition (RISTA)
is as illustrated in Fig. 2 and is divided into eight sectors.

Fig. 1. Wing Geometry Fig. 2. Mission profile
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Problem Definition

Objective 1 refers to aerodynamic quality (eq. 1) at the variability of flight
conditions and is expressed in terms of mean and variance of inverse L/D
ratios. The mean and variance of the turning radius (r) at 45o bank angle
formulate the quality of manoeuvrability (eq. 2). Electro-magnetic (RCS)
quality (eq. 3) at the variability of radar frequencies is in terms of mean and
variance of mono (Sector2) and bi-static (Sector4) radar signatures. The
fitness functions for objectives are;

f1 = min

(
−1

AerodynamicQuality

)
(1)

where AerodynamicQuality =
(
ln
(
1/(L/D)

)
+ ln (δ (1/(L/D)))

)
,

1/(L/D) =
1
K

(
K∑

i=1

(
1

(L/D)i

)
M2

∞i

M2
s

)

δ1/(L/D) =
1

K − 1

K∑
i=1

(
1

(L/D)i

M2
∞i

M2
s

− 1
(L/D)

)2

f2 = min (ManeuverabilityQuality) = min (r + δr) (2)

where r is the instantaneous turning radius at bank anlge 45o and defined
as; r = V∞/ω, ω =

(
g
√

n2 − 1
)/

V∞, n = qCL/(W/S).

f3 = min (RCSQuality) (3)

where RCSQuality can be defined as;

RCSQuality =
(
RCSMono + δRCSMono

)
+
(
RCSBi + δRCSBi

)
Mono-static Radar conditions: θ = [0o : 3o : 360o] and φ = [0o : 0o : 0o] .
Bi-static Radar conditions: incident angles are θ = 135o, φ = 90o

θ = [0o : 3o : 360o], φ = [0o : 0o : 0o]

The variable flight and radar frequency conditions are;

M∞i ∈ [0.8195, 0.8295, Ms = 0.8395, 0.8495, 0.8595] and α = 4.3o

F∞i ∈ [1.0, 1.25, Fs = 1.5, 1.75, 2.0]
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Table 1. UCAV wing design variables

Variables S1 S2 S3 λC1 λC2 ΛR−C1 ΛC1−C2 ΛC2−T

Lower 50.46 10.09 5.05 0.15 0.15 49.5o 25o 25o

Upper 63.92 16.82 10.09 0.45 0.45 60.5o 35o 35o

Design Variables

Four aerofoils at root, crank 1, crank 2 and tip sections are considered for
optimisation and the Control Points (CPs) for aerofoil design are sixty eight
(4 sections × 17 CPs). The wing planform shape is parameterised by consid-
ering eight design variables including three wing sectional areas, three sweep
angles and two taper ratios are considered and the upper and lower bounds
of these variables are described in table 1 where the sectional areas (S) are
in m2 and one geometrical constraints is applied λC2 ≤ λC1. These lead to
the different span length (b) and Aspect Ratio (AR).

Results

The algorithm was run approximately for 945 function evaluations and took
150 hours on two 2.4 GHz processors. The resulting Pareto set is shown in
Fig. 3 where the best solution (Pareto member 1) for fitness functions 1 is
marked as inverse triangle and triangle is the best solution (Pareto member 3)
for fitness function 2. Square represents the best solution (Pareto member 10)

Fig. 3. Pareto non-dominated solutions for U-MDO of UCAV
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Table 2. Comparison of the objectives

Description Baseline ParetoM1 ParetoM3 ParetoM4 ParetoM10

AQ 0.597 0.485 (-19%) 0.503 (-16%) 0.521(−13%) 0.566 (-5%)
MQ 0.998 0.822 (-18%) 0.768 (-23%) 0.899(−10%) 1.114 (+12%)
RQ 43.63 36.77 (-8%) 35.86 (-18%) 31.68(−27%) 29.83 (-32%)

Fig. 4. Mono-static radar signature Fig. 5. Bi-static radar signature

for fitness function 3. It can be seen that the baseline UCAV dominates Pareto
member 10 in the aspect of maneuverability quality as shown in Section-A
and Section-C. However, all Pareto members dominate the baseline UCAV in
aspect of the quality of cruise aerodynamics and electro-magnetics in terms
of performance (mean) and sensitivity/stability (variance).

The best solutions (Pareto members 1, 3 and 10) and Pareto member 4
are selected to compare the aerodynamic, maneuverability and RCS qual-
ity to the baseline UCAV in table 2. All Pareto members exhibit improved
quality in aerodynamic parameters. With regards to maneuverability quality,
Pareto member 10 is dominated by the baseline design while Pareto member
10 has 32% less chance to be detected to enemy radar system when com-
pared to the baseline UCAV. Pareto member 4 is selected as a compromised
solution for further evaluation since it makes an improvement at all aspects
of aerodynamic, maneuverability and electro-magnetic qualities.

Figure 4 shows the comparison of mono-static RCS at the standard de-
sign frequency (1.5GHz) between Pareto member 4 (compromised solution),
Pareto member 10 (best solution for fitness function 3) and the baseline de-
sign. Pareto member 4 and 10 produce 25 and 35% lower mono-static radar
signature when compared to the baseline design. The bi-static radar signa-
tures obtained by Pareto members 4, 10 and the baseline design is shown
Fig. 5. The results show that the Pareto members 4 and 10 has lower observ-
ability by 17 and 20% when compared to the baseline design. Therefore, they
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will have less chance to be detected to enemy radar systems at Sector 2 and
Sector 4.

4 Conclusions

HAPMOEA coupled to CFD and robust design technique has capabili-
ties to generate a set of useful Pareto non-dominated solution that has
unique character in the aspects of aerodynamic performance, manoeuvrabil-
ity and electro-magnetics. The numerical results show a broad applicability
of methodology for MDO design problems and benefit of using CFD, and the
importance of integrating robust/uncertainty concepts. Future work will fo-
cuses on game strategies including Nash and Pareto to speed up optimisation
convergence of MO and MDO with uncertainty design problems.
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Abstract. The design of a propeller energy-saving device, PBCF, by computa-
tional fluid dynamics is presented in this paper. The key design points of PBCF 
are first pointed out, and the effectiveness of different geometry settings are inves-
tigated from computational results. It is found that the pitch angle and the installed 
angle of fins are the most important design points of PBCF. A design procedure  
is developed by using both the boundary element method and RANS method. 
From the computational results, both the force predictions and the detail flow 
visualizations show that a correctly designed PBCF is an effective energy-saving 
device. 
 
Keywords: propeller design, energy-saving, propeller boss cap fins, PBCF. 

1   Introduction 

In this paper, the analysis and design of a propeller energy-saving device, “Propel-
ler Boss Cap Fins” (PBCF), is presented. PBCF is an energy-saving device which 
the normal propeller hub replaced by a hub with fins attached (Fig. 1).  The num-
ber of fins is usually the same as the number of propeller blades.  PBCF was de-
veloped twenty years ago ([Ouc88] and [Ouc89]), and used widely recently due to 
the high oil price.  A 2% ship speed increase and 4~5% fuel saving are reported by 
using the PBCF, and the installation fee can be recouped in six months for a large 
containership. The purpose of this paper is to study the functions of PBCF, and try 
to develop a design procedure by computations.   

2   Geometric Parameters 

For the conventional propellers, the lifting-line method is first applied to the de-
sign of the propeller loading distribution, and the lifting-surface method is then 
adopted for the propeller blade geometry designs. For the energy-saving devices, 
besides its geometry is not conventional, it is usually very sensitive to the geome-
try changes. Therefore, critical geometric parameters will be selected, and the pa-
rametric analysis will be done.  In the PBCF computations, we have first identified 
the geometric parameters to analyze the geometric effects ([LCC06] and 
[LBH07]), and these parameters are shown as follows (Fig. 2): 
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Fig. 1. The computer depiction of a propel-
ler with the PBCF 

Fig. 2. The geometric parameters of the 
PBCF 

 

 The fin geometry 
 The axial position of the PBCF 
 The circumferential position of the PBCF 
 The pitch angle of the PBCF 
 The installation angle of the PBCF 

The detailed descriptions of these geometric parameters can be seen in 
[HCY08]. Once the geometric parameters are identified, computational tools will 
be used to make the parametric studies. 

3   Parametric Analysis 

The potential flow boundary element method is first used to analyze the geometric 
effects. We first find that the radius of the fin should be set as 20% to 25% of the 
propeller radius. For the axial position, we find that the propeller blade and the 
PBCF blade should be kept as close as possible, and 5% of the propeller radius is 
selected. The circumferential position of the PBCF blade does not affect the effi-
ciency much from the computational results. The pitch angle of the PBCF does 
affect the efficiency a lot, and 90-degress pitch angle provides the best perform-
ance from the potential flow computational results.  This is obviously not physi-
cally true, and it is because that the potential flow boundary element method  
cannot accurately predict the performance. The reasons are that first the wake ge-
ometry of the propeller is given by a simple wake alignment procedure, and it 
does not include the PBCF effect. Secondly, the potential flow cannot predict  
viscous phenomena such as the boundary layer and the separations, and therefore 
the forces on the PBCF increases monotonically as the angle of attack increases. 
On the other hand, from the computational results of the RANS method, there is 
an optimum “pitch angle” for the PBCF. Therefore, the viscous flow method  
is necessary in the design of the PBCF. We then used the PBCF presented by  
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Dr. Ouchi to investigate the pitch and the installation angles of the PBCF. We first 
find that the fins of PBCF should be planar, and then find that the PBCF is not 
necessary to be arranged perpendicular to the hub surface, and we call this angle 
“installation angle”. The critical geometric parameters of PBCF thus should be the 
“pitch angle” and the “installation angle”. 

4   Computational Results 

The commercial software FLUENT is used for the viscous flow computations, and 
GRIDGEN is used to generate the grid system.  In order to accurately compare the 
efficiencies of propellers with and without the PBCF, also the effects of different 
PBCF geometries, we developed a grid system which the grids around the propel-
ler blade and the PBCF are independent to each other. Because the grids around 
the propeller and the PBCF are independent to each other, a different PBCF can be 
replaced without changing the propeller grids, and the “PBCF zone” will be filled 
with grids for propellers without the PBCF. 

The PBCF in Ouch’s paper was first tested. Table 1 shows the numerical results, 
and in order to further understand the effects of PBCF, the flow field downstream is 
studied. Fig, 3 shows the axial velocities downstream with and without the PBCF, 
and one can see that the axial velocities near hub have been reduced by the PBCF. 
Fig 4 shows the tangential velocities downstream with and without the PBCF. It is 
clear that the tangential velocities have been reduced by PBCF, and this means that 
the energy loss due to the rotation has been recovered. Fig. 5 shows the vorticity 
strength downstream with and without the PBCF, and the vorticity strength is  
apparently reduced by PBCF.    

The viscous flow computations are then used to assist the PBCF design for a 
containership propeller, and this propeller is referred as propeller “CV1700” in 
this paper. CV1700 is a well designed containership propeller, and its K-J chart  
is shown in Fig. 6. In Fig. 6, “BEM” represents the computational results from  
the potential flow boundary element method, and “FLUENT” represents the com-
putational results from the viscous flow computations. One can see that the  
computational results from both methods are within reasonable accuracy. In the 
design procedure, we have used both the boundary element method and the vis-
cous flow RANS method. Although the potential flow boundary element method 
cannot accurately represent the flow field, it can still provide a quick and qualita-
tive comparison between different PBCF geometries. We use the boundary  

 
Table 1. The computational forces and efficiencies of propeller “Ouchi” with and without 
the PBCF 

 KT KQ *10 η KT KQ *10 η 
 PROP PROP PROP PBCF PBCF TOTAL 

w/o PBCF 0.1515 0.2881 0.5859 0 0 0.5859 
with PBCF 0.1559 0.2877 0.6037 -0.0035 -0.0026 0.5955 
effic. gain      1.64% 
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Fig. 3. The contours of axial velocity down-
stream for a propeller without (above) and 
with (below) PBCF    

Fig. 4. The contours of tangential velocity 
downstream for a propeller without (above) 
and with (below) PBCF 

 

 

Fig. 5. The contours of vorticity strength 
downstream for a propeller without (above) 
and with (below) PBCF 

Fig. 6. The K-J chart of the propeller 
CV1700 from the experimental data and the 
computational results 

 
element method to make the parametric studies of different combinations of geo-
metric parameters, and several combinations are selected as “better designs”. The 
viscous flow method is then used to make the final design among these. The rea-
son to use this design procedure is to gain both the design efficiency and the  
design accuracy [TJC05]. Table 2 shows the computational results of the propeller 
without the PBCF, and with the designed PBCF. After adding the PBCF, a 
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Table 2. The computational forces and efficiencies of propeller “CV1700” with and with-
out the PBCF 

 KT KQ *10 η KT KQ *10 η 
 PROP PROP PROP PBCF PBCF TOTAL 

w/o PBCF 0.1929 0.3123 0.7373 0 0 0.7373 
with PBCF 0.1961 0.3147 0.7438 0.0003 -0.0011 0.7476 
effic. gain      1.40% 

 

 

 

Fig. 7. The hub vortex of the propeller CV1700 without PBCF (above) and with a designed 
PBCF (below) 
 
1.4% efficiency gain is obtained for this propeller.  Fig. 7 shows the hub vortex of 
the propeller without and with the designed PBCF, and one can see that the PBCF 
does reduce the hub vortex. Notice that a conventional MAU section is used for 
the propeller Ouchi, and the efficiency is about 60%.  For the CV1700 propeller, a 
NACA66 thickness and the a=0.8 mean-line are used, and the efficiency is above 
70%. Even they are very different, computational results of both propellers show 
that the PBCF can increase the total efficiency. 

5   Conclusions 

In this paper, the energy-saving device, PBCF, is studied. The effectiveness of 
different geometry settings of PBCF are investigated from computational results, 
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and it is found that the pitch angle and the installation angle of fins are the most 
important design parameters of PBCF. Two different propellers with the PBCF are 
computed and presented in this paper. One is the propeller reported in papers by 
Ouchi. etc., and the other one is a containership propeller.  For the containership 
propeller, the PBCF is also designed.  In the design procedure, both the boundary 
element method and the RANS method are used.  For two propellers, both the 
force predictions and the detail flow visualizations from computations show that a 
correctly designed PBCF is an effective energy-saving device. 
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In this study, a helicopter rotor is simulated by tightly coupled CFD/Free-
wake method to describe wake characteristics. Rotor blade and flow field
aerodynamics are calculated by CFD, and wake motions are simulated by
Time-Marching-Free-Wake(TMFW) method. This tightly coupled CFD/Free-
wake method can describe wake characteristics as well as rotor aerodynamic
properties. Using this coupling analysis, hovering is analyzed for accurate
aerodynamics. In forward flight, rotor blade has pitching and flapping mo-
tions. To simulate moving blades, moving overset grid technique is applied
to the coupling method. For validation, all of numerical results are compared
with experimental results.

1 Introduction

Helicopter rotor wake is more complex than fixed wing’s wake because wake
generated by rotating blades has a spiral motion. Particularly tip vortices
generated from blade tip have very strong circulation strength. These rotor
wakes and tip vortices make characteristics of inflow which decides rotor per-
formance. For that reason, description of rotor wake is most important thing
to simulate rotor aerodynamic characteristics. Conventional rotor CFD has a
difficulty to simulate rotor wake due to numerical dissipation. This dissipation
causes diminishing flow vorticity. The numerically diminished flow can’t suf-
ficient induced velocity and inflow deciding rotor aerodynamic performance.
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To overcome this problem, vortex capturing method, grid adaptation and
vortex model have been studied.

In this paper, Time-Marching-Free-Wake(TMFW) method is used to de-
scribe wake effects. TMFW can compute rotor wake without numerical dis-
sipation because free-wake is lagrangian approach method. And it is faster
than conventional CFD because TMFW not use grid system.[1] But TMFW
is difficult to simulate transonic and viscous effects such as shock and dynam-
ics stall. These problems can be overcome by coupling with Rotor CFD. In
this paper, Rotor CFD is tightly coupled TMFW at each computational time
step. The TMFW coupled with CFD can describe inboard vortices as well as
tip vortices. Therefore, detailed geometry of the wake can be predicted. The
wake characteristics obtained TMFW can provide induced velocity required
rotor CFD calculaton.

The CFD/TMFW coupling method is applied to predict hover, forward
flight. In forward flight, blades move with pitching and flapping motion. To
consider blade motion, moving overset technique is used. And parallel com-
putation technique is used to accelerate computational speed.

2 Methodology

2.1 Numerical Method

3dimensional unsteady Euler equation is govering equation. Finite Volume
method (FVM) is used to discritize governing equation. In this FVM, cell
centered method is used. Roe’s FDS(Flux Difference Splitting) and van Leer’s
MUSCL(Monotone Upstream Scheme for Conservation) is used for inviscid
flow calculation, and van Alada’s limiter is used for stability. For time march-
ing, DADI(Diagonalized Alternating Direction Implicit) is used. To improve
time accuracy, dual time stepping is applied. And multigrid method and local
time stepping are used to accelerate convergence. To consider blade motion,
moving overset grid technique is applied.

Time-Marching-Free-Wake

Wake is described by vortex filaments. Generally, induced velocity of vortex
filaments is obtained from Biot-Savart law. Generally, vortex filaments are
described to the straight filaments. But vortex filaments have curved shape
because rotor tip vortices and wake have a spiral motion. In addition, curved
vortex filament can generate self-induced velocity which is required for de-
scription of wake movement. In this study, parabolic blending function is ap-
plied to the curved line interpolation. This parabolic blending interpolation
can describe the circular line and give clear curved line without non-intuitive
tangential vector to the line. Induced velocity of curved vortex line can be
obtained from Moore-Rosenhead equation,
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Vind =
∫

C

r
(|r|2 + µ2

s)
× Γ

∂y(ξ, t)
∂ξ

dξ (1)

y is position on the curved line coordinate. And µs is Rosenhead’s cut-off
variable for singularity removal. In the present work, cut-off variable is set
to be 0.1 of the chord length. This interpolation technique is only applied to
the trailing vortex filaments which is perpendicular to the trailing edge.

Tightly Coupling Method

CFD/TMFW can consider wake description as well as compressible and vis-
cous effects. Specially, inflow variation induced by wake is described with
azimuth. This coupling method uses lifting line and boundary correction ap-
proach. Trailed vortex information of TMFW comes from lifting line which
represents aero-load of CFD. This trailed vortex strength is deference between
sectional aerodynamic forces. Wake represented by vortex filament bundles
can decide induced velocity of arbitrary space position. For that reason, di-
minished inflow in CFD calculation is corrected by adding induced velocity
of TMFW. Induced velocity is imposed at the boundary of CFD domain at

Fig. 1. Procedure of CFD/TMFW Coupling Method

Fig. 2. Wake description in CFD domain
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Table 1. Thrust coefficient

Present Experiment

0.00467 0.00459

each time. Fig.1 indicates schematics of coupling process. Fig.2 shows wake
of TMFW in CFD domain.

3 Numerical Results

Using coupling method, hover and forward flight simulation are performed.
In hover flight calculation, Caradonna and Tung’s rotor model[2] is used. And
AH-1G rotor model[3] is used in forward flight. These numerical results are
compared with experimental data.

Hover Flight

Rotor blade pitch angle is 8degree. And tip Mach number is 0.439. Total
computation revolution is 10. Grid system shown Fig.3 It is composed of

Fig. 3. Grid system

Fig. 4. Wake geometry in hover and forward flight
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Fig. 5. Pressure coefficient in hover flight

Fig. 6. Sectional lift coefficient

5 blocks. 5 block grids organize 3 bodies. 2 bodies describe 1 blade. 1 body
represent background. The number of One Blade grid nodes is 2×19×67×105.
And Background grid node number is 71×89×89. Fig.4 shows rotor wake
geometry in the CFD domain. In fig.5, pressure coefficients are compared
with experimental data. And table.1 is total thrust coefficient of present and
experimental data.

Forward Flight

Tip Mach number of AH-1G is 0.65. Advance ratio is 0.19. And thrust coef-
ficient is 0.00464. This rotor blade has a pitching and flapping motion with
azimuth(ψ). Pitch angle is θ = θ0 + θ1c cos(ψ) + θ1s sin(ψ). Flapping angle
is β = β0 + β1c cos(ψ) + β1s sin(ψ). Blade motion is determined by rotor
trimming. Table 2 is control angle of blade.

Table 2. Pitch and flapping angle

degree θ0 θ1c θ1s β0 β1c β1s

Present 6.2 1.38 -5.19 0 2.13 -0.15
Exp. 6 1.7 -5.5 0 2.13 -0.15
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4 Conclusion

In this study, CFD/TMFW coupling method was deveploed to simulate un-
steady rotor aerodynamics efficiently. Using this method, hover and forward
rotor was simulated. And this numerical results was vailidated through the
comparision with experimental data. It is suitable for predicting unsteady ro-
tor aerodynimics and noise, because CFD/TMFW coupling method is more
efficient and accurate than conventional rotor CFD.
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1 Introduction

Large eddy simulation (LES) and direct numerical simulation (DNS) have
been done for the transition to turbulence in straight channels. [MOIN82],
[KAWAMURA85] However, these previous computations employ the cyclic
boundary conditions between the inlet and outlet of the analytical domain,
which can not simulate the transition position in space.

In the present research, the transition to turbulence in a straight channel
is computed without using the cyclic boundary condition on inlet and outlet.
Laminar flow computed in the upstream domain of the channel drastically
changes to the turbulent flow in the middle part of the channel for Re >
10,000. The transition point moves according to increasing inlet-fluctuations
of velocites.

2 Governing Equation and Numerical Method

Reseachers on computational fluid dynamics mostly has devoted efforts to re-
duction of numerical errors, based on mathematics. However, the numerical
errors should be used adequately on the basis of physical evaluation, be-
cause we can not simulate the unstable flows such as Karman vortex streets
without numerical disturbances. Theoretical models such as the RNG the-
ory [YAKHOT86] also include stochastic disturbances in the deterministic
Navier-Stokes equation. Thus, the key point to go further is that we should
find the appropriate relation between the numerical errors in the analytical
domain and the physical fluctuations. Here, we propose the methodology of
stochastic determinism, based on the deterministic Navier-Stokes equation
and stochastic artificial disturbances.

Basically, the multi-level formulation including the Navier-Stokes equation
[NAITOH92] is employed, which can calculate spatial derivatives of physical
quantities and integrated quantities accurately. (Eqs. 1 and 2).

Fk = 0, (for k = 1 − 4) (1)
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F1 ≡ Dvi

Dt + ∂
∂xi

p − 1
Re

∂2

∂x2
j
vi,

F2 ≡ ∂vi

∂xi
,

F3 ≡ ∂2

∂x2
i
p + ∂

∂t (
∂

∂xi
vi) + ∂

∂xi
(uj

∂
∂xj

vi),
F4 ≡

∫
Vm

∂vi

∂xi
dV

(2)

where Vm, p, t, xi, Re, and ui (i = 1, 2, 3) denote control volume, pressure,
time, Cartesian coordinate, Reynolds number, and velocity component for
i-direction, respectively. The volume Vm can be taken at several sizes from
a cell to the overall volume of the channel. Turbulence model is not used in
the present report. Boundary and initial conditions are in Eq. (3),

u1 = Uo + δ, v2 = 0, ∂p
∂x1

= 0, (Inlet boundary condition),
∂v1
∂x1

= 0, ∂v2
∂x1 = 0, ∂p

∂x1
= 0, (Outlet boundary condition),

u1(t = 0) = Uo, u2(t = 0) = 0, (Initial condition)
(3)

where Uo and δ denote the constant inlet-velocity and velocity fluctuation at
inlet given by random number genertor, respectively. The non-slip boundary
condition is put on the solid walls.

Finite-difference scheme with a third-order of accuracy [KAWAMURA85]
is used for the convection term in F1 and also the other terms are with second
order of accuracy, while the Euler scheme is employed for temporal develop-
ment. The numerical algorithm for Eqs. (1) and (2) is based on the MAC
method [HARLOW65], while the accurate evaluations for spatial gradients
and space-integrals of physical quantities are included. [NAITOH92]

Discretization of Eqs. (1) and (2) due to the finite-difference operator Γ
consequently leads to Eq. (4) having numerical errors of εk. We use the nu-
merical errors as physical fluctuations adequately.

Γ [Fk] = εk, (for k = 1 − 4) (4)

where average-quantity of ε2 (=
∑

n=1,N | ∂vj

∂xj
|δx/N) is proportional to δ cor-

responding to actual inlet-fluctuation of velocity, where N and δx denote the
total number of grids and grid size. (ε2 = Ce δ, where Ce is an arbitrary con-
stant. Ce=1.0 is in this report.) In the present research, homogeneous and
orthogonal grid system is used to compute accurately vortices. The magni-
tude of ε2 can be controlled by the number of iterations in the successive over
relaxation (SOR) method. [NAITOH92] The value ε4 is controlled as is close
to zero in this research, while the volume Vm is that between the inlet surface
and each surface which is orthogonal to the channel axis of x1. Velocity u1 is
corrected at each grid point P (i1, i2, i3) by using

u1(t + δt, i1, i2, i3) = u∗
1(t + δt, i1, i2, i3)

+Cx

∑
i2=1,I2,i3=1,I3

((Uo − u∗
1(t + δt, i1, i2, i3))δx2δx3)/S(i1)

(5)

where u1(t+ δt, i1, i2, i3), u∗
1(t+ δt, i1, i2, i3), Cx(< 1.0), and S(i1) denote the

velocity corrected, the velocity obtained by F1, an arbitrary constant, and
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the surface at i1, respectively. Values ε1 and ε3 are determined by the finite
difference method employed.

3 Computational Results

Figure 1 shows the velocity distributions computed for Re =20,000, where
the ratio of the inlet-fluctuation and the inlet-velocity, δ/Uo, is with 0.03
percent. The number of grids is 2,503 x 53 x 53, while grid size δxi is 0.02
for each direction and time increment δt is 0.002. We can see the transition
from laminar flow to turbulence in Fig. 1. Figure 2 shows the iso-contours
of velocity at some cross-sections. Figure 3 shows the time-averaged veloc-
ity computed and the corresponding experimental data taken by Nikuradse
[NIKURADSE32]. Computations fairly agree with the experiment. Figure 4
shows the time-dependent velocities computed, which are turbulent after t
= 30 at x1/D = 40. The fluctuations within a constant level after t =50 in
Fig. 4 also imply that the present computations essentially simulate physical
turbulence. The fluctuation level agrees fairly well with the well-known result
of Kawamura. [KAWAMURA85] Figure 5 shows the vorticity distributions
while varying the inlet fluctuations. Then, the transition point from laminar
to turbulent flow moves, according to increasing velocity-fluctuations at the
inlet. Figure 6 shows the energy spectrum for the computational result shown
in Fig. 4. The present code also simulates the Karman vortex street and a
low Reynolds number flow. (Figs. 7 and 8)

Fig. 1. Velocity distributions of u1 in the cross-section of x3 /D=0.5 and x1 /D=0-
50 until t = 200. (Inlet fluctuation is 0.03 percent of U0. Re=20,000. Grid points =
2503 x 53 x 53.) (D denotes the channel width.)



674 K. Naitoh, Y. Nakagawa, and H. Shimiya

Fig. 2. Iso-contours of velocity in the cross-sections of x1/D = 5, 10, and 40 at t =
200. (Inlet fluctuation is 0.03 percent. Re=20,000. Grid points = 2503 x 53 x 53.)

Fig. 3. Time-averaged velocity at the cross-section of x3/D = 0.5 at x1/D = 40.
in case of inlet-fluctuation =0.03 percent.Experiment by [NIKURADSE32]

Fig. 4. Time-evolutions of velocities at three points of x2/D = 0.1, 0.3, and 0.5.
(Left) at the dimensionless distances x1/D =5, (Right) at the dimensionless dis-
tances x1/D =40. (Re=20,000. Grid points = 2503 x 53 x 53.)
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Fig. 5. Vorticity distributions computed in the cross-section of x3/D = 0.5 for
x1/D < 20.0 at t = 200, while varying inlet fluctuations. (Re=20,000. Grid points
= 2503 x 53 x 53.)

Fig. 6. Energy spectrum of turbulence computed for t=100 - 200. Upper line for
x2/D =0.1. Middle line for x2/D =0.3. Lower line for x2/D =0.5. (Re=20,000.
Grid points = 2503 x 53 x 53.)

Fig. 7. Vorticity distributions of the Karman vortex streets around a square.
(Re=2000. Grid Points = 103 x 3003. δx1=δx2=0.01.δt=0.001.)

Fig. 8. Flow in a channel at low Reynolds number. (Re = 200. Grid points: 1,003
x 103. δx1=δx2=0.01. δt=0.001.)
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4 Conclusion

The present approach makes it possible to predict the spatial transition points
from laminar flow to turbulence in the internal flows, for the inlet fluctuations
less than a few percents of the main velocity at inlet, Uo.

Acknowledgement. The authors express sincere thanks for their help on
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1 Introduction

The NS-α model is a turbulence model that has different origins than RANS
and LES, and is not dissipative in nature. Instead of starting with the Navier-
Stokes equations, the governing equations can be derived by applying Hamil-
ton’s principle to an averaged Lagrangian [H99]. The resulting momentum
equations contain two velocity fields, ui and ũi, where ũi is smoother than
ui via an inversion of the Helmholtz operator. For the isotropic case the pa-
rameter that arises in the averaging procedure is a scalar, α, and can be
interpreted as a filter width. It can be expected that there will be many sit-
uations where it may not be appropriate to maintain an isotropic value of α,
e.g. near a solid wall. To extend the range of applicability of the model, we
investigate the use of an anisotropic NS-α equation as a subgrid model for
LES in this paper.

2 Model Formulation

The Eulerian-averaged equations from Holm [H99] are used as a starting
point. In the development of these equations from Hamilton’s principle
the Lagrangian is averaged at a fixed field point. The Eulerian-averaged
equations are,

∂iũi = 0, (1)

∂tui + ũj∂jui + uk∂iũk = −∂iP + ν∂kkui −
1
2
∂i〈ξkξl〉∂kũm∂lũm, (2)

where P is a pressure-like variable.

P = p− 1
2
ũiũi −

1
2
〈ξkξl〉∂kũm∂lũm. (3)

In the above equation set the angle brackets 〈·〉 denote an average over short-
time or small-scale fluctuations of the flow (see Holm [H99]) and the relation-
ship between the smoothed and unsmoothed velocities is
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ui = (1− ∂k (〈ξkξl〉∂l))︸ ︷︷ ︸
H , Helmholtz operator

ũi. (4)

In Eq. (4), ũ is a smoothed velocity and 〈ξkξl〉 is the smoothing scale. For the
isotropic model 〈ξkξl〉 = α2δkl. The momentum equation can also be written
in momentum-conservation form as [CHMZ99],

∂tui + ũj∂jui = −∂ip + ∂j (〈ξkξj〉∂iũm∂kũm) + ν∂kkui. (5)

To develop an equation with the smoothed velocity as the dependent vari-
able, which is more familiar to the LES-community, we use the commutator
between the substantial derivative and the smoothing operator. For example,
we would like to have a substantial derivative written entirely in terms of the
smoothed velocity. This is done by rewriting the advective terms in Eq. (5)
in the following form

∂tui + ũj∂jui = [D/Dt, H ]ũi + H (∂tũi + ũj∂j ũi) . (6)

[D/Dt, H ]ũi = D/Dt(H(ũi)) −H(D/Dt(ũi)) and the advecting velocity in
the substantial derivative is the smoothed velocity. The momentum equation
Eq. (5) can then be written

∂tũi + ũj∂j ũi = H−1{−∂ip + ∂j (〈ξkξj〉∂iũm∂kũm)

+ν∂kkui − [D/Dt, H ]ũi}. (7)

We found the commutator can be expressed

[D/Dt, H ]ũi = ∂j (〈ξkξl〉∂kũi∂lũj + 〈ξjξl〉∂kũi∂lũk)

−∂j

[
D〈ξjξl〉

Dt
∂lũi

]
. (8)

The last term on the RHS of Eq. (8) can in theory be neglected because each
component of the particle displacement is transported by the mean flow like a
scalar [H99]. To maintain a reasonable computational cost, we retain only the
diagonal components of 〈ξkξl〉, which will be referred to as α2

k hereafter. Note
that no Einstein summation convention is applied to α2

k in the remainder of
the paper. With the above simplifications the momentum equation can be
written

∂tũi + ∂j ũiũj = −∂ip̃ + ν∂kkũi −H−1(∂jmij). (9)

with the subgrid force

∂j (mij) = ∂j

(
α2

kδkl∂kũi∂lũj + α2
l δlj∂kũi∂lũk − α2

kδkj∂iũm∂kũm

)
= ∂j (Aij + Bij − Cij) . (10)
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Here, Aij is the anisotropic gradient model, Aij + Bij is similar to a Leray
model1 and the NS-α model is comprised of all three terms. We found that
when α2

k is constant the subgrid model can also be written as the sum of a
gradient term and a vortex force

∂jmij = 2Aij − uST × ω̃ (11)

where uST
i = α2

k∂kkũi. This form is useful for physical interpretation of the
model results.

The implementation of the subgrid model involves an explicit filter, ex-
pressed as the inverse Helmholtz operator, H−1 in Eq. (9). This filter can
either be applied by using Helmholtz inversion or by using an equivalent op-
erator, usually taken to be a box filter [GH2006]. We found little difference
between the two in their effect on the mean flow and second-order turbulence
statistics. However, the box filter was much more computationally efficient.
With the box filter the model overhead was 30%, similar to that reported in
other studies [PHW2008], while solution of the Helmholtz equation using a
conjugate gradient solver led to an overhead of 90%.

3 Description of the Test Cases

The application of the NS-α model to a practical problem is studied here
using two test cases. The first is a lid-driven cubic cavity flow at a Reynolds
number of 10,000, where the Reynolds number is based on the lid velocity
and cavity length. The three-dimensional cavity flow is a challenging test case
for a subgrid model due to the lack of homogeneous directions, the presence
of both laminar and turbulent flow regions and the anisotropic nature of the
flow. Results are presented for a 483 mesh with CFL ∼ 1.

The second test case is a plane-channel flow at a Reynolds number of
Reτ = 180 where Reτ is based on the channel half-height and the friction
velocity uτ =

√
τw, where τw is the wall shear stress. The domain used for the

channel flow is (Lx, Ly, Lz) = (4π, 2, 3π/2) with (Nx, Ny, Nz) = (32, 48, 32).
The mesh is stretched in the wall-normal direction (y), and uniform in the
streamwise (x) and spanwise (z) directions.

Since α2
k is a smoothing scale it is most intuitive to start with a simple

definition based on the grid size. For the anisotropic case it is related to the
grid spacing. For example, α2

k = C
(
h2

k

)
, where hk is the grid spacing in the

k -direction and C is a constant denoting what fraction of the grid spacing
to use. Because α2

k can be related to the filter width, ∆k, of a box filter via
α2

k = ∆2
k/24, we choose C = 1/6, which corresponds to a filter width which

is twice the grid size.
1 It is not identical to the Leray model because ∂iũi = 0 was applied in deriving

the commutator, while for the Leray model inompressibility is enforced on the
unsmoothed velocity [GH2006].
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The simulations are carried out using the STREAM code [L92], which is
a colocated finite-volume method. A second-order time stepping scheme is
used and the advection schemes are QUICK for the cavity flow, and second
order central-differencing for the channel flow.

4 Results

Preliminary results for the lid-driven cavity flow with α2
k based on the mesh

found that the wall jet was consistently pushed too far out from the wall. This
is shown as the dotted line in the mean flow profile in Figure 1. This problem
was traced back to a discontinuity introduced when the normal component
of α2

k is set to zero at a solid boundary, which is the boundary condition
used in the derivation of the governing equations [H99]. For the cavity flow
the mesh is stretched in the plane of the primary recirculation cell and is
uniform across the span, thus there is a severe discontinuity at the endwalls.
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Fig. 2. Velocity profile for 323 mesh. Results are similar on finer mesh. Symbols
are DNS data [KMM87]; no model; model with α2

k based on the mesh;
α2

k based on Eq.(12).

This created numerical oscillations in the spanwise direction that led to a
generation of numerical (not physical) uST (see Eq. 11). The oscillations
themselves contribute to the generation of streamwise vorticity which is then
tilted into the vertical direction, leading to a mixing out of the mean flow
profile as seen in Figure 1.

As an alternative to having α2
k based strictly on the mesh spacing, we have

proposed a definition of α2
k which incorporates the properties of the resolved

flow as follows:

α2
k =

Hk(x, ∆, t)
g̃ij g̃ij

, g̃ij =
∂ũi

∂xj
, (12)

where Hk is,
Hk = max

[
(δxũk)2, (δyũk)2, (δzũk)2

]
. (13)

We can see in Figure 1 that this eliminates the erroneous mean flow profiles.
The results with the model in terms of mean flow and rms profiles also show
a significant improvement over those when no model is used, indicating the
necessity of a subgrid model for this flow.

For the channel flow problems of a different nature were encountered with
the mesh based definition of α2

k. In this case the grid is refined in the wall
normal direction so there is not a significant discontinuity at the wall. How-
ever, the vortex force leads to an additional tilting of streamwise vorticity
in the near-wall region that manifested itself in high skin friction and a se-
vere undershoot of the mean flow profile, as can be seen in Figure 2. With
the flow-dependent definition of α2

k (modified to not include the contribution
from δyũ) the results are substantially improved.

Promising results have been reported in the literature in using the NS-
α model for isotropic turbulence [CHMZ99] and a transitional mixing layer
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[GH2006]. This work represents a preliminary step towards extending the
range of applicability of the NS-α model to include wall-bounded flows. We
were not able to obtain a converged result for the isotropic model for these test
cases, and therefore decided to develop an anisotropic one. The anisotropic
model runs stably, but we found using a mesh-based definition of α2

k did not
produce good results. A simple definition of α2

k based on the flow gradients led
to significant improvements. Various future directions are possible. A more
theoretically-based method to determine α2

k may prove to be more robust
over a wide variety of flows. On the more practical side, applying the model
to high Reynolds number boundary layers using simple wall models [Sa2002]
would be useful.
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Summary. This work deals with computing turbulent flows using meshless
solver. An objective way of generating suitable point distribution employing
hybrid cartesian mesh strategy is evolved. Exploiting certain basic features
of the point distribution, a meshless solver, LSFD-U for RANS calculations
is developed. To the best of our knowledge, this work, for the first time has
demonstrated the capability of meshless solvers in not only generating a good
Cp distribution but also in producing an excellent match of the skin friction
profile for turbulent flows.

1 Introduction

Meshless solvers requiring only cloud of grid points for solution update have
great potential in computing flow past complex real life configurations. Gen-
erating suitable point distribution is an important component for the success
of any strategy employing meshless solver. Cartesian mesh happens to be
the most natural option for obtaining required point distribution for mesh-
less solvers. In our view, there are no major issues in simulating inviscid and
laminar viscous flows using meshless solvers along with cartesian distribution
of points[Muni06]. The real difficulty pertains to the use of cartesian meshes
for simulating turbulent flows because it is impractical to resolve a turbulent
boundary layer using an all cartesian mesh strategy. The only reasonable
way available is to use a hybrid strategy wherein the viscous region is filled
with body-fitted mesh with high aspect ratio cells and the inviscid region
is filled with unit aspect ratio cartesian mesh. Though the hybrid cartesian
mesh based finite volume schemes have existed[Phil99,Michel99], handling
the interface region between body-fitted and cartesian mesh blocks becomes
quite complex, particularly for three dimensional calculations. In this con-
text, the ability of meshless solvers to operate on arbitrary distribution of
points becomes important. Exploiting this feature associated with the mesh-
less solvers, we propose a way of generating suitable point distribution for
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simulating turbulent flows employing hybrid cartesian mesh strategy. In ad-
dition to the point generation strategy, we have evolved efficient, cheap and
robust discretization procedures exploiting the structure associated with the
mesh data and developed meshless solver, LSFD-U for RANS calculations.
The efficacy of the meshless solver LSFD-U along with point generation strat-
egy is demonstrated by solving turbulent flow problems.

2 LSFD-U

The compressible Navier-Stokes equation in divergence form reads,

Ut + (f + F )x + (g + G)y = 0, (1)

where, U is vector of Conserved variables, f & g are inviscid fluxes and F & G
represent the viscous fluxes. The stencil of grid points used in solution up-
date at a node i is shown in figure 1a. The solution procedure associated with
LSFD-U(Upwind-Least Squares Finite Difference(LSFD-U)) as applied to a
general point distribution involves method of least squares for discretizing
spatial derivatives. Inviscid flux discretization[Sridar03] consists of the fol-
lowing steps: (1) determination of the upwind fluxes fJ and gJ , along the co-
ordinate directions, at the fictitious interface J , using an upwind scheme and
with the appropriate choice for the left and right states in conjunction with a
suitable reconstruction procedure (2) computing the flux derivatives at node
i employing method of least squares. In our previous works[Anup04,Muni06],
we have evolved four different consistent viscous discretization procedures
based on quadratic least squares procedure and they were analysed for pos-
itivity as applied to a discrete Laplacian[Coirier94]. The procedure which is
found to be more positive and computationally efficient is applied for dis-
cretizing viscous flux derivatives. This procedure simply involves the use of
gradients and Hessians obtained from a quadratic least squares procedure in
discretizing the viscous flux derivatives associated with a generalised point
distribution. Other discretization strategies evolved exploiting the local struc-
ture in the hybrid cartesian grid are presented in section 4. Solution is up-
dated using the numerical flux derivatives in conjunction with a suitable time
integration procedure.

Fig. 1. a. Point cloud b. Structured type point c. Closed Path
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3 Point Generation

The point generation involves a hybrid cartesian distribution and consists
of four steps: (1) generating body-fitted grid blocks around each compo-
nent of the geometry using any of the conventional structured mesh gener-
ators(presently we use a hyperbolic mesh generator), allowing the different
grid blocks to overlap (2) identifying the region of overlap and deleting cer-
tain portion of the overlap region (3) filling the remaining computational
domain with recursively generated cartesian mesh around the last layer of
the structured grid block (4) all the cartesian points falling interior to the
structured grid block and certain cartesian points falling in close vicinity of
the last layer of structured grid block are identified using geometric search
algorithms and deleted. The above described steps can be appreciated from
the figure 2.

Fig. 2. Different stages in generating hybrid cartesian point distribution

While the discretization procedures developed based on method of least
squares explained in section 2 are capable of operating on any cloud of points,
there are serious difficulties in their use for the points present in the structured
grid block involving highly anisotropy in the point distribution[Muni07].
For the purpose of evolving alternative discretization procedures, the points
present in the distribution are sorted as structured, cartesian, hanging, gen-
eral and boundary type at the pre-processing stage depending on the struc-
ture associated with the support points.

4 LSFD-U Flow Solver

Exploiting the structure associated with the grid data, we have evolved robust
and efficient discretization procedures for different point types. It is very
important to emphasize that use of the strategies exploiting basic features of
the grid data, does not in any way compromise on the generality of the flow
solver.

Points identifiable with South(S), East(E), North(N) and West(W) neigh-
bourhood fall under this category; points present in the interior to the struc-
tured grid block naturally belongs to this type. Because these points are
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derived from a body-fitted grid, they exhibit an alignment with stream-
wise coordinate. Exploiting this feature, we solve the governing equations
in a locally rotated coordinate system,(ξ, η) identified with support points,
∂Ũ
∂t + ∂(f̃+F̃ )

∂ξ + ∂(g̃+G̃)
∂η = 0, where, Ũ = [ρ ρũ ρṽ e]T is the vector of con-

served variable. Referring to figure 1b, the ray iE represents the ξ direction
and η represents the normal direction to it. The concept of introducing fic-
titious interface within the LSFD-U procedure for determining inviscid flux
derivatives(explained in section 2) becomes convenient to evolve a simple and
robust inviscid discretization procedure suitable for structured type points.
As shown in figure 1b, the fictitious interfaces represented with s, e, n, w are
located at the projection of the mid-point of the ray joining the node with
its neighbour along the coordinate direction. Inviscid fluxes are computed at
the fictitious interface using any upwind flux formula and flux derivatives are
determined employing simple 1D least squares formula:

f̃ξi =
∑

J ∆f̃J∆ξJ∑
J ∆ξ2

J

; J ∈ [e, w], g̃ηi =
∑

J ∆g̃J∆ηJ∑
J ∆η2

J

; J ∈ [n, s].

(2)
Discretization of the viscous flux derivatives require first and second deriva-

tives of the solution values. The two major hurdles associated with any vis-
cous discretization procedure developed based on method of least squares
are the non-positivity of the discretization scheme and ill-conditioning of
the geometric matrix associated with the least squares procedure. There-
fore, we have employed a Green-Gauss theorem based gradient finding proce-
dure[Jawahar00,Muni07] for determining first and second derivatives of the
solution values. It should be remarked that this viscous discretization proce-
dure is found to be positive as applied to a discrete Laplacian and it renders
the code required robustness for simulating turbulent flows.

For the cartesian points(cartesian type or Hanging type), wherever there is
neighbourhood available in coordinate direction, simple 1D finite difference
procedures are used for approximating the solution derivatives. The other
derivatives are computed using a modified least squares procedure by treat-
ing the derivatives obtained using finite differencing as known quantities. The
details of the discretization procedures may be had from reference[Muni07].
The general type points present in the cartesian grid block in the interface
region do not show any structured data dependency. Generalised finite dif-
ference procedure explained in section 2 are used only for the general type
points.

5 Numerical Results

To demonstrate the efficacy of the LSFD-U based RANS solver along with
point generation strategy, we have solved standard viscous flow test cases.
Roe scheme is used for computing inviscid interfacial fluxes. Baldwin-Lomax
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Table 1. Details of Freestream Conditions and Point Distributions

Geometry M∞ Re∞ α Grid and number of Reference
number of points wall points data

NACA 0012 0.502 2.91x106 1.77o G1, 25269 298 Phillippe[Phil99]
RAE 2822 0.676 5.7x106 1.92o G2, 25404 300 Cook[Cook]
NLR 7301 0.185 2.51x106 6o G3, 34205 300 + 200 Berg[Berg]
Biplane 0.8 500 10o G4, 19974 198 + 198 Jawahar[Jawahar00]

Fig. 3. Hybrid cartesian Point Distributions G1,G2,G3

a. −Cp distribution b. Cf distribution c. Mach contours

Fig. 4. Turbulent flow past NACA 0012: M∞ = 0.502, Re∞ = 2.91x106 , α = 1.77o

turbulence model is employed for computing eddy viscosity. The SGS im-
plicit relaxation procedure[Muni07] is used for accelerating the convergence
to steady state. No slip and adiabatic boundary conditions are imposed on
the wall boundary and the normal pressure gradient is set to zero. Riemann
invariant boundary condition is employed at the farfield points. Details of the
free stream conditions and point distributions employed are shown in table 1.

The hybrid cartesian point distributions used for turbulent computations
are shown in figure 3. The numerical results obtained for turbulent flow past
NACA 0012 and RAE 2822 airfoil are shown in figures 4 and 5 respectively.
The capability of the LSFD-U solver for simulating flows involving complex
geometries is demonstrated by solving turbulent flow past NLR 7301 airfoil
with slotted flap(refer to figure 6) and laminar flow over a NACA 0012 biplane
configuration(refer to figure 7). In all the cases, an excellent agreement is
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a. −Cp distribution b. Cf distribution c. Mach contours

Fig. 5. Turbulent flow past RAE 2822: M∞ = 0.676, Re∞ = 5.7x106, α = 1.92o

a. −Cp distribution b. Cf distribution c. Mach contours

Fig. 6. Turbulent flow past NLR 7301: M∞ = 0.185, Re∞ = 2.51x106, α = 6o

a. Point Distribution, G4 b. −Cp distribution c. Cf distribution

Fig. 7. Laminar flow past NACA 0012 Biplane : M∞ = 0.8, Re∞ = 500, α = 10o

observed between the computed surface coefficients with standard numerical
and/or experimental data.

6 Conclusions

In this work, we have proposed an objective strategy involving hybrid carte-
sian mesh to generate suitable point distribution for simulating turbulent
flows using meshless solvers. Exploiting certain basic features of the grid data,
simple, cheap and robust discretization procedures are evolved and LSFD-U
meshless RANS solver is developed. The numerical results clearly establishes
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the efficacy of the LSFD-U solver for simulating flows around complex aero-
dynamic bodies.
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1 Introduction and Scope

A block-based adaptive mesh refinement (AMR) algorithm is proposed for
performing large-eddy simulations (LES) of turbulent premixed combustion
using body-fitted multi-block hexahedral computational mesh. The AMR
framework is combined with a high-resolution finite-volume scheme with lim-
ited linear reconstruction and a parallel implicit time-marching scheme to
solve the Favre-filtered Navier-Stokes equations for a thermally perfect com-
pressible reactive mixture. A flexible block-based octree data structure is
used to facilitate automatic solution-directed mesh adaptation according to
physics-based refinement criteria. The data structure also enables an efficient
and scalable parallel implementation via domain decomposition. The use of
body-fitted mesh permits the use of anisotropic grids and resolution of thin
boundary, mixing, and shear layers. The implicit formulation makes use of a
dual-time-stepping-like approach, Jacobian-free inexact Newton method, and
preconditioned generalized minimal residual (GMRES) algorithm to solve the
system of nonlinear algebraic equations arising from the temporal discretiza-
tion procedure. An additive Schwarz global preconditioner is used in con-
junction with block incomplete LU type preconditioners for each sub-domain.
Both the thickened-flame and flame-surface-density subfilter-scale models are
considered for representing turbulence-chemistry interactions. Numerical re-
sults for a methane-air slot burner demonstrated the potential of the approach
for performing LES of turbulent premixed flames.

2 LES Modelling

In LES, a separation of scales is achieved via a low-pass filtering procedure.
Scales larger than the filter size, ∆, are resolved, whereas scales smaller than
∆ are modelled. Relevant flow quantities, φ, are filtered or Favre-filtered
yielding φ or φ̃, respectively. The Favre-filtered form of the Navier-Stokes
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equations for a compressible, reactive, thermally perfect, gaseous mixture
are given by

∂

∂t
(ρ̄) +

∂

∂xi
(ρ̄ũi) = 0 , (1)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj + δij p̄ − τ̌ij) = A1 + A2 , (2)

∂

∂t

(
ρ̄Ẽ
)
+

∂

∂xi

[(
ρ̄Ẽ + p̄

)
ũi + q̌i

]
− ∂

∂xj
(τ̌ij ũi) = B1+B2+B3+B4+B5+B6 ,

(3)
∂

∂t

(
ρ̄Ỹk

)
+

∂

∂xi

(
ρ̄Ỹkũi

)
+

∂J̌k,i

∂xi
= ω̇k + C1 + C2 , (4)

where ρ̄ is the filtered mixture density, ũi is the Favre-filtered mixture veloc-
ity, p̄ is the filtered mixture pressure, Ỹk is the Favre-filtered mass fraction
of species k, Ẽ is the Favre-filtered total mixture energy (including chem-
ical energy) given by Ẽ =

∑N
k=1 Ỹk(ȟk + ∆h0

f,k) − p̄/ρ̄ + ũiui/2, ȟk and
∆h0

f,k are the sensible enthalpy and heat of formation for species k, respec-
tively, and ω̇k is the filtered reaction rate. The filtered equation of state
has the form p̄ = ρ̄RT̃ + D1. The resolved viscous stress tensor, τ̌ij , the
resolved total heat flux, q̌i, and the resolved species diffusive fluxes, J̌k,i,
are evaluated in terms of the filtered quantities as: τ̌ij = 2µ̌(Šij − δij Šll/3),
q̌i = −κ̌∂T̃ /∂xi+

∑N
k=1 ȟkJ̌k,i, J̌k,i = −ρ̄Ďk∂Ỹk/∂xi, where T̃ is the mixture

temperature, µ̌ is the mixture viscosity, κ̌ is the mixture thermal conductivity,
and Ďk is the diffusivity of species k, and Šij = (∂ũi/∂xj + ∂ũj/∂xi)/2.

The terms A1, A2, B1, B2, B3, B4, B5, B6, C1, C2, and D1, arise
from the low-pass filtering process and require modelling. In most LES,
the terms A2, B2, B3, B5, C2, and D1 are neglected [VV02]. The non-
negligible terms are A1 =−∂[ρ̄(ũiuj − ũiũj)]/∂xj , B1 =−∂[ρ̄(h̃ui− h̃ũi)]/∂xi,
B4 = −∂[ρ̄( ˜ujujui − ũjũj ũi)/2]/∂xi, C1 = −∂[ρ̄(Ỹkui − Ỹkũi)]/∂xi (B6 is
related to C1), and must be modelled for closure of the filtered equation set.
The subfilter stresses, σij = −ρ̄(ũiuj − ũiũj), are generally modelled using
an eddy-viscosity model with σij = 2ρ̄νt(Šij − δij Šll/3) + δijσll/3. The eddy
viscosity, νt, is prescribed herein by using a one-equation model. Standard
gradient-based approximations are used in this work for the modelling of the
subfilter-scale fluxes B1, B6, and C1: ρ̄(h̃ui − h̃ũi) = −(Čpρ̄νt/Prt)∂T̃ /∂xi

and ρ̄(ũiYk − ũiỸk) = −(ρ̄νt/Sct)∂Ỹk/∂xi, where Prt and Sct are subfilter-
scale turbulent Prandtl and Schmidt numbers. The subfilter turbulent diffu-
sion term, B4, is modelled using −ρ̄( ˜uiuiuj − ũiũiũj)/2 = σij ũi.

3 Thickened Flame Model

The challenge in LES for reactive flows is to accurately model the influence
of the subfilter-scale turbulence on the filtered reaction rates, ω̇k. This is
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particularly challenging for turbulent premixed combustion where the flame
thickness, δ, is 0.1–1.0 mm, which is in many cases smaller than practical filter
widths. One approach to modelling the turbulence/chemistry interaction for
premixed flames is offered by the so-called thickened flame model. In the
thickened flame model, the flame front structure is artificially thickened so it
can be resolved on a LES mesh, but such that the laminar flame speed remains
unaltered. An increase in flame thickness by a factor F with a constant flame
speed, can be achieved by multiplying the molecular diffusivity D by F , and
the reaction rate ω̇ by 1/F . An efficiency factor, EF, is also introduced to
account for the resulting decrease in the Damkhöler number, Da, for the
flame [CDVP00]. The modified species mass fraction equation takes the form

∂

∂t

(
ρ̄Ỹk

)
+

∂

∂xi

(
ρ̄Ỹkũi

)
=

EFω̇k

F
+

∂

∂xi

[
EFF ρ̄

(
Ďk +

νt

Sct

)
∂Ỹk

∂xi

]
, (5)

where the filtered reaction rates, ω̇k, are now calculated directly using Arrhe-
nius law reaction rates evaluated in terms of resolved quantities. To correct
the flame Damkhöler number and incorporate the influences of the unresolved
turbulent field on the chemical kinetics, the efficiency factor, EF, is evaluated
herein using the power-law flame wrinkling model of Charlette et al. [CMV02]

4 Flame Surface Density Model

A second approach to subfilter-scale modelling for turbulent premixed flames
is to ignore for the internal flame structure represent the combustion oc-
curring at the thin flame front in terms of a reaction progress variable
that quantifies the conversion of reactants to products. One possible defi-
nition of a progress variable, c, is provided by a reduced fuel mass fraction,
c = (YF − Y u

F )/(Y b
F − Y u

F ), where YF , Y u
F and Y b

F are respectively the local,
unburnt and burnt fuel mass fractions [VV02]. The progress variable takes
on values in the range 0≤c≤1 with c=0 in the fresh gases and c = 1 in the
fully burnt gases. Gaseous mixture composition at any location can then be
specified directly in terms of c̃. A transport equation for the progress variable
can be written as

∂

∂t
(ρ̄c̃) +

∂

∂xi
(ρ̄c̃ũi) =

∂

∂xi

(
ρ̄νt

Sct

∂c̃

∂xi

)
+ ρrsLρ̄Σ̃ , (6)

where ρr is the reactants density, Σ̃ is the Favre-filtered flame surface area
per unit mass of the mixture, and the product, ρ̄Σ̃, is the flame surface area
per unit volume or flame surface density (FSD). The quantity, Σ̃, includes
contributions from the resolved and the unresolved subfilter scales and a
means of specifying the FSD is required for closure. The modelled transport
equation for the FSD proposed by Hawkes and Cant [HC01] is used here.
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5 Parallel Implicit AMR Finite-Volume Scheme

The filtered Navier-Stokes equations and subfilter-scale model equations are
solved by applying a finite-volume method in which the conservation equa-
tions are integrated over hexahedral cells of body-fitted multi-block mesh.
The finite-volume formulation applied to cell (i, j, k) can be expressed as

Γi,j,k
dUi,j,k

dt
= − 1

Vi,j,k

∑
l

(F · n ∆A)i,j,k,l + Si,j,k = Ri,j,k(U) , (7)

where U is the vector of solution variables, F is the flux dyad containing con-
tributions from the inviscid and viscous terms, S is the vector of source terms
including terms associated with finite rate chemistry, Vi,j,k is the volume of
cell (i, j, k), and ∆A and n are the area of the cell face and unit vector nor-
mal to the cell face, respectively, and Ri,j,k(U) is the residual vector. Local
preconditioning technique as proposed by Weiss and Smith [WS95] is used to
alleviate numerical difficulties for low-Mach-number, nearly incompressible
flows. The preconditioning matrix, Γ , helps control numerical stiffness and
dissipation, making the solution of the governing equations more tractable.
The inviscid (hyperbolic) component of the numerical fluxes are determined
using the least-squares piecewise limited linear solution reconstruction proce-
dure of Barth [Bar93] and Riemann solver based flux functions. The limiter of
Venkatakrishnan [Ven93] is used. An extension of the approximate linearized
Riemann solver of Roe [Roe81] is used to account for mixture composition.
The viscous (elliptic) component of the face fluxes are evaluated by employing
the approach of Mathur and Murthy [MM97].

The spatial discretization procedure described above allows for solution-
directed block-based AMR and an efficient and highly scalable parallel
implementation has been achieved via domain decomposition [GG08]. In par-
ticular, a flexible block-based hierarchical octree data structure has been de-
veloped and is used to facilitate automatic solution-directed mesh adaptation
on multi-block body-fitted hexahedral mesh according to physics-based re-
finement criteria. Local refinement and coarsening of the mesh is carried out
by division and merging of solution blocks, respectively. A domain decomposi-
tion procedure is used where the solution blocks making up the computational
mesh are distributed equally among available processors, with more than one
block permitted per processor. A Morton ordering space filling curve is used
to provide nearest-neighbour ordering of the solution blocks in the multi-block
hexahedral AMR mesh for more efficient load balancing [ABM04].

The semi-discrete form of the governing equations given in Eq. (7) form
a coupled set of non-linear ordinary differential equations. For unsteady
flows, time-dependent solutions are obtained by employing a dual-time-
stepping-like procedure. In this approach, a modified residual is defined by
R∗(U(n+1)) = (3U(n+1)−4U(n)+U(n−1))/(2∆t)+R(U(n+1)) = 0, where an
implicit second-order backward discretization of the time derivative has been
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used. Newton’s method is applied to the solution of the non-linear algebraic
equations above. This requires the solution of the following linear system:

[(
3

2∆t

)
I +

∂R
∂U

]
�U(n+1,k) = J∆U(n+1,m) = −R∗(U(n+1,m)), (8)

which must be solved at each Newton iterative step, m, for the solu-
tion change ∆U(n+1) = U(n+1) − U(n) at time level n. With the pre-
vious time step as an initial estimate, U(n+1,m=0) = U(n), successively
improved estimates for the solution, U(n+1,m), are obtained by solving Eq. 8,
where J is the modified residual Jacobian. The procedure is repeated until
||R∗(U(n+1,m))||2 < ε||R∗(U(n))||2 where ε is some small parameter (typi-
cally, ε ≈ 10−2–10−3).

Each step of Newton’s method requires the solution of the large, sparse,
and non-symmetric linear system Jx = b. A preconditioned restarted ver-
sion of the GMRES algorithm, GMRES(mg), is used, where mg is the
number of steps after which the method is restarted [Saa96]. An inexact
Newton method is adopted in which the GMRES iterations are not fully
converged at each Newton step. The iterations are carried out only until
||R∗ +J∆U||2 ≤ ζ||R∗||2, where ζ is typically in the range 0.01–0.5. Precon-
ditioning is required for GMRES to be effective. Right preconditioning of the
form (JM−1)(Mx) = b is used where M is the preconditioning matrix. An
additive Schwarz global preconditioner with variable overlap [Saa96, KK04]
is used in conjunction with local preconditioning based on a block-fill ILU(f)
or BFILU(f) factorization of an approximate Jacobian for each subdomain.
Here, f is the level of fill. This combination of preconditioning is compatible
with the block-based AMR and domain decomposition and facilitates par-
allel implementation. A “Jacobian-free” approach is also adopted in which
numerical differentiation is used to approximate the matrix-vector product
JM−1x.

6 Numerical Results

LES predictions are now considered for a slot burner [FDCD05]. The burner
consists of a rectangular slot (slot area 0.025 m × 0.05 m) flanked by two
pilot flames to anchor the central flame and shield it from the surroundings.
The two pilot flames, each 0.025 m × 0.05 m, are approximated by a uni-
form co-flow of hot combustion products at a velocity of 14.46 m/s. For the
central burner, a uniform mean inflow of 12 m/s with superimposed fluctuat-
ing turbulent field is prescribed. The fresh gas at the inflow is a methane-air
premixed stoichiometric mixture with temperature T =298 K. The methane-
air chemistry is represented simply by a one-step mechanism as described
by Westbrook and Dryer [WD81]. The inflow turbulence is generated by em-
ploying the procedure of Rogallo [Rog81]. Inflow conditions at any instant in
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Fig. 1. Predicted instantaneous flame
surface at time t = 4 ms represented
by the iso-surface of fuel mass fraction,
YF = 0.0275 obtained using the thick-
ened flame model.

Fig. 2. Predicted flame interaction
with turbulent structures as repre-
sented by the Q-criterion iso-surface,
Q = 11, 000, at time t=4 ms obtained
using the thickened flame model.

time are obtained from this synthetic field using Taylor’s hypothesis. The in-
tegral length scale of the inflow turbulence is L=6.2 mm and the turbulence
intensity is u′ = 1.44m/s (u′/sL =3.8). The computational domain was 0.075
m wide, 0.05 m deep, and 0.10 m high. Subsonic inflow boundary conditions
were applied at the inlet and subsonic outflow conditions were imposed on
the remainder of the domain. For the thickened flame model, a grid consisting
of 96×64×128 = 786, 432 cells and F = 8 were used and ∆=2∆x.

LES predictions of the slot burner flame obtained using the thickened-
flame model at time t=4 ms are shown in Figs. 1 and 2. The instantaneous
flame surface is shown in Fig. 1 and this iso-surface, along with surfaces cor-
responding to a constant value of the Q-criterion, are shown in Fig. 2. The
latter depicts the interaction of the turbulent structures with the flame. The
initially planar flame near the inlet exhibits a strong interaction with the tur-
bulence, becoming well wrinkled. The predicted flame has an approximately
parabolic shape that is mostly convex towards the combustion products. Tur-
bulent structures passing through the flame front are significantly diminished
by heat release and expansion of the fluid. A similar set of LES predictions for
the slot burner flame was obtained using the FSD model but are not shown.
Overall, the predictions for both the thickened-flame and FSD models agree
well with the trends observed experimentally [FDCD05].
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7 Conclusions

A parallel implicit AMR scheme has been proposed for performing LES of
turbulent premixed flames. Initial numerical simulations for a slot burner
have demonstrated the potential of the approach.
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Abstract. The performance and applicability of FDS code is analyzed for flow 
simulation in railway tunnel. RANS and DNS's results are compared with FDS's. 
AJL non-linear ε−k  model is employed to calculate the turbulent flow for RANS. 
DNS data by Moser et al. are used to prove the FDS's applicability in the near wall 
region. Parallel plate is used for simplified model of railway tunnel. Geometrical 
variables are non-dimensionalized by the height (H) of parallel plate. The length 
of streamwise direction is 50H and the length of spanwise direction is 5H. Se-
lected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The 
characteristics of turbulent boundary layer are introduced. AJL model's predictions 
of turbulent boundary layer are well agreed with DNS data. However, the near 
wall turbulent boundary layer is not well resolved by FDS code. Half-Slip (de-
fault) conditions are imposed on the wall but wall functions based on log-law are 
not employed by FDS. The heavily dense grid distribution in the near wall region 
is necessary to get correct flow behavior in this region for FDS. 

1   Introduction 

Research on the phenomenon of fire in railway tunnels and underground space has 
been actively conducted since the 2003 Daegu subway fire disaster in Korea. Due 
to the danger and constraints involved in using experimental techniques to study 
fire-driven flow in tunnel, simulation methods are being vigorously developed in-
stead[1]. As for simulation methods, the RANS(Reynolds Averaged Navier Stocks) 
technique in the FLUENT, START CD series and the LES(Large Eddy Simulation) 
technique in FDS code developed by NIST of the U.S. are the mainstream.  

Compared with LES, RANS has the advantage of being accessible to the gen-
eral public because of its fast calculation time and small calculation capacity, 
whereas it has the disadvantage of being vulnerable in the flow field where mas-
sive vortices occur such as wake flow[2]. The CFD method that can make up for 
this disadvantage is the LES technique, which is employed by FDS code. Devel-
oped in the early days to research the atmosphere, the LES technique began to be 
applied to the general fluid and mechanical fields in the 1980s. The advantages of 
LES have been recognized as suitable for analyzing the flow field in which mas-
sive vortices occur such as fire-driven flow, and the phenomenon of unsteady flow 
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is pre-dominant[3]. However, one drawback of LES is that compared with RANS, 
it requires a longer calculation time. Another serious drawback is that its flow 
prediction capability in the near wall region is markedly less than RANS. To over-
come this weakness, methods of significantly increasing the number of grids in the 
near wall region are being used, but it only increases the calculation time exponen-
tially, drawing unfavorable comments on the desirability of its practical applica-
tions [2]. Therefore, when employing FDS code that uses the LES technique, it is 
necessary that such LES advantages be utilized, while avoiding its disadvantages. 
Unfortunately, many researchers are using FDS in spaces surrounded by walls 
(such as tunnel wall) without understanding the vulnerabilities of FDS pointed out 
above, against which some measures are in order.  

This research carried out a comparative analysis of the results of RANS and 
DNS (Direct Numerical Simulations) in a space surrounded by walls to verify the 
performance of FDS in the same area. As for the turbulent model of RANS, re-
ports [4,5,6,7] were made of successful RSM (Reynolds Stress Model) which is 
the most sophisticated model in RANS, but for the purpose of reducing calculation 
time, the AJL model [8], a recently developed non-linear turbulence model, was 
used. Also, for comparison with the results of DNS, the data from Moser et al. [9] 
was employed. 

2   Flow Conditions and Numerical Method 

2.1   Flow Conditions 

Using the shape of a railway tunnel as surrounded by walls requires a considerable 
calculation time. This research adopted as a railway model a three-dimensional 
parallel plate that obtained DNS results [9] to ensure reduced calculation time and 
precise comparison as shown in Figure 1. ‘H’ for the height of the parallel plate, 
‘5H’ for the spanwise direction, and ‘50H’ for the main streamwise direction(X) 
were chosen. In the case of turbulent flow, the flow develops completely at 13H, 
according to the empirical formula [10]. Therefore 50H is judged to be sufficient 
for the length of the main streamwise direction. As for the flow model, the turbu-
lent flow of Re = 10,667 and the laminar flow of Re = 133 were simulated. The 
number of Re chosen for the turbulent flow is the one to be compared with the 
results of DNS.  

In the case of FDS, the default conditions of uniform flow were used at the en-
trance as boundary conditions; while at the exit, the ‘OPEN’ conditions of FDS 
were used. On the side, the symmetrical ‘MIRROR’ conditions were employed. 
RANS was calculated two-dimensionally and the turbulent and laminar flow were 
calculated based on the same Re number as FDS.  

In the same flow structure, the results of DNS correspond to 590/Re == νδττ u  

(δ means channel half-width), which represents Re = 10,667 of this research. In 
RANS and DNS, X and Y stand for the main streamwise and the wall (height) direc-
tion, respectively. 
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Fig. 1. 3-D parallel-plate structure for simplified railway tunnel 

2.2   Grid Generation 

FDS uses the orthogonal coordinate system as default conditions. In LES, grid 
space is a very important variable and if set too wide, the results may be no more 
satisfactory than RANS. This research used 512 grids in X direction, 64 in Y di-
rection, and 128 in Z direction (4.2 million grids in total), and the grid spaces of 

,39~+∆x  31~+∆y , 3~+∆z  were established, fulfilling the space requirements for 

the parallel plate flow suggested in Temmerman et al.[11]. As for the boundary 
condition on the wall, the default conditions of FDS were used. For RANS, a total 
of 3,600 grids were used, and flow analysis was carried out in the near wall sub-
layers, maintaining 1)/( ≤=+ νryuy  (Y is in the wall direction in RANS.) 

2.3   Governing Equation 

The LES governing equation for FDS shown below was obtained by filtering the 
momentum equation. 
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Here ijτ  represents sub-grid scale (SGS) stress. 
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Here tν  should be modeled and FDS utilizes the following general-purpose 
Smagorinsky model [11]. 

           SCst
2)( ∆=ν  ,  2/1)2( ijij SSS = , 3/1)( zyx ∆∆∆=∆               (2) 

And Cs = 0.2 (FDS default condition) was used. 
For calculating RANS, a non-linear ε−k  turbulent flow model (AJL [8]) was 

employed. 
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2.4   Numerical Method 

The user manual was consulted for FDS calculation. RANS calculation was car-
ried out utilizing ‘STREAM’ [12,13,14] code based on non-orthogonal coordinate 
system, collocated grid system, and FVM. 

3   Results and Discussion 

Fig. 2 is a typical result of the turbulent flow in a parallel plate. A comparative 
analysis of the results of the AJL model and DNS was carried out. Fig. 2(a) exhib-
its the mean velocity of the turbulent boundary layer in log scale, meaning 

τUUU /=+ , ντ /yUY =+ . Here 
τU  means friction velocity. According to Kays & 

Crawford [10], 
τU shows the value of about 0.06 at Re = 10,667. As shown by the 

turbulence theory [10], the mean velocity at the laminar sub-layer of the turbulent 
flow is ++ = YU , and that which exceeds this region is called a log-region, for 
which a relative equation of 0.5ln44.2 += ++ YU  is obtained. The DNS results ex-
actly agree with the theory and the AJL model also shows a considerable degree of 
exactitude. Fig. 2(b) shows again the same result as (a) in y scale with a good vis-
ual representation of the shape of the turbulent flow. Here, we can see the turbu-
lent boundary layer is very thin. Fig. 2(c) indicates the shear stress distribution. A 
high level of shear stress is generated in the near wall region and the results of  

 

(a) mean velocity        (b) mean velocity      c) Reynolds shear stress 

    (d) turbulence energy    (e) turbulence dissipation  (f) Reynolds normal stresses 
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Fig. 2. Prediction of turbulent boundary layer in parallel plate using RANS (AJL) 
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Fig. 3. Velocity distribution using FDS at 
the inlet and fully developed point 

Fig. 4. Comparison between FDS and 
RANS results 

 
DNS and the AJL model are consistent. Fig. 2(d) shows the turbulent kinetic en-
ergy, which reveals a very high level of kinetic energy in the near wall region of 
great shear stress. The AJL model agrees well with DNS. Fig. 2(e) shows the tur-
bulence dissipation, which is strong in the near wall region. Fig. 2(f) is the pre-
dicted result of normal stress, which reveals a strong anisotropy of the turbulence 
stress. It is in this very aspect that the non-linear model has the advantage, but the 
linear model is incapable of predicting such anisotropy of the turbulence stress. 
This anisotropic characteristic of turbulent flow in the near wall region should be 
well predicted with LES (FDS). A comprehensive view of the turbulent boundary 
layer using RANS reveals that the result of the employed model (AJL) corre-
sponds well with that of DNS and leads to the conclusion that it is suitable for 
examining the performance of the FDS code. 

Fig. 3 shows the mean velocity vector using FDS at the inlet and fully devel-
oped point in the parallel plate. The default conditions of uniform flow are given 
at the inlet and the flow is developed from a certain distance. Fig. 4 is a graph 
that compares the results of FDS with those of RANS. The flow condition was 
compared at the turbulent flow (Re = 10,667) and at the laminar flow (Re = 133), 
respectively. First, in the turbulent flow, the results of FDS differ from those of 
RANS. As examined above, a thin boundary layer has to appear in the near wall 
region like the results of RANS, but the FDS results of the turbulent flow exhibit 
a flow similar to the laminar flow of RANS, which means turbulence was not 
generated in the near wall region in FDS calculation. As explained above, in cal-
culating turbulence in FDS, the wall condition was used as default conditions. 
The results concerning the FDS flow at Re = 133 in the same number of grids 
(4.2 million) and structure didn’t agree well with the results of RANS, either. In 
Fig. 5, the results of FDS in the parallel plate were analyzed using a log-scale in 
comparison with the results of DNS. The FDS turbulent flow was similar to the 
results of DNS in laminar sub-layer, but the results were completely different in 
the log-region. 
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Fig. 5. Comparison between FDS and 
DNS’s results in log-scale 

Fig. 6. Mean velocity profile using wall 
function in RANS (AJL) 

 
The reason for these kinds of results is that when using default conditions in 

FDS, flow does not completely stick to the wall, but the ‘half-slip’ condition is 
given. In general, the ‘slip’ condition is given when using wall functions in the 
near wall. When wall functions are used, the turbulent flow is generated in the 
area exceeding Y+ = 11 as shown in Fig. 6. Fig. 6 is the calculation result using 
wall functions in RANS (which used the AJL model). The results of this research, 
which calculated the turbulent flow using FDS by adjusting the grid distribution in 
a variety of ways, confirm that wall functions are not employed in FDS. There-
fore, the dense arrangement of grids is essential to achieve the correct turbulent 
flow behavior in the near wall region with FDS. However, this is actually beyond 
the scope of industrial applicability. 

To overcome such vulnerabilities in the near wall region in FDS, it is recom-
mended that, if possible, the simulation of the flow be carried out in a place where 
contact with the wall can be limited. 

4   Conclusion 

This research evaluated the simulation performance capability of FDS in a simpli-
fied model of a railway tunnel. For this purpose, the results of RANS and DNS in 
the same space were comparatively analyzed and Re = 10,667 for the turbulent 
flow and Re = 133 for the laminar flow were applied, respectively. As for the 
RANS model, the non-linear ε−k  AJL model [8] was used. For DNS, the data 
from Moser et al. [9] were used.  

The calculation results using the default conditions of FDS were not consistent 
with the results of RANS and DNS in the same space, and the correct turbulent 
flow behavior was unavailable in the near wall region. Also, FDS did not use 
wall functions, but a ‘half-slip’ condition was employed in the near wall region, 
which made it impossible to form a log-region characteristic of the turbulent 
flow. Therefore, to avoid such vulnerabilities of FDS in the near wall region, the 
flow analysis should be made, if possible, in the space where contact with the 
wall is limited. 
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1 Introduction

For some years now, the fluctuation distribution approach to approximating
multidimensional systems of conservation laws has been able to produce accu-
rate simulations of complex steady state fluid flow phenomena using unstruc-
tured meshes [DSA00]. More recent research has illustrated their potential
for providing a similar level of accuracy in the simulation of time-dependent
problems (see the notes in [VKI05] for a recent overview of such methods).
Even so, computational simulation of compressible fluid flow problems is still
dominated by the finite volume approach.

This is changing, with the emergence of the discontinuous Galerkin (DG)
approach, which can be treated as a natural generalisation of the finite vol-
ume technique which accounts directly for variation of the solution within
each mesh cell rather than dealing with cell-averaged values. Fluctuation
distribution schemes do, however, have inherent advantages over finite vol-
ume and discontinuous Galerkin schemes, both of which use numerical fluxes
across cell boundaries in the update of the dependent variables. They instead
consider how the variation within each cell (loosely speaking, a generalised
flux difference) should affect the local evolution of the dependent variable.
Fluctuation distribution schemes are also typically designed to incorporate
the most important underlying physical processes: making use of the fluc-
tuation/flux difference instead of the flux provides an environment in which
it is simpler to accurately model, not only genuinely multidimensional flow
physics, but also source terms when these represent processes which have a
natural balance with the fluxes.

Since they are essentially alternative formulations of continuous finite el-
ement methods, existing fluctuation distribution schemes are similarly re-
stricted by the continuity imposed on the numerical solution. This can make
it difficult to apply h- and p-adaptivity or construct high order schemes which
are free of numerically induced oscillations. Recent research, presented in
[Hub07, Hub08], has led to the proposal of a discontinuous fluctuation distri-
bution scheme, designed to overcome such problems. It provides an alterna-
tive discontinuous model to DG which avoids the construction of numerical
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fluxes and has been successfully used to design a second order accurate, pos-
itive algorithm (a generalisation of the PSI scheme) which can be applied to
the Euler equations of gas dynamics. This paper will discuss the extension of
these schemes to time-dependent problems, and present preliminary results
for scalar conservation laws in one space dimension.

2 Discontinuous Fluctuation Distribution

Consider the scalar conservation law governing the evolution of an unknown
quantity u(x, t) and given by

ut + ∇ · f = 0 or ut + λ · ∇u = 0 (1)

on a domain Ω, with boundary conditions imposed on the inflow part of ∂Ω
and appropriate initial conditions. Here λ = ∂f/∂u defines the advection
velocity associated with the conservation law (1).

These equations will be approximated by discretising an integrated form
of the conservation law, assuming that the representation of u is piecewise
polynomial with discontinuities allowed at the interfaces between the cells
of the computational mesh. Integrating the spatial derivative terms over the
whole domain gives∫

Ω

∇ · f dΩ =
Nc∑
j=1

∫
Cj

∇ · f dΩ +
Nf∑
k=1

lim
ε→0

∫
Fk

ε

∇ · f dΩ , (2)

in which Nc, Nf are the numbers of cells and faces in the mesh, respectively,
and the final term represents the integrals over the interfaces, which are being
treated as limiting cases of degenerate cells whose widths (ε) perpendicular
to the adjacent cell faces tend to zero.

Now assume that, in d space dimensions, the computational mesh cells are
d-dimensional simplices, that u varies linearly with these cells, and that an
appropriate (conservative) linearisation exists for the system [VKI05]. The
cell spatial fluctuations can now be written

φj = −
∫

Cj

∇ · f dΩ =
∮

∂Cj

f · n dΓ = −1
2

∑
i∈Cj

ui λ̃ · ni , (3)

where the symbol ˜ indicates an appropriately linearised quantity. The index
i loops over the vertices of the mesh cell and ni is the inward unit normal to
the ith face (opposite the ith vertex) multiplied by the length of that edge.
The interface spatial fluctuations can also be evaluated exactly, giving

ψk = − lim
ε→0

∫
Fk

ε

∇ · f dΩ , =
∫

Fk

[f · n] dΓ = −1
2

∑
i∈Fk

[ui] λ̂ · n , (4)

where λ̂ represents a second (different) set of conservatively averaged values,
and [ ] represents the jump in a quantity across an interface (where ui is
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considered to be dual-valued), the sign of the difference being dictated by the
direction chosen for n. This term is simply the integral over the interface of
the flux difference across it.

Each mesh node corresponds to many cell vertices and multiple values of u.
When all of the cell- and interface-based fluctuations are distributed, each uj

i

(the value associated with vertex i of cell j) can receive contributions from
precisely one cell and d interfaces (subject to the application of boundary
conditions). When this is combined with a simple forward Euler discretisation
of the time derivative it leads to an iterative update of the form

(uj
i )

n+1 = (uj
i )

n +
(d + 1)∆t

Sj

(
αj

iφj +
d∑

k=1

αk
i ψk

)
, (5)

in which ∆t is the time-step, Sj is the volume of cell j, α
j/k
i are the distri-

bution coefficients which indicate the appropriate proportions of the fluctu-
ations to be sent from cell j/interface k to vertex i of cell j. Conservation is
assured as long as

∑
i∈Cj

αj
i =

∑
i∈Fk

αk
i = 1, ∀j, k, i.e. the whole of each

fluctuation is distributed to the cell vertices. The precise properties of the
scheme depends on the choice of the distribution coefficients. In particular,
the discontinuous PSI scheme described in [Hub07, Hub08] is conservative,
positive for an appropriate limit on ∆t, given by

∆t ≤ Sj/(d + 1)∑
l∈Cj

(kj
l )+

∀ cells j , (6)

linearity preserving (and hence second order accurate for piecewise linear u),
compact, upwind and continuous. Note that kl = 1

2λ · nl are the standard
inflow parameters which govern the upwinding.

2.1 Time-Dependent Problems

The development of time-dependent fluctuation distribution schemes in which
u is continuous has tended to treat the time derivative in a slightly different
manner to the spatial derivatives (see, for example, [AM03, RCD05]). How-
ever, for the purposes of this discussion the time dimension will be treated
precisely as an additional spatial dimension, in which the solution is being
advected with speed λt = 1. Equation (1) can now be written as

∇t · f t = 0 or λt · ∇tu = 0 , (7)

in which ∇t, f t and λt have all been augmented appropriately. The discon-
tinuous fluctuation distribution schemes outlined earlier in Section 2 can now
be applied to these equations, albeit on a d+1-dimensional space-time mesh.
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2.2 One Space Dimension

The new scheme is most easily illustrated in one space dimension. Figure 1
shows two possible configurations for the discretisation of a rectangular space
time block of dimensions ∆x×∆t, in which it is subdivided into two triangles.
The interfaces between the triangles, at which the discontinuities occur, are
indicated by the dashed rectangles. The reverse configuration also illustrates
the behaviour of the distribution when the flow velocity is in the opposite di-
rection. The arrows indicate the upwind directions in which the fluctuations
are distributed and, importantly, show that since λt = 1, upwinding always
sends the fluctuations arising from the discontinuities at a fixed time level
forward in time. This allows the solution to be found sequentially, stepping
forward in time and solving at each time level instead of having to approxi-
mate the full space-time domain at once.

The system can now be approximated at the new time level by iterating
the following to convergence:

(uj
i )

(m+1) = (uj
i )

(m) +
2∆τ

∆x∆t

(
αj

i φj +
d∑

k=1

αk
i ψk

)
. (8)

The values of u5 and u6 (see Figure 1) form the solution at the new time
level. Note that this method is positive for any value of ∆t, though the above
iteration is only positive at each stage for values of ∆τ governed by (6).

The time derivative does not have to be treated exactly like the space
derivatives. Using the approach typical of the continuous time-dependent
schemes [AM03, RCD05] (which do not usually subdivide the space-time
cells into simplices) to distribute the cell fluctuations in the discontinuous

time

space

flow

4

1

6 5

3

2 1

3

6 5

4

2

Fig. 1. Fluctuation distribution for a one-dimensional space-time block for flow
from left to right (showing both orientations for the diagonal). Solid arrows show
vertices to which a proportion of the fluctuation will always be distributed. Distri-
bution indicated by the dotted arrows is dependent on the magnitude of the velocity
λ.
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case leads to a scheme which is only first order accurate. It is not yet clear
why this should be so and other possibilities are being investigated to try to
remove the asymmetry which appears in the mesh of simplices.

3 Numerical Results

The one-dimensional scalar advection equation was modelled, with

u(x, 0) =
{

G(x) for 0 ≤ x ≤ 1
0 elsewhere, (9)
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Fig. 2. Numerical approximation of the scalar advection equation for a smooth
(left) and a discontinuous (right) initial profile after 1, 10 and 100 periods
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Fig. 3. Numerical approximation of the scalar advection equation for a smooth
initial profile for different CFL numbers (left) and for λ = −1 (right)
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being advected with a constant velocity (λ = 1) across the domain [−1, 2].
Periodic boundary conditions are applied and uniform space-time meshes are
used to produce all of the following results. Figure 2 shows the outcomes for
two initial profiles, G(x) = cos2((x− 0.5)π) and G(x) = 1, obtained on a 151
node uniform spatial mesh with a CFL of 0.5. The effect of increasing the
CFL number and reversing the advection velocity are illustrated in Figure 3.
The scheme has also been applied successfully to the one-dimensional inviscid
Burgers’ equation.

4 Summary

A framework has been proposed for the development of fluctuation distribu-
tion schemes for approximating time-dependent problems when the underly-
ing representation of the dependent variable is allowed to be discontinuous
across space-time mesh interfaces. It has been successfully applied to one-
dimensional, scalar problems, for which second order accuracy in space and
time and unconditional L∞ stability have been verified. Further work is re-
quired to apply the approach in higher space dimensions and improve the
efficiency of the approach, as well as removing the asymmetry inherent in the
current space-time mesh used.
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Abstract. In this paper, we introduce a new type of weighted, finite-difference 
schemes. The basic idea comes from the compact schemes discussed in 
Lele’s[lele92] paper and the weighted compact schemes proposed in Jiang’s[jiang01] 
paper. The purpose of this new scheme is to achieve spectral-like resolution and 
high order of accuracy in smooth regions and to keep the ability to capture shocks 
without sacrificing the order of accuracy too much. This is really a hybrid scheme 
that the flux of the conservative Navier-Stokes equations is given by weighted 
compact scheme (WCS) but with some components from 5th order WENO (Jiang 
et al [jiang96]). The former gives sharp shock and high resolution, but the later 
provides necessary dissipation to avoid non-physical oscillations. In the paper, a 
sixth-order weighted compact scheme and corresponding 5th order WENO are 
combined following this basic idea. Numerical tests show that the new scheme has 
improved performance for the problems of two-dimensional shock/boundary layer 
interaction including test cases with incident shock and double cones. The scheme 
is especially appropriate for the problems of shock/boundary layer, shock/vertex 
or shock/turbulence interaction. 

1   Introduction 

Compact schemes are very popular in the simulations of transitional and turbulent 
flows because they can provide better spectral resolution and high order accuracy 
without increasing the width of stencils. However, the traditional compact schemes 
don't work well with shock waves. The Weighted Compact Scheme (WCS) 
proposed in [jiang01] is constructed by introducing the idea of WENO scheme to the 
standard compact schemes. By combining several candidate stencils, the WCS can 
not only preserve high order accuracy and good spectral resolution in smooth 
regions, but also keep a sharp transition near the shock without spurious oscillations. 
The numerical tests in one-dimensional problems are very successful. Unfortunately, 
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the implementation of Weighted Compact Scheme to two- and three-dimensional 
flows with wall boundary conditions shows that the scheme does not work well near 
shock waves. To overcome this problem, a second order smart filter is applied to the 
small regions near the shock waves. In this way, the oscillations are eliminated while 
the overall resolution and order of accuracy become questionable. The numerical 
investigation of shock/boundary layer interaction has been difficult because both 
strong discontinuity (shock waves) and complicated vortex structure (separation, 
transition, turbulence) exist. The difference schemes are required to capture the 
shock and resolve the small scale structures simultaneously. The adverse pressure 
gradient caused by an incident shock over a laminar boundary layer may lead to a 
flow separation. The pressure disturbance may propagate upstream through the 
subsonic region of the boundary layer and enlarge the separation region. As the 
boundary layer gets thickened, a family of compression waves, or sometimes a 
separation shock, is formed and make the pressure over the boundary layer increase. 
This pressure increase leads to a reattachment of the separated boundary layer. For 
some flows of high Reynolds number, the separation bubble will be unstable and the 
pressure along the wall surface fluctuates. 

2   Hybrid Weighted Compact-ENO Scheme 

The 5th order WENO can be written: 
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Since the WENO scheme is too dissipative for small length scales, but WCS has 
some oscillations around the shock, we combine the two schemes with weights to 
form a hybrid scheme: 

weno
jwcs

wcs
jwcs

hybrid
j FFF 2/12/12/1

ˆ)1(ˆˆ
+++ −+= σσ

 Let us first pick: 7.0=wcsσ to see what happens to 1-D shock tube problem 

 
Fig. 1. Comparison of 5th order WENO and WCS-WENO hybrid schemes for 1-D shock 
tube problem at t=2 (Grid number N=100) 

From Figure 1, we can find the WENO scheme (red) smeared the shock and 
expansion waves and has oscillation after the expansion wave. The improvement 
by the WCS-WENO hybrid scheme (blue) is very visible. 

3   Weighted Compact – ENO for Incident Shock / Boundary 
Layer Interaction 

3.1   Numerical Girds for the Main Flow Solver 

In order to resolve the separated boundary layer and separation bubble, the numerical 
grid is stretched in wall-normal direction. The overall grid is shown as follows, 
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Fig. 2. Stretched Grids 

3.2   Initial and Boundary Conditions for the Main Flow Solver 

The inflow boundary is given by the profile of the previous inflow generator. The 
oblique shock is given such that the flow deflection angle is ten degrees. At  
wall surface, adiabatic and non-slip boundary condition is employed. Non-
reflection boundary condition is used at outflow boundary to avoid non-physical 
reflections. 

3.3   Preliminary Numerical Results (Scaled by a Factor of 3 in y-Direction) 

(i) Fine Grid (241x141)  

 
 

Fig. 3. Density contours 



                            Weighted Compact Schemes for Shock / Boundary Layer Interaction 721
 

 
Fig. 4. Pressure Contours 

 
Fig. 5. Mach number contour 

 
Fig. 6. Vorticity contours and stream line: 

 

(ii) Coarse Grid (121x141) Hybrid: 

 
Fig. 7. Vorticity contours and stream line 
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(iii) Coarse Grid (121x141) WENO:  

 
Fig. 8. Vorticity contours and stream line 

4   Concluding Remarks 

The computational results show the hybrid weighted compact –WENO scheme 
has much higher resolution than the 5th order WENO scheme for both shock tube 
problem and incident shock – boundary layer interaction while no visible non-
physical oscillations are observed. 
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Summary. The present paper examines the Riemann problem for the nu-
merical solution of the Reynolds-averaged Navier-Stokes equations with
Reynolds-stress closure. Considering both the conservative convective fluxes
and the Reynolds-stress production terms the Riemann problem presents 6
states, separated by waves. An hllc–rsm approximate Riemann solver is
developed.

1 Introduction

Recent work on the numerical computation of the Navier-Stokes equations
with Reynolds-stress model (rsm) 7-equation turbulence closures, both in a
Reynolds-averaged (rsm–rans) framework, or in continuous rans-to-dns

rsm–vles approaches [1], has produced numerical methods which allow
the evaluation and improvement of these advanced closures. However, es-
pecially when rsm–vles approaches are concerned, it is important to use
low-diffusion [2] high-order schemes.

The use of low-diffusion approximate Riemann solvers (arss) using a
passive-scalar approach for the Reynolds-stresses [3, 4] fails even for simple
subsonic flows (Fig. 1). In a recent work [5] this was related to the incor-
rect treatment of the contact discontinuity. In a classic low-diffusion solver,
the massflux has no dissipation for a stationnary contact discontinuity [2]
and treating the Reynolds-stresses as passive scalars yields to the incorrect
condition that pressure is continuous across a contact discontinuity, whereas
the correct conditon is that p̄ + ρ̄rnn should be continuous. One solution is
to use a hybrid scheme, with a dissipative massflux for the Reynolds-stress
transport equations [5]. This solution can be used with a variety of arss for
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Fig. 1. Mean-mass-flux ρ̄ũ, logarithmic law u+, and Reynolds-stresses for near-zero-
pressure-gradient boundary-layer flow, using the hllc ars with the passive-scalar
approach for the Reynolds-stresses (comparison with measurements of Acharya[6]
at Me = 0.22; Reθ = 21000, and at Me = 0.6; Reθ = 33000).

the meanflow equations, and yields to robust schemes applicable to complex
flows [5].

In the present work we examine the Riemann problem for rst, and develop
an hllc–rsm flux for the coupled system of equations.

2 Reynolds-Stress Transport

2.1 The Complete Set of Equations

The equations are separated into a convective part (time-derivatives and
first-derivatives), a diffusive part D (second-derivatives), and source-terms S
(which do not contain derivatives, or are modelled terms such as the rapid
part of redistribution).

∂

∂t

⎡
⎢⎢⎢⎢⎣

ρ̄
ρ̄ũi

ρ̄h̃t − p̄
ρ̄rij

ρ̄εu

⎤
⎥⎥⎥⎥⎦+

∂

∂x	

⎡
⎢⎢⎢⎢⎣

ρ̄ũi

ρ̄ũiũ	 + p̄δi	 + ρ̄ri	

ρ̄h̃tũ	 + ρ̄rk	ũk

ρ̄rij ũ	

ρ̄εuũ	

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0
0
0
−Pij

0

⎤
⎥⎥⎥⎥⎦ = D + S (1)

where the red terms correspond to the coupling of the Reynolds-stress with
the meanflow equations (through the convective fluxes), while the green
terms correspond to nonconservative terms coming form −Pij = ρ̄ri	∂x�

ũj +
ρ̄rj	∂x�

ũi (exact terms).
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2.2 Eigenvalues and Eigenvectors

Retaining the production terms in the rst, the system can be recast in matrix
form

∂v

∂t
+ A

	

∂v

∂x	
= 0 (2)

where A
	
∈ R12×12 are nonstrictly hyperbolic matrix (12 real eigenvalues

with multiplicity) which are not Jacobians of a flux-vector (nonconservative
system). Considering, without loss of generality A

x

Ax =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ũ ρ̄ 0 0 0 0 0 0 0 0 0 0
rxx

ρ̄ ũ 0 0 1
ρ̄ 1 0 0 0 0 0 0

ryx

ρ̄ 0 ũ 0 0 0 1 0 0 0 0 0
rzx

ρ̄ 0 0 ũ 0 0 0 0 0 0 1 0
0 γp̄ 0 0 ũ 0 0 0 0 0 0 0
0 2rxx 0 0 0 ũ 0 0 0 0 0 0
0 ryx rxx 0 0 0 ũ 0 0 0 0 0
0 0 2ryx 0 0 0 0 ũ 0 0 0 0
0 0 rzx ryx 0 0 0 0 ũ 0 0 0
0 0 0 2rzx 0 0 0 0 0 ũ 0 0
0 rzx 0 rxx 0 0 0 0 0 0 ũ 0
0 0 0 0 0 0 0 0 0 0 0 ũ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄
ũ
ṽ
w̃
p̄

rxx

rxy

ryy

ryz

rzz

rzx

ε∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

it is straightforward to show that the eigenvalues are

λl = ũ−
√

ă2 + 3rxx (4a)
λl∗ = ũ−√rxx (4b)
λ∗ = ũ (4c)

λr∗ = ũ +
√

rxx (4d)

λr = ũ +
√

ă2 + 3rxx (4e)

The analysis of a similar reduced problem by Berthon et al. [7] reveals that the
Riemann problem solution for this system is composed by 2 genuinely non-
linear (gnl) waves and 3 linearly degenerate contact discontinuities (Fig. 2),
thus containing 6 instead of 4 possible states for the construction of an hllc-
type flux.

2.3 Approximate Jump Relations

The nonconservative products are treated by connecting states across the
discontinuity with a linear path [7]. In that case, the jump relations across a
discontinuity with speed s, separating states 1 and 2, read
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Euler Euler ⊕ incomplete–RDTRST

SL

S*

SR

n

t

wL wL∗ wR∗ wR

SL

Sl∗ S* Sr∗

SR

n

t

wL wLl∗ wRr∗ wR

wl∗∗

�

wr∗∗

�

Fig. 2. Riemann problem wave system for the Euler equations[4] (2 gnl-waves
and 1 ld contact discontinuity) and for the coupled Euler/rsm equations[7] (2
gnl-waves and 3 ld contact discontinuities)

(S − ũ2)ρ̄2 = (S − ũ1)ρ̄1 (5a)
(S − ũ1)ρ̄1∆ũ = ∆p̄ + ∆[ρ̄rxx] (5b)
(S − ũ1)ρ̄1∆ṽ = ∆[ρ̄rxy] (5c)
(S − ũ1)ρ̄1∆w̃ = ∆[ρ̄rzx] (5d)

(S − ũ1 −∆ũ)∆[ρ̄rxx] = ρ̄1rxx1∆ũ + (2ρ̄1rxx1 + ∆[ρ̄rxx])∆ũ (5e)

(S − ũ1 −∆ũ)∆[ρ̄rxy] = ρ̄1rxy1
∆ũ + (ρ̄1rxy1

+ 1
2∆[ρ̄rxy])∆ũ + (ρ̄1rxx1 + 1

2∆[ρ̄rxx])∆ṽ
(5f)

(S − ũ1 −∆ũ)∆[ρ̄ryy] = ρ̄1ryy1
∆ũ + (2ρ̄1rxy1

+ ∆[ρ̄rxy])∆ṽ (5g)

(S − ũ1 −∆ũ)∆[ρ̄ryz] = ρ̄1ryz1
∆ũ + (ρ̄1rxy1

+ 1
2∆[ρ̄rxy])∆w̃ + (ρ̄1rzx1 + 1

2∆[ρ̄rzx])∆ṽ
(5h)

(S − ũ1 −∆ũ)∆[ρ̄rzz] = ρ̄1rzz1∆ũ + (2ρ̄1rzx1 + ∆[ρ̄rzx])∆w̃ (5i)

(S − ũ1 −∆ũ)∆[ρ̄rzx] = ρ̄1rzx1∆ũ + (ρ̄1rzx1 + 1
2∆[ρ̄rzx])∆ũ + (ρ̄1rxx1 + 1

2∆[ρ̄rxx])∆w̃
(5j)

(S − ũ2)ρ̄2ε
∗
2 = (S − ũ1)ρ̄1ε

∗
1 (5k)

Also, obviously (Eq. 5k) ε∗ is a passive scalar for this system of equations.

2.4 Approximate Jump Relations for λ �= ũ

A straightforward solution can be obtained for ∆[ρ̄rxx] from (Eq. 5e), for
λ �= ũ,

∆[ρ̄rxx] =
3ρ̄1rxx1∆ũ

S − ũ1 − 2∆ũ
(6a)

Approximate Jump Relations for λ = ũ ±
√

ă2 + 3rxx

In that case all the other approximate jump-relations (Eqs. 5) can be
expressed as functions of ∆ũ
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∆ṽ =
2ρ̄1rxy1

∆ũ

(S − ũ1 − 3
2∆ũ)(S − ũ1)ρ̄1 − (ρ̄1rxx1 + 1

2∆[ρ̄rxx])

(7a)

Approximate Jump Relations for λ = ũ ± √
rxx

In this case (ld-wave) it is reasonable to assume that

s = ũ1 ±
√

rxx1 = ũ2 ±
√

rxx2 (8)

Using these relations (Eq. 8), in conjunction with the density jump relation
(Eq. 5a), in the equations for ∆[ρrxx] (Eq. 6a), ∆ũ, and in the x-momentum
jump-relation (Eq. 5b) yields

rxx1 = rxx2 (9a)
ũ1 = ũ2 (9b)
ρ1 = ρ2 (9c)

ρ1rxx1 = ρ2rxx2 (9d)
p1 = p2 (9e)

±ρ̄1
√

rxx1∆ṽ = ∆[ρrxy] (10a)
±ρ̄1
√

rxx1∆w̃ = ∆[ρrzx] (10b)

2.5 Approximate Jump Relations for λ = ũ

On the contact discontinuity corresponding to the eigenvalue λ = ũ, it is
reasonable to assume

s∗ = ul∗∗ = ur∗∗ = u∗ (11)

as in the case of the hllc ars for the Euler equations [4, 8]. Then the
approximate jump relations become

p̄l∗∗ + ρ̄l∗∗rxxl∗∗ = p̄r∗∗ + ρ̄r∗∗rxxr∗∗ (12a)
ρ̄l∗∗rxy

l∗∗ = ρ̄r∗∗rxy
r∗∗ (12b)

ρ̄l∗∗rzxl∗∗ = ρ̄r∗∗rzxr∗∗ (12c)
ũl∗∗ = ũr∗∗ (12d)
ṽl∗∗ = ṽr∗∗ (12e)
w̃l∗∗ = w̃r∗∗ (12f)

2.6 Closure Relations for the hllc–rsm Flux

Using the the jump-relations across the 2 gnl-waves we can determine the
various states in the hllc–rsm ars, viz
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s∗ =
[ρ̄l(sl − ũl)ũl − (p̄ + ρ̄rxx)l]− [ρ̄r(sr − ũr)ũr − (p̄ + ρ̄rxx)r]

ρ̄l(sl − ũl)− ρ̄r(sr − ũr)
(13a)

ρ̄ll∗rxxll∗ = ρ̄l∗∗rxxl∗∗ =
3ρ̄lrxxl

(s∗ − ũl)
sl − ũl − 2(s∗ − ũl)

(13b)

p̄ll∗ = p̄l∗∗ = (p̄ + ρ̄rxx)l + (S∗ − ũl)ρl(Sl − ũl)−
3ρ̄lrxxl

(s∗ − ũl)
sl − ũl − 2(s∗ − ũl)

(13c)

Obviously for the hllc–rsm ars the tangential velocities are not passive
scalars. They are continuous across the λ = ũ ld-wave, but not across the
λ = ũ±

√
ă2 + 3rxx gnl-waves nor across the λ = ũ±√rxx ld-waves. Using

the appropriate jump relations for ṽ (Eqs. 12b, 12e, 10b, 7a) it follows that

ṽl∗∗ = ṽr∗∗ =

(
ρ̄ll∗
√

rxxll∗ ṽll∗ + ρ̄rr∗
√

rxxrr∗ ṽrr∗ + ρ̄rr∗rxy
rr∗ − ρ̄ll∗rxy

ll∗

)
ρ̄ll∗
√

rxxll∗ + ρ̄rr∗
√

rxxrr∗

(14)
with a similar relation for w̃. The above relations completely define the
hllc–rsm flux.

3 Conclusions

Reynolds-stresses transport cannot be accomodated, in low-diffusion
(contact-discontinuity resolving) arss, by simply using the passive scalar
approach. In the present work we developed an hllc–rsm ars for rst.
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This work focuses on the behaviour of the 2nd order accurate backward differ-
ence time integration scheme (BDF2) when used to solve unsteady hyperbolic
conservation laws, including the compressible Euler equations, in the presence
of strong gradients. This scheme is 2nd order, A-stable but not monotonicity
preserving [Ferziger and Perić(2002)]. The objective of this work is therefore
to develop a time integration scheme based on BDF2 that preserves the mono-
tonicity of the solution for moderately high CFL numbers (CFL = O(10))
when used in combination with spatial TVD discretizations. We address the
problem of monotone time integration using limiting techniques inspired from
the finite-volume space discretizations methods. Similarly, we limit (in time)
by blending the BDF2 time-integration scheme with a 1st order accurate, A-
stable and positive (and therefore monotonicity preserving) scheme. The tem-
poral scheme described is independent from the spatial discretization scheme
and from the TVD limiter used, as well as from the spatial computational
stencil.

Consider the semi-discretization of a system of ordinary differential
equations:

dU

dt
+ R(U) = 0 (1)

in which U is the vector of unknowns and R is a particular space discretization
operator. Solving equation (1) using the BDF2 time integration scheme, one
obtains for a discretization point i:

Un+1
i − Un

i

∆t
+ θi(

Un+1
i − 2Un

i + Un−1
i

2∆t
) = −Ri(Un+1) (2)

In Eq.(2), we introduced a blending coefficient θ ∈ [0, 1] such that when θ = 1
the scheme coincides with the 2nd order BDF2 scheme while when θ = 0 the
scheme becomes a 1st order Backward Euler scheme.

The coefficient θ is constructed such that the resulting scheme will be of
order two in smooth flows (θ = 1) while reducing to 1st order in the vicinity
of discontinuities (θ = 0).
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Consistency

Following [Beam and Warming(1982)], the most general consistent two-step
method can be written under the form:

(1+ξ)Un+1−(1+2ξ)Un+ξUn−1 = ∆t[ΘRn+1+(1−Θ+φ)Rn−φRn−1] (3)

where ξ, Θ and φ are arbitrary real numbers.
The proposed scheme can be rewritten using the latter notation with

ξ = 1
2θ, Θ = 1 and φ = 0. The scheme is therefore consistent for all val-

ues of θ ∈ [0., 1.].

Absolute Stability

Following [Beam and Warming(1982)], a Linear Multi Step method described
by Eq.(3) is A-stable if and only if:

Θ ≥ φ +
1
2

(4)

ξ ≥ −1
2

(5)

ξ ≤ Θ + φ − 1
2

(6)

We can verify that those conditions are fulfilled for any value of the blending
coeficient θ with ξ = 1

2θ, Θ = 1 and φ = 0.

Monotonicity

The 1st order Backward Euler scheme is unconditionally positive and, com-
bined with a 2nd order TVD Finite Volume method (or any TVD and there-
fore monotone method), will preserve the monotonicity of the solution. By
using the unconditionnally positive Backward Euler scheme at the disconti-
nuities, we will show that we obtain a monotone scheme.

1 Blending Coeficient

We make use of the minmod() limiter described in [Roe(1986)] to construct
the blending coefficient θ. This limiter is defined by:

minmod(r) =

⎧⎨
⎩

1 if 1 < |r| and r > 0
r if |r| < 1 and r > 0
0 if r < 0



Improving Monotonicity of the 2nd Order 735

where r is the ratio of temporal slopes, defined at any given point i as:

ri =

Un+1
i −Un

i

∆tn+1
2

Un
i −Un−1

i

∆tn− 1
2

(7)

Finally, we define the blending parameter θi as:

θi =
minmod(ri)
max(1, |ri|)

(8)

In Eq.(8), minmod() is used as a shock detector. Compared to shock detec-
tors usually described in the literature, we don’t use any spatial information.
The blending coefficient only depends on the evolution of the variable in time.
This approach is general and does not depend on the discretized equations.

In Eq.(8), the division by max() is introduced to obtain a symetric blending
parameter. We define symmetry by:

θ(r) = θ(
1
r
) (9)

We will show in a later section that this property is needed to avoid phase
error.

Using the definition (8), the blending parameter θ only equals one (and
the scheme is therefore only 2nd order accurate) when the variation of the
variable in time is constant. In all other cases, some amount of dissipation is
introduced.

In order to reduce the dissipation introduced when θ < 1, we can modify
Eq.(8) to obtain:

θi =

√
minmod(ri)
max(1, |ri|)

(10)

We can assume that no unphysical oscillation will appear at a given point i
before its corresponding discontinuity. We use this property to define a shock
detector that will only be active after a discontinuity has been detected. For
a given point, the second-order scheme is used until a decrease of the abso-
lute variation of the variable is observed. Then, the blending factor definition
previously described is used. This leads to a low-dissipation scheme by lim-
iting the extra dissipation in a specific region of the shock. This definition is
described in (12). Similarly, in order to show the effect of the non-symmetry
of the scheme, we define a scheme in which the modified time integration
scheme is used only when the absolute variation of the variable increases
(11). These alternate definitions can be expressed by:

θi =

⎧⎪⎨
⎪⎩
√

1
ri

if |ri| ≥ 1
1 if |ri| < 1
0 if ri < 0.

(11)
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and

θi =

⎧⎨
⎩

√
ri if | 1

ri
| ≥ 1

1 if | 1
ri
| < 1

0 if ri < 0.

(12)

2 Results

The time-integration scheme proposed is tested with the blending coeficient
10 on a series of testcases with scalar advection and Euler equations and
the accuracy and the monotonicity are assessed for large time steps. For all
testcases, the proposed modified BDF scheme is used together with a 2nd

order cell-centred finite-volume discretization, with a Roe flux splitter and
the limiter described in [Barth and Jespersen(1989)].

Scalar Advection

In a first testcase, we compare the result of the proposed scheme to the classi-
cal BDF2 scheme on a linear advection of a square pulse testcase (Fig.(1)) for
a timestep corresponding to CFL = 1. Using the new scheme, the accuracy
is preserved and the solution obtained is monotone whilst the classical BDF2
is highly oscillatory (even at CFL = 1). The discontinuities have the correct
magnitude and position.

Sod Shock Tube

We show the result of the proposed scheme compared to the classical BDF2
scheme for a 1D Sod shock-tube problem from [Sod(1978)] (Fig.(2)) using a
timestep of ∆t = 0.01s corresponding to CFLmax = 5.8. Again, monotonicity
is recovered and the discontinuities are sharper.

Fig. 1. Comparison of the BDF2 and limited BDF2 solutions for a 1D scalar
advection problem



Improving Monotonicity of the 2nd Order 737

Fig. 2. Comparison of the BDF2, limited BDF2 and Backward Euler solutions
(density) for a 1D Sod shock tube (t = 0, 2s and CFLmax = 5.8)

Burgers Equation

We consider Burgers equation and show the influence of the non-symmetric
schemes using the blending coeficients of 11 and 12. These modifications will
respectively be named Mod.A and Mod.B. On Fig.(3), we observe that the
results obtained with both non-symmetric schemes result in a very inaccurate
prediction of the shock location and strength.

Due to the non-symmetric blending coeficient, shocks are not smeared uni-
formly but ahead or after the shock. The non-symmetric schemes introduce
a leading or lagging phase error that accumulates due to the non-linearities
of the physical model and should therefore not be allowed when defining
blending factor.

Slow Shock Hitting a Wedge

In this testcase from [Ricchiuto(2005)], we consider the interaction of a slow
shock hitting a wedge. We compute the solution up to time t = 1s with a

Fig. 3. Burgers Equation - Time = 1, 2s - Influence of the non-symmetry of the
blending parameter
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Fig. 4. Density contours of the BDF2 (dashed-bottom), limited BDF2 (dashed-top)
solutions compared to the reference solution (solid) for a shock-wedge interaction
problem (CFLmax = 5)

timestep corresponding to CFLmax = 5 and compare it with the solution
obtained with CFLmax = 0.1, which we use as a reference (Fig.2). The
solution obtained with the classical BDF2 shows the presence of spurious
oscillations which spoil the accuracy of the solution around the shock. Using
the limited scheme, the solution is monotone and the main features of the
flow are preserved.
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This paper presents a finite volume local evolution Galerkin (FVLEG)scheme
for solving the gas dynamic Euler equations. The FVLEG scheme is the sim-
plification of the finite volume evolution Galerkin (FVEG) method for solving
nonlinear Hyperbolic systems. In FVEG scheme, a necessary step is to com-
pute the dependent variables at cell interfaces at tn + τ (0 < τ ≤ ∆t) by
using an approximate evolution operator. In the present paper, a new evolu-
tion operator suitable for piecewise smooth data is derived. Furthermore, we
construct the FVLEG scheme by taking τ → 0 in the new evolution operators.
The FVLEG scheme greatly simplifies the evaluation of the numerical fluxes.
It is also well suited with the semi-discrete finite volume method, making
the flux evaluation being decoupled with the reconstruction procedure while
maintaining the genuine multidimensional nature of the FVEG methods. It
is shown that FVLEG scheme can obtain comparable numerical result in
terms of accuracy and resolution when compare with FVEG schemes while
the efficiency is much higher.

1 Introduction

In this paper, we study the finite volume scheme for solving the two dimen-
sional gas dynamic Euler equations which, in integral form, can be written as

∂

∂t

∫
Ωi,j

Udxdy +
∮

∂Ωi,j

H · ndl = 0 (1)

where Ωij is the control volume, ∂Ωij is the boundary of Ωij and H = Fi+Gj
is the tensor of the fluxes. The finite volume balance equation of Eq. (1) on
a quadrilateral control volume is

∂Ūij

∂t
= − 1

Ω̄ij

4∑
k=1

∫
Ik

H · ndl (2)
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where Ūij = (
∫
Ωij

Udxdy)/Ω̄ij and Ω̄ij =
∫

Ωij
dxdy are respectively the cell

average of the conservative variables and cell volume, Ik is the k−th interface
of the control volume, and

∫
Ik

H · ndl is the flux across Ik(k = 1, ..., 4).
The general procedure to evaluate the numerical flux can be described by

ĤIk
=
∫

Ik

H(EτRΩŪn) · ndl

where RΩ is the reconstruction operator which transforms the cell averages
of the conservative variables to their spatial distributions usually in terms
of the piecewise polynomial functions, and Eτ is the evolution operator at
tn + τ with 0 < τ ≤ ∆t . It is well known that it is advantageous to take the
multidimensional effects in to consideration when design the evolution oper-
ators for computing the numerical fluxes. The FVEG scheme [LSW02] is one
of such kind of genuine multidimensional methods. The FVEG method is the
application of the evolution Galerkin (EG) procedure [LMW00] in the finite
volume framework. The EG method is based on the exact integral equations
derived from the general theory of bicharacteristics for linear (or linearized)
hyperbolic systems. These integral equations are further approximated by
approximate evolution operators (Eτ ) in such a way that all of the infinitely
many directions of the propagation of bicharacteristics are explicitly taken
into account. These approximated evolution operators are then used to com-
pute the interfacial dependent variables for the evaluation of the numerical
fluxes. For second order scheme, τ = ∆t/2 is used.

The FVEG schemes have been studied extensively from theoretical as
well as numerical point of view and applied to various applications. It is
shown that the FVEG schemes yield better accuracy and resolution than
some well known finite difference and finite volume schemes. However, the
FVEG schemes are much more complicated in implementation than tradi-
tional finite volume schemes and are computationally more expensive. In the
present paper, a new evolution operator suitable for piecewise smooth data is
derived. Furthermore, we construct the FVLEG scheme by taking τ → 0 in
the new evolution operators. The FVLEG scheme greatly simplifies the evalu-
ation of the numerical fluxes. It is also well suited with the semi-discrete finite
volume method, making the flux evaluation being independent of the recon-
struction procedure while maintaining the genuine multidimensional nature
of the FVEG methods. The performance of the proposed scheme is studied
by solving several test cases.

2 Numerical Methods

2.1 A Comparison between the FVEG and FVLEG Methods

FVEG schemes are Lax-Wendroff type fully discrete schemes. For a tempo-
rally second order scheme, FVEG schemes can be written in the following
form:
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Ūn+1
i,j = Ūn

i,j −
∆t

Ω̄ij

4∑
k=1

∫
Ik

H(E∆t/2RΩŪn) · ndl (3)

where E∆t/2 is the approximate evolution operator to compute the interme-
diate value of the solution at tn+1/2 = tn + ∆t/2 on cell interface Ik using
RΩŪn as the initial condition. On the other hand, FVLEG scheme is a semi-
discrete (method of line) approach, in which Eq. (2) is treated as a system
of ordinary differential equations (ODEs) with respect to the time after the
spatial discretization. And the system of ODEs is integrated with a certain
algorithm to obtain the numerical solutions. For example, the second order
Runge-Kutta scheme can be used for a temporally second order finite volume
scheme:

Ū(0)
ij = Ūn

ij

Ū(1)
ij = Ū(0)

ij − ∆t
Ω̄ij

4∑
k=1

∫
Ik

H(E0RΩŪ(0)) · ndl

Ū(2)
ij = 1

2Ū
(0)
ij + 1

2

(
Ū(1)

ij − ∆t
Ω̄ij

4∑
k=1

∫
Ik

H(E0RΩŪ(1)) · ndl

)
Ūn+1

ij = Ū(2)
ij ,

(4)

where E0 is the approximate evolution operator to compute the solution at
t+n = tn + 0 on cell interface Ik . It clear that for the semi-discrete finite
volume scheme, the interfacial dependent variables need only to be evolved
for an infinite small period of time to compute the numerical fluxes, whereas
for the fully discrete approach, the interfacial dependent variables need to be
evolved for an finite period of time. We will see later in this section that
the use of the semi-discrete approach greatly simplifies the evaluation of
numerical fluxes and makes it straightforward to apply the numerical scheme
on general shaped control volumes.

It is clear that the main difference between FVEG and FVLEG schemes is
the approximate evolution operators which are in close relation with the time
integration algorithm. In the next subsection, the approximate evolution op-
erator E0 for the FVLEG scheme will be presented. To complete this general
introduction, we note that the reconstruction procedure of [RS06] is used to
construct the spatially second order FVLEG scheme; and the numerical flux
in Eq. (4) is approximately evaluated by using the Simpson rule:∫

Ik
H(E0RΩŪ) · ndl ≈(

H
(
Ek,1

0 RΩŪ
)

+ 4H
(
Ek,c

0 RΩŪ
)

+ H
(
Ek,2

0 RΩŪ
))

· nk∆lk/6,

where ∆lk is the length of the Ik interface, the superscripts (k, 1) ,(k, 2)
represent two end points of Ik interface and the superscript(k, c) stands for
the midpoint of the Ik interface . This is also the approach using by [LSW02]
in which it is shown that the use of the Simpson rule to approximate the
cell interface integral in the flux computation can lead to a scheme which is
monotonic under certain conditions.
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2.2 The Approximate Evolution Operators for the FVLEG
Scheme

In [LSW02], the exact evolution operators are derived for the linearized Euler
equations using the bicharacteristic theory, which, taking the density and the
x− component of velocity as examples, are:

ρ (P ) = ρ (P ′) − p (P ′)
ã2

+
1
2π

∫ 2π

0

[
p (Q)
ã2

− ρ̃

ã
u (Q) cos θ − ρ̃

ã
v (Q) sin θ

]
dθ

− ρ̃

ã

1
2π

∫ 2π

0

∫ t+τ

t

S (r − [ũ− ãn (θ)] × (t + τ − ζ) , ζ, θ) dζdθ,

u (P ) =
1
2π

∫ 2π

0

[
−p (Q)

ρ̃ã
cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ

]
dθ

+
1
2π

∫ 2π

0

∫ t+τ

t

cos θS (r − [ũ− ãn (θ)] × (t + τ − ζ) , ζ, θ) dζdθ

+
1
2
u (P ′) − 1

2ρ̃

∫ t+τ

t

px (r − ũ× (t + τ − ζ) , ζ) dζ,

where

r − [ũ− ãn (θ)] × (t + τ − ζ) =
(x − (ũ − ã cos θ) (t + τ − ζ) , y − (ũ − ã cos θ) (t + τ − ζ)) .

In these equations, the variables with tilde are the reference states where
the the Euler equations is linearized. P = (x, y, t + τ) is the location
where the dependent variables are to be evaluated. According to the bichar-
acteristic theory, the Mach cone or the bicharacteristic cone from P in-
tersects the x − y plane at time t to form a circle denoted by Q (θ) =
(x − (ũ − ã cos θ) τ, y − (ṽ − ã sin θ) τ, t). P ′ = (x − ũτ, y − ṽτ, t) is at
the center of Q (θ). S is the source term, see [LSW02] for the detailed
formulation. It is currently impossible to get an explicit solution of these
equations. Therefore, certain approximate operators which are termed as
EG1 through EG5 in [LMW00, LMW04, LS06] have been constructed to get
the approximate explicit solutions. These approximate solutions are the ba-
sis of the FVEG method. When these approximate evolution operators with
τ = ∆t/2 are applied to the piecewise polynomial data obtained by the recon-
struction procedure, these approximate solutions are served as E∆t/2RΩŪn

in Eq. (3).
The simplest way to construct the approximate evolution operator E0 in

FVLEG is to set τ = 0 in Eτ . In other words, we can use the approximate
evolution operators EG1 through EG5 developed directly to construct theE0

by simply taking τ = 0 . However, when closely examining the approach for
deriving EG1 through EG5, we find that, strictly speaking,these operators
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can be only applied to smooth initial conditions. Therefore, in the present
paper, E0 applicable to piecewise smooth functions is constructed. The details
of derivation can be found in [SR08] and are omitted here. The final form of
E0 for the density and the x− component of velocity are:

ρ(P ) = ρ(P ′) − p(P ′)
ã2

+
1
2π

N∑
i=1

[
pi

ã2
(θie − θib)

− ρ̃

ã
ui(sin θie − sin θib) +

ρ̃

ã
vi(cos θie − cos θib)] (5)

u(P ) =
1
π

N∑
i=1

[− pi

ρ̃ã
(sin θie − sin θib)

+ ui(
θie − θib

2
+

sin 2θie − sin 2θib

4
) − vi

cos 2θie − cos 2θib

4
], (6)

where θib and θie are the angles of the intersection points between Q (θ)
and cell interfaces. For the E0 at P0 (corresponding to P in Eq. (5) and
Eq. (6))which is the end point of an interface of the quadrilateral control
volumes, the evaluation of θib and θie is shown in Figure 1. The subscript i
stands for the i− th out of the four control volumes surrounding P0 with its
interfaces intersect Q (θ) at θib and θie. Using the procedures of this section,
we cast the computation of the integrals in Eτ into the evaluation of θib and
θie inE0. This practice simplifies the evaluation of the numerical fluxes and
makes the present scheme more efficient than the FVEG schemes.

Fig. 1. Possible intersections between
the Mach cone and the edges of the con-
trol volumes

Fig. 2. The comparison of the density
distribution between the present scheme
and the FVEG scheme
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Fig. 3. The density contours of case (1) Fig. 4. The density contours of case (2)

3 Numerical Results

In this section, the numerical results of three test cases are presented. These
test cases are respectively: (1) the radially symmetric flow [LSW02], (2)
the two dimensional Riemann problem [LSW02], and (3) the odd-even grid
perturbation problem [Q94]. The detailed initial conditions can be found in
the corresponding references.

For the test case (1), the numerical result is compared with that obtained
using FVEG scheme and is shown in Figure 2. It is shown that the present
scheme is at least as accurate as the FVEG scheme. Figure 3 shows the density
contours at time T = 0.2 by the second order FVLEG scheme. These results
show good multidimensional resolution and preservation of radial symmetry
of the numerical solution. The density contours of test case (2) are presented
in Figure 4. The flow structures are correctly captured by the present scheme
and the resolution of the present scheme is at least as high as the results
of the FVEG3 scheme reported in [LSW02]. Moreover, the present scheme
produces very clean slip lines, whereas in [LSW02], some wiggles are present
at the slip lines for the second order scheme. Figure 5 shows the density
contours of test case (3) which is compared with the results of Roe scheme.

(a) Roe scheme (b) Present scheme

Fig. 5. The density contours of test case (3)
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The odd-even decoupling phenomenon presented in the Roe scheme is not
founded in the present numerical solutions of the FVLEG scheme.

4 Conclusions

This paper presents a finite volume local evolution Galerkin scheme for solv-
ing the gas dynamic Euler equations. The FVLEG scheme simplifies the con-
struction and implementation of the FVEG schemes while maintaining the
multi-dimensional nature in numerical flux evaluation. The performance of
the proposed scheme is studied by solving several test cases. It is shown that
FVLEG scheme can obtain comparable numerical result in terms of accuracy
and resolution when compare with FVEG schemes while being more efficient.
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[LMW04] Lukáĉová-Medvid’ová, M., Morton, K.W., Warnecke, G.: Finite volume
evolution Galerkin (FVEG) methods for hyperbolic problems. SIAM J.
Sci. Comput. 26, 1–30 (2004)
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1 Introduction

We are interested in the numerical approximation of the PDE system⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∇.(ρw) = 0, t > 0, x ∈ D ⊂ Rd,

∂t(ρw) + ∇.(ρw ⊗ w +
∑N

j=1 pj(ρ, εj) Id) = 1
Rey∇.(

∑N
j=1 µj(ρ, εj)σ),

∂t(ρ εi) + ∇.(ρ εi w) + pi(ρ, εi)∇.w = 1
Rey µi(ρ, εi) σ : ∇w, i = 1, ..., N,

(1)

with σ = (∇w + t∇w) − 2
3
∇.w Id.

Here, ρ denotes the density of a compressible material with velocity w ∈ Rd

and modelled by N independent internal energies ρεi. The corresponding
pressure and viscosity laws are denoted pi(ρ, εi) and µi(ρ, εi).

In the case of a single internal energy (N = 1), the above system is equiva-
lent to the usual Navier-Stokes equations in conservative form. But for larger
values of N , the proposed model does not rewrite in general in conservative
form. Several models from the Physics of complex compressible mixtures enter
the proposed setting. Let us quote for instance mixtures of charged particules
and multicomponent flows (see [CC1] for instance). In these frameworks, the
Reynolds number Rey is usually large and (1) has to be understood in the
limit 1/Rey → 0. This gives rise to extended Euler equations [CC1]. From a
numerical standpoint, the difficulty stems from the lack of conservative re-
formulation which makes challenging the numerical capture of shock waves.
Indeed, in a nonconservative setting, shock discontinuities turn out to be very
sensitive to the numerical diffusion of the scheme. In [CC1], [CC2], a full set
of generalized jump conditions motivated by a sharp analysis of the viscous
shock profiles has allowed to control this sensitiveness. Fig. 1 highlights the
benefit of the proposed methods over the classical flow solver in the capture of
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Fig. 1. Pressure p1 (left) and p2 (right)

shock solutions. In their design principle, these methods are explicit in time.
By contrast, the present work is concerned with large time stepping implicit
strategies. To achieve this goal, we introduce a new set of generalized jump
conditions that are well suited to derive a time-implicit scheme. We then de-
vise a linearized time-implicit solver for the sake of efficiency. This solver is
shown to preserve the positivity of each internal energy εi provided that the
total internal energy stays positive. At last, numerical evidences prove that
the proposed scheme allows to obtain perfectly stationary solutions.

2 A Tractable Equivalent Reformulation

The derivation of an efficient time implicit method for approximating the
solutions of (1) relies on a convenient reformulation of the equations. With
this in mind, we state the following result :

Lemma 1. The smooth solutions of (1) satisfy the following equation on the
total internal energy ρε =

∑N
j=1 ρεj :

∂tρε + ∇. ρεw +
N∑

j=1

pj∇. w = (
N∑

j=1

µj)(
1

Rey
σ : ∇w), (2)

and the additional conservation law for the total energy ρE = 1
2
||ρw||2

ρ + ρε :

∂tρE + ∇. (ρE +
N∑

j=1

pj)w =
1

Rey
∇. ((

N∑
j=1

µj)σ.w). (3)

Moreover, the N specific entropies Si defined by the second principle of Ther-
modynamics obey

∂tSi + w.∇Si = − µi

ρTi
(

1
Rey

σ : ∇w), i = 1, ..., N, (4)
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and ∂tln
Si

SN
+ w.∇ln

Si

SN
= Ci(∂tρε + ∇. ρεw +

N∑
j=1

pj∇. w), (5)

where Ci =
1

ρ
∑N

j=1µj

( µN

TNSN
− µi

TiSi

)
, i = 1, ..., N − 1.

We underline that (3) is in general the only additional conservation law sat-
isfied by the smooth solutions of (1). Equations (2), (4) or (5) are indeed in
nonconservative form. Observe also that the entropy laws (4) readily yield

∂tln
Si

SN
+ w.∇ln

Si

SN
=

1
ρ

( µN

TNSN
− µi

TiSi

)( 1
Rey

σ : ∇w
)
, (6)

while (5) immediately follows from (2) since

1
Rey

σ : ∇w =
1

(
∑N

j=1µj)

(
∂tρε + ∇. ρεw +

N∑
j=1

pj∇. w
)
. (7)

From a numerical point of view, the main advantage of the laws (5) in com-
parison to (2) or (4) lies in the fact that they do not involve the product of
the small parameter 1/Rey with the stiff term σ : ∇w anymore.

This brief discussion suggests to consider ρ, ρw, ρE and the (N − 1)
quantities Xi = ln Si

SN
as the main unknowns of the model. This admissible

change of variables leads to the following equivalent reformulation of (1),
that we now write in the asymptotic regime of very large Reynolds numbers
(1/Rey << 1) :⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∇. ρw = 0,

∂tρw + ∇. (ρw ⊗ w +
∑N

j=1 pj(ρ, εj) Id) = 0
∂tρE + ∇. (ρE +

∑N
j=1pj(ρ, εj))w = 0,

∂tXi + w.∇Xi = Ci(∂tρε + ∇. ρεw +
∑N

j=1pj(ρ, εj)∇. w), i = 1, ..., N − 1.

(8)
Here, the total internal energy in the (N − 1) last equations is such that
ρε = ρE − ||ρw||2/(2ρ), and each internal energy εi (needed to evaluate the
pressures pj(ρ, εj)) is recovered by solving in SN the following equation :

ρε =
N−1∑
i=1

ρεi(ρ, SNexp(Xi)) + ρεN (ρ, SN ). (9)

To conclude this section, we briefly point out the relationships between the
additional laws (5) and the so-called generalized jump conditions proposed in
[CC1], [CC2]. In these works, the shock solutions of the inviscid limit model
(1) obtained in the limit Rey → ∞ are defined by an analysis of the viscous
shock profiles. Here, starting from (6) we get

∂tρXi +∇. ρXiw =
( µN

TNSN
− µi

TiSi

)
(

1
Rey

σ : ∇w) i = 1, ..., N −1, (10)
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and (N−1) additional generalized jump relations are recovered by integrating
(10) along a planar viscous profile propagating at speed σ in a given normal
direction n. More precisely, if we denote U− and U+ the end states, we have

−σ
(
ρXi(U+) − ρXi(U−)

)
+ (ρXiw.n)(U+) − (ρXiw.n)(U−)

=
∫
viscous profile

( µN

TNSN
− µi

TiSi

)( 1
Rey

σ : ∇w
)

dξ, 1 ≤ i ≤ N − 1.

(11)
It is shown in [CC1] how to evaluate the right hand side of these (N − 1) gen-
eralized jump relations, so as to completely characterize the shock solutions of
(1) in the asymptotic regime Rey → ∞. Using (7) to define the singular prod-
uct 1

Rey σ : ∇w in the additional laws (5) can be understood as a convenient
and consistent way to replace the role played by such a product in the right
hand side of (11). In practice, numerical solutions obtained by a time-explicit
finite volumes scheme applied to (8) are in very good agreement with the exact
solutions characterized by the jump relations (11) (see again Fig. 1).

3 Numerical Approximation

The first three equations in (8) are coupled, in a strong nonlinear way, to the
(N − 1) last equations by the total internal energy ρε = ρE − ||ρw||2/(2ρ).
Our numerical scheme proposes to avoid this coupling using a prediction-
correction strategy.

Roughly speaking, the prediction step intends to update the conservative
unknowns ρ, ρw and ρE in a consistent way and assuming that each Xi is
advected by the flow. The correction step will restore the correct evolution of
the Xi whereas the density, momentum and total energy will be unchanged.
Let us give a bit more detailed description of the prediction-correction
strategy we propose. It is a matter of advancing a given discrete solution
Un

h = (ρh, (ρw)h, (ρE)h, (Xi)h)(x, tn) at time tn to the next time level tn+1.

Prediction step (tn → tn+1−) : In this step, we solve the Cauchy problem⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∇. ρw = 0,

∂tρw + ∇. (ρw ⊗ w +
∑N

j=1 pj(ρ, ρεj) Id) = 0,

∂tρE + ∇. (ρE +
∑N

j=1pj)w = 0,

∂tXi + w.∇Xi = 0, i = 1, ..., N − 1,

(12)

for the initial data Uh(x, tn). This step is treated using a time implicit finite
volume method in order to avoid too small time steps due to the standard
CFL restriction. In practice, we use a relaxation approximation of (12) which
permits a natural decoupling between the first three equations associated
with ρ, ρw and ρE and the (N − 1) last ones. The reader is referred to
[CCM2] for the details (see also [CCM1]).
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Correction step (tn+1− → tn+1) : As expected, the updated values of the
density, momentum and total energy are kept unchanged, that is

ρn+1
h = ρn+1−

h , (ρw)n+1
h = (ρw)n+1−

h , (ρE)n+1
h = (ρE)n+1−

h (13)

where Un+1−
h = (ρh, (ρw)h, (ρE)h, (Xi)h)(x, tn+1−) denotes the solution ob-

tained at the end of the prediction step. By contrast, the (Xi)1≤i≤N−1 are
going to be redefined according to the expected time evolutions

∂tXi + w.∇Xi = Ci(∂tρε + ∇. ρεw +
N∑

j=1

pj∇. w), i = 1, ..., N − 1, (14)

with (Xi)h(x, tn) as initial data.
With this in mind, we first stress that the total internal energy ρε is already

known at time tn+1 by (13), namely :

(ρε)n+1
h = (ρE)n+1

h − ||(ρw)n+1
h ||2/(2ρn+1

h ). (15)

The time derivative ∂tρε in the right-hand side of (14) is thus known at
the end of the prediction step and is given by ((ρε)n+1

h − (ρε)n
h)/∆t. The

spatial derivatives ∇. ρεw +
∑N

j=1pj∇. w are treated in a consistent way
from the solution Uh(x, tn+1−) (see [CCM2] for the details) and to simplify
the discussion we introduce the notation

−
(
∇. ρεw +

N∑
j=1

pj∇. w
)n+1−
h

=
(
(ρε)n+1−

h − (ρε)n
h

)
/∆t.

We eventually end up with the following (not yet fully) discrete form of (14) :

∂tXi + w.∇Xi = Ci

(
(ρε)n+1

h − (ρε)n+1−
h

)
/∆t

for i = 1, ..., N − 1. These advection equations (whose source terms are ac-
tually known at the end of the prediction step) are again solved in a time
implicit way, leading to a set of updated values {Xi(x, tn+1)}i=1,...,N−1. The
updated solution Uh(x, tn+1) is then at hand. Nevertheless, in order to be
able to restart the algorithm at the next time iteration we need to define
each internal energy ρεi(Uh(x, tn+1)) according to the closure law (9). In
other words, we have to solve in (SN )n+1

h the nonlinear equation

(ρε)h(x, tn+1)
ρn+1

h

=
N−1∑
i=1

εi(ρn+1
h , (SN )n+1

h exp(Xi)n+1
h ) + εN (ρn+1

h , (SN )n+1
h ).

(16)
Its well-posedness is the matter of the next statement.

Lemma 2. Assume that the total internal energy (ρε)h(x, tn+1) is positive.
Then, the nonlinear algebraic equation (16) admits a unique solution (SN )n+1

h

and allows to define the N positive internal energies (εi)n+1
h :

(εi)n+1
h = εi(ρn+1

h , (SN )n+1
h exp(Xi)n+1

h ) > 0, i = 1, ..., N. (17)
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4 Numerical Illustration

An example is given on Fig. 2 which shows the results obtained by this solver
on a bidimensional computation around a cylinder. The Mach number is
approximately equal to 10 (see [CCM2] for the details).
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Fig. 2. Density (iso-values) and pressures on the stagnation line
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Abstract. In [SY04, YS07] and references cited therein, the authors intro-
duced the concept of employing multiresolution wavelet decomposition of
computed flow data as smoothness monitors (flow sensors) to indicate the
amount and location of built-in numerical dissipation that can be eliminated
or further reduced in shock-capturing schemes. Studies indicated that this
approach is able to limit the use of numerical dissipation with improved
accuracy compared with standard shock-capturing methods. The studies in
[SY04, YS07] were limited to low order multiresolution redundant wavelets
with low level supports and low order vanishing moments. The objective of
this paper is to expand the previous investigation to include higher order
redundant wavelets with larger support and higher order vanishing moments
for a wider spectrum of flow type and flow speed applications. Studies show
that the higher order wavelets with larger support and higher order vanishing
moments indicate an improvement relative to the lower order cases.

1 Redundant Wavelets

Assume that we are given a grid function uj , j = 1, . . . , J on a grid xj = (j−
1)∆x. The goal is to detect regions where the grid function does not represent
a smooth function on the scale ∆x. In theory the degree of smoothness of a
function can be deduced from its wavelet coefficients. Here, the basics of the
redundant wavelet analysis is briefly summarized [D92].

Basic Wavelet Relations: The wavelet coefficient at xj on scale m for a
function u(x) is defined by

wm,j(u) =
∫

ψm,j(x)u(x) dx,

where the wavelet function is

ψm,j(x) =
1

2m
ψ((x − xj)/2m).
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It is a scaled and translated version of a mother wavelet function ψ(x). ψ(x)
is localized around x = 0. Associated with the wavelet function is a scal-
ing function φ(x). Similar to the wavelet coefficients, the associated scaling
function coefficients are

fm,j(u) =
∫

φm,j(x)u(x) dx,

where φm,j(x) = 1/2mφ((x − xj)/2m). Furthermore φ(x) and ψ(x) are such
that the relations

φ(x) =
∑

n

anφ(2x − n∆x) ψ(x) =
∑

n

bnφ(2x − n∆x) (1)

hold. The sums above are taken over a finite number of terms. Equations (1)
give

wm+1,j = 1
2

∑
n bnfm,j+n2m := D(m)fm,j (2)

fm+1,j = 1
2

∑
n anfm,j+n2m := A(m)fm,j . (3)

Thus, the wavelet and scaling coefficients on scale m + 1 are obtained by
applying difference operators to the scaling coefficients on scale m. In (2) we
denoted the wavelet operator on scale m by D(m) to stress that this operator
is usually a differentiation. The scaling function operator on level m, A(m),
is usually an averaging operator. The given grid xj is at scale m = 0. The
grid function uj is given at this scale. No information is given about uj on
the smaller scales (m < 0). The wavelet decomposition is called redundant
if one computes 2J values at scale 1, namely the J wavelet coefficients w1,j

and the J scaling functions f1,j . This is more information than necessary to
represent the original J grid function values. The wavelet decomposition is
more often defined without redundancy, i.e., as an expansion in basis func-
tions, by localizing the wavelet coefficients at every second grid point. The
J/2 wavelet coefficients and J/2 scaling function values are obtained. With
this approach the regularity estimate at a grid point would depend on how
the point is aligned with the coarsened grids. Furthermore, the regularity
of the wavelet function itself would affect the maximum Lipschitz exponent
(regularity estimate) that can be estimated [D92]. For the analysis of uj , we
usually approximate f0,j = uj. From f0,j, equations (2) and (3) give fm,j

and wm,j for all scales m > 0. We focus below on choices for D(0) and A(0).
On the coarser scales (2) and (3) define D(m) and A(m) for m > 0. For
non-periodic boundaries, the difference operators need to be modified at the
boundaries. Due to a space limitation, the formulas are not included here
(see [SY04] for lower order wavelets).

Vanishing Moments: A wavelet function ψ(x) has k vanishing moments if∫
xnψ(x) dx = 0, n = 0, 1, 2, . . . , k − 1.
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The wavelet theory says, see, e.g., [D92, MH92], that a redundant wavelet
with k vanishing moments can be used to estimate the number of derivatives
of a function, up to the kth derivative, because then the wavelet coefficients
wm,j will depend on the scale as 2mα, where α < k is the Lipschitz exponent
of uj near xj . The test cases below illustrate the B-spline wavelets. The
formula and test results using the redundant form of Harten multiresolution
wavelets will be reported in a forthcoming article.

B-spline Wavelets: The Nth degree B-spline wavelet with k vanishing mo-
ments have a scaling function whose Fourier transform is

φ̂(ω) =
(

sin ω/2
ω/2

)N

(4)

and wavelet function with Fourier transform is

ψ̂(ω) = (iω)k

(
sin ω/4

ω/4

)N+k

. (5)

We assume that N and k are even numbers. Fourier transformation of (1),
use of (4) and (5), and comparison with (2) lead to the difference operators

D(0) = (∆+∆−)k/2 A(0) = (A+A−)N/2,

where the backward and forward undivided difference operators are

∆−uj = uj − uj−1 ∆+uj = uj+1 − uj,

and the backward and forward averaging operators are

A−uj = (uj + uj−1)/2 A+uj = (uj+1 + uj)/2.

The first operators are

A(0)uj = uj (N = 0)
A(0)uj = (uj+1 + 2uj + uj−1)/4 (N = 2)
A(0)uj = (uj+2 + 4uj+1 + 6uj + 4uj−1 + uj−2)/16 (N = 4)

and

D(0)uj = uj+1 − 2uj + uj−1 (k = 2)
D(0)uj = uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2 (k = 4).

The wavelet operators are approximations of the kth derivative, e.g.,

uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2 ≈ ∆x4uxxxx(xj).
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The averaging operators A(0)uj are all second order accurate approximations
of the point value uj.

The operators for odd k or N are analogous. The wavelet operators are
approximations of odd order derivatives centered at half points. For example,
the operators with k = 3 are

A(0)uj+1/2 = (uj+2 + 3uj+1 + 3uj + uj−1)/8
D(0)uj+1/2 = (uj+2 − 3uj+1 + 3uj − uj−1).

Regularity Estimate: The grid size at scale m is 2m∆x. This implies
that (∆−∆+)k/2uj will depend on the scale as (2m∆x)k = 2mk∆xk if uj

is sampled from a k times differentiable function. According to the theory,
[D92, MH92], the local regularity should be measured over the domain of
dependence of the point xj . We define

dm,j = max{|wm,n| |n : j in stencil for wm,n}.

If dm,j depend on the scale as 2αm, then α is the local Lipschitz exponent at
xj of the analyzed function. We use a least squares fit to the model log2 dm,j =
αm + c to estimate the slope α. With two, three, and four scales this gives
the estimates

α ≈ log2(d1,j/d0,j),

α ≈ 1
2

log2(d2,j/d0,j),

and

α ≈ (3 log2(d3,j/d0,j) + log2(d2,j/d1,j))/10

respectively. It is also necessary to avoid division by zero and/or taking the
logarithm of zeros. Therefore, if |wm,j | < 2mkε, we set wm,j to 2mkε for some
given tolerance ε.

2 Test Cases

Due to space limitation, as an illustration, we select for any non-negative
even numbers N and k, the B-spline wavelet operator pair

D(0) = (∆+∆−)k/2 A(0) = (A+A−)N/2

and the multiresolution wavelet operator pair

D(0) =
1
d0

(∆+∆−)k/2 A(0) = I − D(0),

where d0 is the coefficient in front of uj in (∆+∆−)k/2. We will test these
operators for different values of k and N , and for different number of scales.
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Examples using the redundant form of Harten multiresolution wavelets will
be reported in a forthcoming article.

Performance of Smoothness Monitors using B-Splines on a Given
Data: The given data indicates in the top left of Fig. 1 is the density of
a computed solution of a standard 1-D inviscid shock-turbulence interaction
test case in gas dynamics. A Mach 3 shock moves to the right into a sinusodial
entropy wave. The interaction amplifies the entropy waves and oscillations of
higher frequency develop. A few weaker shocks are located behind the physical
oscillation region. The solution (given data) in Fig. 1a was computed by the
5th-order WENO scheme on a very fine grid. A good detector should be able
to detect the leading shock wave, but classify the physical oscillations (0.5 <
x < 2.4 and x > 2.4) as smooth regions. Samples of estimated regularity
exponents “α” are shown in Figs. 1b–1d with the original function shown in
black. We investigate the influence of the parameters N , k, and the number
of scales (or levels) used for the B-spline wavelets. In all experiments shown,
ε = 10−3. Figure 1b shows that the estimated α becomes smaller when the
B-spline order N is increased (Note that the oscillatory part is classified as
regular). In figure 1c, we vary the number of levels (or scales) from two to
four. The estimated α becomes lower when the number of levels increases at
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Fig. 1. a) (top left) Test function with jumps and smooth physical oscillations.
b) (top right) Estimated α when the B-spline order N varies. c) (bottom left)
Estimated α when the number of wavelet levels varies. d) (bottom right) Estimated
α when the number of vanishing moments, k, varies.



758 B. Sjogreen and H.C. Yee

the oscillations, but at the jumps the estimated α is higher for a larger number
of levels. Finally, Fig. 1d shows the α estimate for k = 2 and k = 4 with N
and the number of levels unchanged. Here α is larger for k = 4, except at the
jump where α is almost unchanged. The influence of the number of vanishing
moments is clearly visible for the oscillations. The trends in Figs. 1b–1d
were the same for all choices of the fixed parameters. At shock locations,
the higher the N, k and L values, the lower the value of α’s (near zero or
negative spikes). At the physical oscillation region, for all of the studied N, k
and L values, the values of α remain positive for the entire region (above 2
in this case). As a second test case to examined how the α behaves at regions
of spurious high frequency oscillations (completely due to the numerics), we
examined the regularity of the data obtained from the pure convection of a 2-
D vortex (inviscid) by the 8th-order central spatial scheme without numerical
dissipation added. In this case the exact solution is smooth and a good scheme
is expected to convect the vortex without distortion for certain reasonable
time lengths. Due to the lack of numerical dissipation and the nonlinearity of
the Euler equations, in this case, spurious high frequency oscillation occurs at
very early stages of time evolution. The oscillation becomes more pronounced
as time progresses and the solution eventually diverges. The data we obtained
is at the early stage of the spurious high frequency oscillation. We examined
the same N, k and L values. It turns out that at the spurious high frequency
oscillation regions, unlike physical oscillations, the αs in this entire region
are negative. Thus, the use of α as a flow sensor is a clear cut indication
(especially for higher N, k, L values) of the locations of discontinuities (shocks
and contacts), physical oscillations and spurious high frequency oscillations.

High Order Filter schemes with Flow Sensors as Part of the Def-
inition of the Filter Numerical Dissipation: The term “smoothness
monitor” or “flow sensor” used here is different from a limiter in the sense
that, in addition to the built-in limiter existing in shock-capturing schemes,
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Fig. 2. a) (left) Density by the filter scheme using B-spline wavelet with N =
2, k = 2, L = 2 as a flow sensor. b) (right) Density by the filter scheme using
B-spline wavelet with N = 4, k = 4, L = 2 as a flow sensor.
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we use a flow sensor as an adaptive procedure to analyze the computed data
to indicate the amount and location of built-in numerical dissipation that can
be eliminated or further reduced. For a chosen numerical dissipation term,
after incorporating the flow sensor as part of the definition of the numerical
dissipation, a less dissipative numerical dissipation model emerges. The im-
proved numerical dissipation model can be used as the replacement of the
existing numerical dissipation term. Alternatively, the improved dissipation
model can be used to construct a new scheme. An efficient approach is to
apply the improved numerical dissipation model as a filter step in conjunc-
tion with high order non-dissipative central (compact or non-compact) spatial
base schemes. Figure 2 shows the solution of the same 1-D shock-turbulence
problem computed by the filter scheme with the 8th-order central spatial
base scheme and the dissipative portion of a 2nd-order TVD scheme as part
of the filter with N = 2, k = 2, L = 2 and N = 4, k = 4, L = 2 as B-spline
wavelet flow sensors. The limiter is the van Albada limiter for the nonlinear
field and super B limiter for the linear field. The slight oscillation around
the weak shock regions is typical of the super B limiter effect. The results
indicate that higher order N and k values provide higher accuracy solution
in the physical oscillation region with similar accuracy around the shock re-
gions. With this adaptive numerical dissipation control of our filter scheme,
the accuracy is greatly improved compare with the 5th-order WENO, and it
is comparable to a 7th-order WENO scheme using the same grid. However,
the 7th-order WENO scheme requires more than three times the CPU time
than that of the filter scheme.

Concluding Remarks: The above test cases indicate that the use of
multiresolution redundant wavelet decomposition of computed data is a
good smoothness monitor with distinct characteristics of Lipschitz exponent
for discontinuities (shocks and contacts), physical oscillation and spurious
high frequency oscillation (due to the numerics). The smoothness moni-
tors are useful as data analysis and as part of an improved numerical dis-
sipation model or filter scheme. More detailed studies, including complex
shock/contact/turbulence interactions and 3-D Navier-Stokes computations
will be reported in a forthcoming article.
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Summary. The characteristics of forced convection heat transfer from a pair
of circular cylinders in staggered arrangements with heated upstream cylin-
der are investigated. The longitudinal separation to cylinder diameter ratio
and the transverse separation to cylinder diameter ratio are varied from 2.5
to 5 and from 0.5 to 1, respectively. Three-dimensional direct numerical sim-
ulations (DNS) have been performed using the spectral/hp element method
with the Reynolds numbers, Re, of 500 and 1000 and the Prandtl number,
Pr, of 0.71. The identification of major spatially distributed features is done
by extracting the proper orthogonal decomposition (POD) modes from en-
semble of simulation solutions. The correlation between flow, heat transfer
characteristics and POD modes is discussed.

1 Introduction

Analysis of wake vortex dynamics has long been major subject of interest to
engineers and scientists for many years. Understanding wake dynamics be-
hind a bluff body has been great challenge for decades. Despite of its simple
geometry, circular cylinder wake flows exhibit rich flow features and yet have
many direct engineering and science applications. The alternate shedding
pattern of vortices in the wake region, leads to large fluctuating pressure
forces in a direction transverse to the flow and may cause vortex-induced
vibrations which in some cases can trigger structural failures, [Wil96]. The
phenomena of vortex dynamics near wall or behind a bluff body plays impor-
tant role in the change of heat transfer characteristics, [Fie98]. For example,
in a heated circular cylinder, thermal energy is trapped in the viscous layer
of the cylinder which released through the separation of viscous layer from
the rear surface in the form of narrow pathways directed away from the
cylinder wall, [BC06]. The phenomena of wake vortex dynamics between a
pair of cylinders placed either inline or staggered can play important role in
the change of heat transfer characteristics of the cylinders. Moreover, deeply
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understand transport/dispersion mechanism of mass or pollutants can be
drawn from studies of heat transfer mechanism because the mechanism of
mass/pollutants transfer mimics those of heat transfer [BC06]. The purpose
of this study is to characterize forced convection heat transfer due to the wake
vortex dynamics in three-dimensional circular cylinders placed in staggered
arrangement through direct numerical simulation.

The proper orthogonal decomposition (POD) method is a statistical tool
used to identify low-dimensional descriptions for multidimensional systems,
[HLB98]. The method has been successfully applied in wide range of scien-
tific applications, for example, fluid flows, biomechanics and geophysical fluid
dynamics. In this study, we apply the POD technique to identify dominant
spatially distributed features or POD modes of heat transfer from staggered
cylinders at Re = 500 and Re = 1000. The results of analyzing POD modes
will allow us to elucidate the heat transfer mechanism in the problem.

The paper is organized as follows. In next section, we describe computa-
tional details for the direct numerical simulation used to obtain local heat
transfer. Later, we present the results and some discussion. Finally, we con-
clude the paper with a short summary.

2 Computational Details

Non-dimensional unsteady, incompressible, momentum and energy equations
without external forcing or buoyancy effects are:

∇ · u = 0
∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u

∂T

∂t
+ u · ∇T =

1
RePr

∇2T

Where, Re is the Reynolds number, Pr is the Prandtl number. Here Re is

defined through:
DU

ν
and D is the cylinder diameter.

A computational domain with dimension of 40D × 9D × 1D (streamwise-
crossflow-spanwise) was employed for this investigation. A pair of cylinders
both with diameter of D = 1 are placed in various staggered arrangements
with longitudinal separation (L) to cylinder diameter (D) ratio (L/D) and
transverse separation (T) to cylinder diameter (D) ratio (T/D) of 2.5-5.0 and
0.5-1.0, respectively. In each case, the computational domain is decomposed
into approximately 13000 tetrahedral elements.

Uniform steady inflow is imposed on inflow boundary and zero Neumann
condition is imposed on outflow boundary while no-slip condition is imposed
to cylinder walls and symmetry condition is prescribed for crossflow and span-
wise directions. Temperature is set to be unity only for the upstream cylinder
and zero for the downstream cylinder as well as the inflow boundary while zero
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Neumann condition on temperature is imposed on the outflow boundary and
symmetry condition is prescribed for crossflow and spanwise directions.

The flow parameters used in this study are Re = 500 and Re = 1000
with Pr = 0.71. Converged solutions were obtained by solving the governing
equations using the spectral/hp element library, [KS05]. The Characteristic
Galerkin method is chosen to be a stabilizer for the solver. In the resolution
dependency study, we conclude that the Jacobi polynomial basis of order
seven is sufficient for this investigation. Characteristic of local heat transfer
is obtained by measuring the local Nusselt number on the cylinders’ wall.
The proper orthogonal decomposition method is applied to extract dominant
features or POD modes from ensembles of simulation solutions. In order to
reduce the computational cost, the method of snapshots by Sirovich, [Sir87],
is employed in the POD mode extraction process.

3 Results and Discussion

3.1 Flow and Heat Transfer Characteristics

From the aforementioned flow configurations, the results from simulations
suggest that flow characteristics can be divided into three regimes, [JK03],
as follows:

Reattachment Regime

The reattachment regime is found for the case of L/D = 2.5 with T/D = 0.5.
The inner shear layers separating from the upstream cylinder reattach onto
the outer surface of the downstream cylinder then sweep along the inner sur-
face of the downstream cylinder. These shear layers directly influence char-
acteristic of heat transfer near the front surface of downstream cylinder. The

Fig. 1. Instantaneous iso-surface plots for the case of Re=500, from top
to bottom: vorticity core, temperature field. From left to right: (L/D=2.5,
T/D=0.5),(L/D=5.0, T/D=1.0). Each column presents the plots at the same
instant.
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wake of the upstream cylinder is stabilized by the downstream cylinder yield-
ing a steady state flow circulation region. The releasing of trapped thermal
energy from upstream cylinder in the outer shear layers slightly affect heat
transfer characteristic in the surface of downstream cylinder. The 2S vor-
tex shedding pattern has been observed behind the downstream cylinder, see
figure 1.

Biased Gap Regime

This regime is observed for the case of L/D = 2.5 with T/D = 1.0. The
flow in the gap between the cylinders is deflected down toward the upstream
cylinder resulting in the deflection of thermal energy along the gap toward the
upstream cylinder. The wake behind the upstream cylinder becomes unsteady
while irregular vortex street is formed behind the downstream cylinder. Two
distinctive near wakes are formed: one wide (downstream cylinder) and one
narrow (upstream cylinder). The thermal energy is also trapped in viscous
layer which is shed and convected slightly upward. Only small effects on
heat transfer characteristic on the surface of the downstream cylinder are
found.

Two Vortex Streets Regime

The two vortex streets regime is found for the case of L/D = 5.0 with both
T/D = 0.5 and T/D = 1.0. Here, vortices are shed continuously from both
cylinders forming two three-dimensional vortex streets. The thermal energy
is trapped in unsteady viscous layers which later are shed and convected
downstream. The heat transfer characteristics near the front surface of the
downstream cylinder are mostly affected by the interference of primary vor-
tex, see figure 1. In this case, large interference effects on local heat transfer
characteristic of the front surface of the downstream cylinder are observed.
The effects expand downstream along the cylinder surface and heighten at
higher Reynolds number, however, the characteristic of vortex shedding pat-
tern is still similar.

3.2 Proper Orthogonal Decomposition

First, we focus on the energy distribution of the POD modes for each case.
In all cases, the first POD mode (the mean mode) of both velocity and
temperature fields dominates all the other modes by capturing more than
60% of the total energy captured by all of the modes, see figure 2. The
pairing of higher POD modes (greater than one) of the temperature field is
clearly observed only for the case of L/D=5.0 with T/D=1.0 and Re = 500.

The spatial distribution of the modes in each flow regime is described as
follows.
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Reattachment Regime

The reattachment to the downstream cylinder of the flow and temperature
field is fully captured by the first mode. The higher POD modes of the tem-
perature indicates that the main activity region in this case includes the wake
region of the downstream cylinder. The 2S vortex shedding pattern is con-
firmed by the spatial distribution of the velocity modes from the upstream
and downstream cylinders.

Biased Gap Regime

In the regime, we clearly see the deflection in the first POD mode from the
center of the upstream cylinder. The main activity region of the temperature
field includes only in some region below and behind the downstream cylin-
der (only some part of the wake region of the downstream cylinder). More
complicated flow structures are observed in the POD modes of the tempera-
ture field as well. POD modes of velocity show more distinctive wake regions
of each cylinder which clearly observed from the distribution of the velocity
modes, especially the crossflow velocity component, from the upstream and
downstream cylinders.

Two Vortex Streets Regime

In the regime, the main activity region of the temperature field covered entire
wake regions from both cylinders which confirms the flow and heat charac-
teristics in section 3.1. The patterns of the POD modes becomes more dis-
tinctive for each cylinder and are clearly observable in the case of L/D=5.0
with T/D=1.0 and Re = 500. This fact together with the distribution of the
energy distribution of the eigenvalues in figure 2 indicates that the existence
of the downstream cylinder provides only slightly affects to the pattern of
the temperature field compared to the case of single cylinder. However, it is
not the case for higher Re. We also find that the lower T/D ratio, the more
complicated structures in the wake region are formed.
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Fig. 2. Energy distribution of POD modes for all cases. Left: Velocity fields. Right:
Temperature fields
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Fig. 3. Proper orthogonal decomposition modes. Left to right: (L/D=2.5,
T/D=0.5), (L/D=5.0, T/D=1.0). Top to bottom: streamwise velocity first mode
and second mode, temperature first mode and second mode.

4 Summary

Incompressible flow around a pair of circular cylinders in staggered arrange-
ments with heated upstream cylinder is investigated in this paper. We have
found that: flow configuration in the two vortex streets regime leads to large
interference effects on local heat transfer characteristic of the front surface
of the downstream cylinder compared to the other two regimes. And, in the
same regime, the wake of the upstream cylinder exhibits stronger unsteadiness
for longer transverse pitch ratio. From the proper orthogonal decomposition
analysis, we found that the spatial distribution of the modes in each flow
regime directly relates to the flow characteristic in that particular regime be-
sides the analysis indicates that for a larger L/D and T/D ratio in the lower
Reynolds number cases, the existence of the downstream cylinder slightly
affects the pattern of the temperature field.
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Summary. A two-dimensional numerical study on the laminar flow past two
circular cylinders rotating with constant angular velocity was carried out. Al-
gorithm of solution based on the projection method. The numerical algorithm
has been validated using available experimental and numerical examples. The
flow structure around two rotating cylinders were found to differ substantially
from the behavior of two non rotating circular cylinders placed in a uniform
stream. The diagram of flow structures was constructed depending on the
Reynolds number, the rate of cylinder rotation and the gap spacing. The
drag and lift forces are affected by rotation. The drag force decreases with
increasing rotational velocities even leading to negative values and the lift
force changes direction from repulsion to attraction force.

1 Introduction

There has not been extensive research on free stream flow around two rotating
circular cylinder. Most of the reported studies on two cylinder configurations
were concerned with two non rotating cylinders of an identical diameter (see
for example [Kang03] and literature cited there).

In the present paper, flow structures were calculated between two identical
rotating circular cylinders which are held fixed side-by-side (or transverse)
against a uniform stream flow directed perpendicular to the line connecting
the cylinders’ centers, at different Reynolds number, gap spacing and rate of
cylinder rotations.

2 Governing Equations and Numerical Methods

Let us consider two infinitely long cylinders placed in a uniform flow, per-
pendicular with their line of centers, of an incompressible fluid having free
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stream velocity U∞. Let a system of Cartesian coordinates (x, y, z) be chosen
so that the centers of the cylinders lie along the x-axis. The cylinders being
considered infinitely long, the flow does not depend on z-coordinate. The most
convenient coordinate system for a pair of cylinders is the orthogonal bipolar
cylindrical coordinate system. The governing equation is the Navier-Stokes
equations written in cylindrical bipolar coordinates. Numerical simulations
of two-dimensional incompressible flow over two rotating circular cylinders
in side-by-side arrangement are conducted using projection method.

The cylindrical bipolar coordinate system defined by the following
equations

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
, (1)

where ξ ∈ [0, 2π), η ∈ (−∞,∞), a is a characteristic length in the cylindrical
bipolar coordinate system which is positive. This transformation maps the
(x, y) plane (from which the domain occupied by the cylinders is excluded)
into the rectangle η2 ≤ η ≤ η1, 0 ≤ ξ ≤ 2π, η2 < 0, η1 > 0. The surfaces of
the cylinders are located at η = η2 and η = η1. The cylinders’ radii r1 and
r2 and the distances of their centers from the origin d1 and d2 are given by
ri = a csch|ηi|, di = a coth |ηi|, i = 1, 2. The center to center distance
between the cylinders is d = d1 + d2. The boundary conditions are a no-slip
requirement on cylinders

vξ = ωiri, vη = 0, η = ηi, i = 1, 2, (2)

where vξ and vη are the physical components of velocity vector v = (vξ, vη) in
the coordinate system (1), ωi, i = 1, 2 are rotational velocities of the cylinder
walls. Positive values of ωi, i = 1, 2 correspond to counterclockwise rotation.
Upstream and downstream boundary conditions at the infinity are

vx = 0, vy = U∞, r2 = x2 + y2 → ∞, (3)

where vx and vy are components of the velocity vector in x and y directions,
respectively. The net force exerted by fluid on an immersed body with surface
Σ are F =

∫
Σ

τ dS. The force per unit area exerted across a rigid boundary
element with outward normal n in an incompressible fluid is defined by τ =
−pn − µ(n × curl(v)) where p is the pressure and µ is the coefficients of
dynamic viscosity. If Fxi and Fyi , i = 1, 2 are the lift and drag on the
cylinders, the lift and drag coefficients are defined by CLi = Fxi

ρU∞D , CDi =
Fyi

ρU∞D , i = 1, 2, and each consists of components due to the friction forces
and the pressure CL = CLf + CLp, CD = CDf + CDp,

The problem variables can be made dimensionless by using characteristic
length D, the diameter of cylinders, the velocity scale U∞, the oncoming
free stream velocity and kinematic viscosity coefficient ν. For such choice
of parameters the solution depends not only on the Reynolds number, Re,
but also on the non-dimensional gap spacing between two cylinders, g , and
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Table 1. Sequence of grid; Drag and lift coefficient at Re = 20 and g = 14, α = 1.0

grid CD CDp CDf CL CLp CLf

40 × 40 1.858 1.033 0.825 2.740 2.393 0.347
80 × 80 1.887 1.061 0.826 2.797 2.437 0.360

160 × 160 1.901 1.074 0.827 2.802 2.440 0.362

Table 2. Hydrodynamic parameters of flow over a rotating circular cylinder at
Re = 20 with g = 14

Re Contribution CD CL

α = 0.1 α = 1.0 α = 2.0 α = 0.1 α = 1.0 α = 2.0
Present (80x80) 2.119 1.887 1.363 0.291 2.797 5.866

20 Badr et al. (1989) 1.990 2.000 — 0.276 2.740 —
Ingham and Tang (1990) 1.995 1.925 1.627 0.254 2.617 5.719
Chung (2006) 2.043 1.888 1.361 0.258 2.629 5.507

on parameters, αi representing the ratios of the rotational velocities of the
cylinder walls to the oncoming flow velocity

Re = U∞ D/ν, αi = Dωi/2U∞, i = 1, 2, and g =
d − r1 − r2

D
.

It is well known that for large gap spacing between the two surfaces of the
cylinders the mutual influence between cylinders disappear, leading to separate
flowover single cylinders. To validate the numerical algorithm, the uniform flow
past fixed and rotating circular cylinders with 0 ≤ Re ≤ 40, 0 ≤ α1(= α2) ≤
2.5 and with a large gap between cylinder surfaces g = 14 have been calculated
and the results compared with experimental and simulation data for flow past
a single cylinder. All the simulations have been performed in a large domain so
as to reduce the influence of the outer boundary. A sequence of uniform grids is
used. The accuracy and grid independence of the numerical results is checked
by computations on various grids and shown in Table 1. The simulation was
carried out on three grids with hξ1 = 0.165, hη1 = 0.174, hξ2 = 0.082, hη2 =
0.087, hξ3 = 0.041, hη3 = 0.043. The time step size �t = 0.001.

To the authors’ knowledge, there are very few published data of drag and
lift coefficients at Re ≤ 40 and angular speed even for flow past single cylin-
der. Table 2 lists the calculated lift and drag coefficients and makes a compar-
ison with [Badr89] [Ingh90] and [Chung06]. It can be seen that the differences
are acceptable for CD and CL.

3 Results

After validating the numerical method, we have conducted numerical simu-
lations of flow past constantly rotating circular cylinders of equal radii in a
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side-by-side arrangement at Reynolds numbers Re = 5, 10, 20 and 40, rate
of rotation 0.5 ≤ α ≤ 5.0 and nondimensional gap spacing g = 0.5, 1, 1.5.
Both cylinders are placed in a stream (from down to up) of uniform ve-
locity U∞ at infinity. The left cylinder (r = r2) is rotating with constant
clockwise angular velocity and right cylinder (r = r1) is rotating with con-
stant counterclockwise angular velocity. The influence of the rotation rate
α = α1 = α2 = |ωi|D/2U∞ is demonstrated in Figures 1 and 2.

Figure 1 gives the values of drag and lift coefficients in cases Re =
10, 20, 40 and g = 1 for 0.5 ≤ α ≤ 3.0. Indexes 1 and 2 correspond to
the right and left cylinders, respectively. The fluid forces are distributed over
the two cylinders such that lift forces in x−direction on the combined system
are in equilibrium, CL1 + CL2 ≡ 0. However, the fluid forces acting upon an
individual cylinder demand that some additional external forces are applied
to it in order for its position to remain fixed. Figure 2 demonstrates the vec-
tors of total force acting on right cylinder as a function of the rotation rate
α at Re = 20.

The absolute values of lift coefficients increase with increasing α up to
α = 2.0 for the Re = 10 and up to α = 2.5 for the Re = 20, 40. The lift
forces acting on cylinders mostly result from the pressure force, as shown in
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Fig. 1. Drag and lift coefficients at Re = 10 (a)-(b), Re = 20 (c)-(d), Re = 40
(e)-(f) and g = 1, α ∈ [0.5, 3.0]
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Fig. 2. Vector of force on right cylinder. Re = 20, g = 1

the Figures 1(b), 1(d) and 1(f). The pressure contribution in CL increases
with increasing Re, which is the same behavior as observed in the study of
[Stoj02]Stojkovic et. al. (2002) for the case of a single rotating cylinder. The
drag coefficients decrease with increasing α up to α = 2.5 (see Figures 1(a),
1(c), and 1(e)). For α = α∗ ≈ 1.65 (Re = 10), α = α∗ ≈ 1.74 (Re = 20) and
α = α∗ ≈ 1.755 (Re = 40) the drag force becomes zero. This case corresponds
to the self-propelled motion of cylinders as a coupled body. It is interesting
that both CDp and CDf

decrease with increasing α up to α = 2.5, (see
Figures 1(a), 1(c) and 1(e)), resulting in negative values of CDp and CDf

for
higher rotational velocities. This is opposite to the case of flow past a single
rotating cylinder, where CDf

increases and CDp decreases with increasing α
[Stoj02](Stojkovic et al., 2002). Additionally, for Re = 10 and α > α∗ ≈ 1.65
the total drag force is negative because CDf

dominates over CDp . In the case
of flow around a single rotating cylinder the effect is quite different. Rate of
decrease CDp and CDf

with increasing α depends on Reynolds number. At
Re = 10, CDf

decreases more quickly than CDp . At Re = 20, CDp decreases
faster than CDf

up to values α = α∗ ≈ 1.74. Further rates of decrease are
approximately identical up to α = 2.5. At Re = 40, rate of decrease of CDp

is much faster than CDf
. This behavior is visible in Figures 1(a), 1(c) and

1(e). It has to be pointed out that the self-propelled regime happened due to
different reasons at Re = 10, Re = 20 and at Re = 40. In the case of Re = 10
the drag CD  0 is due to CDp ≈ −CDf

≈ 0.33. In the case of Re = 20 the
self-propelled regime corresponds to CD  0 due to CDp ≈ −CDf

≈ 0. At
Re = 40, CD ≈ 0 due to CDp = CDf

and CDf
is positive.

It is interesting that CD decreases up to α = 2.5 and for α > 2.5 drag
coefficient increases for all Re = 10, 20, 40. Increasing of drag coefficient
for Re = 10 causes by the increasing of CDp . Coefficient CDf

continues to
decrease for α > 2.5. In case of Re = 20 both pressure and friction coefficients
start to increase at α > 2.5 consequently lead to increasing of CD. Quite
opposite behavior of CDp and CDf

at Re = 40, compared with case Re = 10,
observe in Figure 1(e). Increasing of CD for α > 2.5 is happened due to
increasing CDf

. Coefficient CDp continues to decrease. Fig. 2 demonstrate



776 S. Sungnul and N.P. Moshkin

0 1 2 3
0.5

1

1.5

2

2.5

α

C
D
 >0 

C
D
<0 

g 

A 

B 

0 0.5 1 1.5 2 2.5
5

10

20

30

40

50

α

Re 

C
D
>0 

C
D
<0 

A B 

Fig. 3. Flow patterns observed behind two side-by-side circular cylinders with
varying Re, g, and α
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Fig. 4. Two types of flow patterns observed behind two side-by-side circular cylin-
ders

the diagram of force vector acting on the right cylinder (r = r1). There is a
repulsive force acting on the cylinders, CL1 > 0, CL2 < 0 for α < 3.6. For the
higher speed of rotation a repulsing force transforms to an attraction force
CL1 < 0, CL2 > 0.

It has been found that the flow pattern strongly depends both on the
Reynolds number, gap spacing, and rate of rotation and, moreover, either of
two flow patterns can occur at certain flow conditions, these patterns called
“A” and “B” in Fig. 4. The schematic diagrams of g−α and Re−α plane are
symbolized in Fig. 3. The solid lines represent the approximate boundaries
between two type of flow patterns. These pattern are shown in Fig. 3. The
dashed lines correspond to the self-propelled motion of two cylinders as a
coupled body, CD = 0.
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Summary. This study focuses on stabilizing reduced order model (ROM)
based on proper orthogonal decomposition (POD) and on improving the POD
functional subspace. A modified ROM that incorporates directly the pressure
term is proposed. The ROM is stabilized using Navier-Stokes equations residu-
als and exploiting ideas similar to the variational multiscale method. The POD
functional subspace is improved thanks to an hybrid method that couple DNS
and POD ROM. Results are shown for a 2D confined cylinder wake flow.

1 Introduction

This paper focuses on improving reduced order modeling (ROM) based on
proper orthogonal decomposition (POD). Besides the possible inherent lack
of numerical stability of POD/Galerkin methods [10], the main shortcom-
ings are the following. Firstly, since in most of the POD applications the
ROM is built from a velocity database it is necessary to model the pressure
term [5, 8]. To overcome this difficulty, a pressure extended ROM is intro-
duced in §2, so that the pressure term can be directly approximated using the
pressure mode. Secondly, due to the energetic optimality of the POD basis,
only few modes are sufficient to give a good representation of the flow ki-
netic energy. However, the viscous dissipation mainly takes place in the small
unresolved eddies. A ROM built with very few modes is thus not able to
dissipate enough energy. It is then necessary to close the ROM by modeling
the effects of the unresolved modes. In this study, we use the residuals of the
Navier-Stokes (NS) equations (§3) and exploit ideas similar to the variational
multiscale method (VMS) [1]. Finally, since POD basis functions are optimal
to represent the main characteristics of the flow configuration used to build
them, the same basis functions are not optimal to represent the main charac-
teristics of other flow configurations [3, 7, 9]. To overcome this problem, we
propose an hybrid method that couples DNS and ROM to adapt the POD
basis functions at low numerical costs (§4).



780 M. Bergmann, C.-H. Bruneau, and A. Iollo

0 x

y
H

L

u(0, y)

u = 0

u = 0

Ω

Fig. 1. Flow configuration and vorticity snapshot at Re = 200

Our paradigm is the confined square cylinder wake flow (figure 1) in lam-
inar regime, i.e. at Reynolds number Re = U∞L/ν ≤ 200, with U∞ =
u(0, H/2), L the lenght of the side of the square cylinder and ν the kinematic
visosity. We use the same parameters as those introduced in [5].

2 A Pressure Extended Reduced Order Model

It has been proven [8] that neglecting the pressure term can lead to large
ROM errors. One solution is to model this pressure term [5, 8]. The pressure
term can also be calculated using a pressure extended ROM with p = p̃.
Indeed, the POD flow fields write ũ(x, t) =

∑Nr

i=1 ai(t)φi(x) and p̃(x, t) =∑Nr

i=1 ai(t)ψi(x), see [2] for more details. Moreover, it is possible to evaluate
the Navier-Stokes residuals (§3). The ROM, noted A[Nr], is:

Nr∑
j=1

Lij
daj

dt
=

Nr∑
j=1

Bijaj +
Nr∑
j=1

Nr∑
k=1

, Cijkajak (1)
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Fig. 2. Comparison of the NS ♦ and the ROM −−− limit cycles
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where the ROM coefficients are given in [2]. The A[Nr ] model
is tested at Re = 200. The POD snapshot method introduced by
Sirovich [11] was used. Here, only the first 5 modes are sufficient to rep-
resent more than 98% of the kinetic energy. As it is shown in figure 2, the
solution of model (1) built with 5 modes reaches erroneous limit cycles, and
can even diverge with 3 modes.

3 Stabilization of Reduced Order Models

The aim of this section is to derive stabilization methods that involve very
few empirical parameters. The two kinds of stabilization methods presented
in what follows use the residual of the Navier-Stokes operator evaluated with
the POD flow fields ũ and p̃. These residuals, called POD-NS residuals, are:

RM (x, t) =
∂ũ

∂t
+ (ũ ·∇)ũ + ∇p̃− 1

Re
∆ũ, (2a)

RC(x, t) = ∇ · ũ. (2b)

We look for the missing scales u′(x, t) = u(x, t) − ũ(x, t) and p′(x, t) =
p(x, t)− p̃(x, t), where u and p denote the exact fields. Since the resolution
of the fine scales equations requires high computational costs, the objective is
to derive stabilization methods based on approximations of these fine scales.

3.1 Residuals Based Stabilization Method: Model B[Nr;K]

The goal of this method is to approximate the fine scales u′ and p′ onto some
adapted basis functions. The method is the following.

1. Integrate the ROM A[Nr] to obtain Ns coefficients ai(tk), k = 1, . . . , Ns.
2. Compute the fields ũ(x, tk) and p̃(x, tk), and then RM (x, tk) and

RC(x, tk).
3. Compute the POD modes φ′

i(x) and ψ′
i(x) of RM (x, tk) and RC(x, tk).

4. Add the K first residual modes φ′
i and ψ′

i to the existing POD basis
φi and ψi (using Gram-Schmidt process) and build a new ROM, noted
B[Nr;K].

3.2 SUPG and VMS Methods: Models C[Nr]and D[Nr]

The streamline upwind Petrov-Galerkin (SUPG) method is a simplified ver-
sion of the complete variational multiscale (VMS) method [1]. The main idea
of both methods is to approximate the fine scales by u′ � −τM RM and
p′ � −τC RC . The SUPG and VMS ROMs can be formally written:

Nr∑
j=1

Lij
daj

dt
=

Nr∑
j=1

Bijaj +
Nr∑
j=1

Nr∑
k=1

Cijkajak + Fi(t). (3)
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• For the SUPG reduced order model, noted C[Nr], we have:

FSUPG
i (t) = (ũ ·∇φi +∇ψi, τM RM (x, t))Ω + (∇ · φi, τC RC(x, t))Ω.

(4)
• For the VMS reduced order model, noted D[Nr], we have:

FV MS
i (t) = FSUPG

i (t) + (ũ · (∇φi)T , τM RM (x, t))Ω

− (∇φi, τM RM (x, t)⊗ τM RM (x, t))Ω

(5)

In this study parameters τM and τC are determined using optimization.

3.3 Results of Stabilization Methods

The limit cycles, over 1000 vortex shedding periods, obtained with models
B, C and D are represented in figure 3 for Nr = 5 and Nr = 3 respectively
and K = 2. These limit cycles are compared to exact ones obtained by DNS.
Excellent agreements are observed, thus validating our stabilization methods.
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Fig. 3. Comparison of the NS ♦ and the stabilized ROM −−− limit cycles

4 Improvement of the Functional Subspace

The main drawback of the POD basis is that it is only able to give an optimal
representation of the snapshots set from which it was derived [3, 7, 9]. To
overcome this drawback, a solution is to use a database composed by several
dynamics [3, 4, 6], but we privilege the idea of updating the POD basis during
the simulation. Since each actualization requires a large computational effort
(DNS), the aim of this section is to present efficient methods to actualize the
functional subspace when input system parameters change. For simplicity
reasons, we only focus on Reynolds number, but the forthcoming process
is transposable to other input parameters. Our goal is to obtain the target
basis at Re2 = 200 starting from the initial basis at Re1 = 100. The idea is to
actualize the snapshots database replacing older snapshot with new one. A
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Fig. 4. Schematic representation of the hybrid DNS/ROM method
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Fig. 5. Evolution of the convergence criterion for the hybrid method.

new snapshot is available after few DNS iterations. The corresponding POD
basis, Φ(n), is computed using an efficient method (see [2]). All the ROM
coefficients are built using Φ(n), and the integration is performed using Re ≡
Re2. A schematic representation of the algorithm is presented in figure 4.
Figure 5 presents the evolution of the convergence criterion Φ(n) · ΦRe2 for
different percentages of DNS. Denoting TNS and TROM the time intervals
where we use either DNS or ROM respectively, the percentage of DNS is
PNS = TNS/(TNS + TROM ). It can be seen that 10 vortex shedding periods
are necessary to converge towards the target basis using only DNS (PNS =
100%). Same results can be obtained with PNS = 90%, PNS = 80% and with
70% DNS. However, no convergence is obtained with PNS ≤ 70%. Hence, a
sufficient amount of DNS is necessary to converge toward the target basis.

5 Conclusions

The objective of this paper is to improve reduced order modeling based on
POD. We have built a pressure extended ROM, so that it is not necessary
to model the pressure term. Although this model gives very good results,
it is still necessary to model the effects of the unresolved fines scales. In
this respect, we propose stabilization methods that consist in modeling the
effect of the fine scales using residuals of Navier-Stokes operator evaluated
from POD fields. The first method proposed consists in enlarging the POD
subspace with few residuals modes. No empiric parameter has to be estimated



784 M. Bergmann, C.-H. Bruneau, and A. Iollo

in this approach. The second approach proposed relies on an approximation
of the fine scale equation. Both SUPG and VMS methods give good results. In
this approach, only two parameters have to be estimated. Finally, our aim is
to derive an efficient method to adapt the POD basis when input parameters
change. An hybrid method that couples DNS and ROMs is proposed. The
idea is to update the database when dynamical evolution occurs. This method
works very well if a sufficient amount of DNS is performed. Approximatively
20% of the total numerical costs can be saved using such an hybrid method.

References

[1] Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hugues, T.J.R., Reali, A., Scovazzi,
G.: Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 197,
173–201 (2007)

[2] Bergmann, M., Bruneau, C.-H., Iollo, A.: Improvement of reduced order model-
ing based on proper orthogonal decomposition. Research Report 6561, INRIA,
06 (2008)

[3] Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the lami-
nar regime by trust-region methods and pod reduced-order models. J. Comp.
Phys. 227(16), 7813–7840 (2008)

[4] Burkardt, J., Gunzburger, M.D., Lee, H.-C.: Centroidal Voronoi Tessellation-
Based Reduced-Order Modeling of Complex Systems. Technical report, Florida
State University (2004)

[5] Galletti, B., Bruneau, C.-H., Zannetti, L., Iollo, A.: Low-order modelling of
laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161–
170 (2004)

[6] Ma, X., Karniadakis, G.E.: A low-dimensional model for simulating three-
dimensional cylinder flow. J. Fluid Mech. 458, 181–190 (2002)
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The description of the interaction between phases in multiphase flow is of
major interest for the oil and gas industry. The presence of droplets in the
gas phase can produce erosion and breakdown of equipment. The use of con-
ventional separators may not be enough since new droplets may be created
from entrained liquid films at the walls. Previous work [ANSSZZ04] presented
possible frameworks to describe the interaction between one sized droplets
and wall films by using a two dimensional (time plus space) transport equa-
tion for the liquid film. This work presents a possible framework to model
the droplet–film interaction using a population balance type of equation in
which the mathematical formulation is⎧⎪⎪⎨
⎪⎪⎩

∂
∂z ufff (z) =

∫ ξmax

ξmin
λ(ξ̂)fd(ξ̂, z)dξ̂ − βff (z) in Ωz = (zmin, zmax)

∂
∂z udfd(ξ, z) = −λ(ξ)fd(ξ, z) + χ(ξ)βff (z) in Ω = (ξmin, ξmax)×Ωz

fd(ξ, z) = f0
d (ξ) on Γξ = [ξmin, ξmax]

ff(z) = f0
f on Γz = [z = zmin]

(1)
where fd is the droplet concentration, ff is the film height, ud and uf are the
corresponding velocities, λ is the deposition rate, β is the entrainment rate
and χ is the entrainment spectrum. The variable ξ is the droplet mass and z
is the position along the pipe.

There are many models for the entrainment rate, most of them considering
an entrainment inception or critical liquid flow rate below which no entrain-
ment occurs. These models take into account the shear velocity between the
gas phase and the film surface and model the generation of droplets which
can be due to role wave, wave undercut, bubble burst or liquid impingement
phenomena [KI82]. The entrainment spectrum is commonly assumed to be
a log-normal distribution in droplet sizes. The deposition rate takes propor-
tionalities to the droplet concentration near the surface of the liquid film.
The most frequently used correlation is the one called diffusion droplet and
was presented by [PF66]. If droplet size discrimination is to be modelled,
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Fig. 1. Modelling results by considering entrainment and deposition

then a more complex model which accounts for the entrainment spectrum
and droplet breakage [PDDSJ08] has to be considered.

Then Eq. (1) is solved by using the Least Squares Spectral Method
and both the droplet size distribution and the liquid film height are ap-
proximated with Lagrangian Interpolation Polynomials through the Gauss-
Lobatto quadrature rule points as proposed by [DJ06]. As an example of the
results obtained, we can mention the application of this framework to an
over-entrained system (where the entrainment rate is much higher than the
deposition rate). We can observe in Fig. 1 the expected growth in the total
mass existing in the droplet phase and a decrease in the mass of the liquid
film.
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1 Introduction

A properly designed co-axial jet would efficiently mix the air and the fuel,
and provides the clean combustion. It is important to carry out LES by using
the appropriate number of computational grids in order to apply the LES to
many combustion systems. In this study, LES using the Smagorinsky model
and the dynamic SGS model for co-axial jet flows is carried out, and the effect
of the number of computational grids on calculation results is investigated.

2 Numerical Calculation

The configuration of the computational domain is the same as the experi-
mental facility of Habib et al. [1]. Transport equations used in this study can
be expressed in a three-dimensional cylindrical coordinate system. The eddy
viscosity µSGS is described as follows:

µSGS = ρC∆̄2|S̄| (1)

where C is the dimensionless model coefficient, ∆̄ is the grid-filter width, and
¯|S| = (2SijSij)1/2 is the strain rate tensor. In this study, the model coefficient

is determined using Smagorinsky model with Van Driest damping function
near wall and the dynamic SGS model [2]. In the Smagorinsky model, C
represents C2

s in Eq. (2). C2
s is called Smagorinsky constant. In this study,

C2
s is set to 0.1. In dynamic SGS model, C is determined dynamically by

applying a least-square approach [3]. The governing equations are discretized
using a finite volume method. QUICK is adopted in the convective terms and
second-order central difference scheme is adopted in the diffusive terms. The
second-order fully implicit scheme is used for time integral and time step is
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50 µsec. In this study, CVs (Control Volumes) and the division number for
x, r, θ are 333,294 CVs (151 60 40), 525,840 CVs (244 60 40), 783,240 CVs
(204 67 60), respectively.

3 Results

Fig. 1 shows the axial turbulence intensity profiles. When the Smagorinsky
model is used, turbulent fluctuations strongly depend on the number of CVs.
Although turbulent intensities are underestimated using 333,294 CVs and
525,650 CVs, those using 783,240 CVs show good agreement with experi-
mental results. When the dynamic SGS model is used, the number of CVs
is less effective on turbulent intensities, and those are good agreement with
experimental results. It is shown that the dynamic SGS model does not need
the number of CVs which is used in the calculation using the Smagorinsky
model to provide accurate flow fields.
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Fig. 1. The axial turbulence intensity profiles at x/D = 0.616 (left:standard
Smagorinsky model, right:dynamic SGS model)
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The collocations and least squares (CLS) method is a projection method in-
cluding the least squares algorithm. A computational domain is covered by a
grid in the method. An approximate solution is found as a linear combination
of basis functions in each cell of the grid in the CLS method. One can use dif-
ferent bases. Here, only polynomial basis functions are applied. Coefficients
of the linear combinations for all cells are found from an overdetermined sys-
tem of linear algebraic equations (SLAE). The latter consists of collocations
equations, matching conditions between adjacent cells, boundary conditions.
Collocations equations are obtained from requirements that the approximate
solution must satisfy the equations of a considered problem at certain points
in each cell.The use of overdetermined systems provides additional numerical
stability in the CLS method in comparison with pure collocations method.
At the same time no tricks like artificial viscosity introduction are used here.

New versions of the CLS method are proposed and implemented here. They
are more general than those proposed before (Shapeev et al., 2003). Abilities
of the method were extended here by a combined use of new algorithms. The
first one is an orthogonal linear algebra method. It is used for a solution
of overdetermined systems instead of the least squares method (LSM). The
latter worsens the conditionality of a SLAE during the process of solving.
The orthogonal method does not have this disadvantage and gives the same
solution as LSM in case of round-off errors absence. The second enhancement
of the CLS method is a good choice of method’s parameters based on results
obtained by Isaev and Shapeev (2007). The third one is a new version of
least-squares generalization of δ2-process proposed in the present work. An
approximate solution is constructed in the CLS method with the use of an
iterative process. The acceleration algorithm allows to carry out calculations
on grids that are finer than applicable without the acceleration ones.

Abilities of the CLS method are demonstrated here on a test problem for
Navier-Stokes equations. The latter is the 2D lid-driven cavity flow problem.
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Table 1. Characteristic values of velocity components in the lid-driven cavity

Re=100 Re=1000
v1min v2min v2max v1min v2min v2max

Botella O. and Peyret R. (1998)

−0.2140424 −0.2538030 0.1795728 −0.3885698 −0.5270771 0.3769447
Garanzha V.A., Konshin V.N. (1999)

−0.2140423 — — −0.388569 — —
present paper

−0.2140426 −0.2538026 0.1795697 −0.3885733 −0.5270812 0.3769574

It is considered by many authors as a benchmark test for the assessment of
numerical methods and validation of Navier-Stokes codes. There are Moffat’s
chains of eddies near bottom right and bottom left cavity corners. The eddies
in such sequences become weaker and smaller with the decrease of distance
between the cavity corner and a vortex center. The presence of singularities
makes it difficult to properly evaluate the accuracy of the numerical results,
mainly in the neighborhood of upper cavity corners. This is the reason why
one may prefer to consider so-called ”regularized driven cavity”, where the
velocity is smoothed by the subtraction of leading parts of singularities. This
approach was implemented here in the CLS method. Some results of numer-
ical experiments are shown in Table 1. A uniform grid 320 × 320 is used for
Re = 100. The results for Re = 1000 are obtained by Richardson extrap-
olation for grids 80 × 80, 160 × 160 and 320 × 320. Values v2min and v2max

are extremums of the vertical velocity component on the horizontal center
line, value v1min is the minimum of the horizontal component on the vertical
center line. Some experiments were carried out on nonregular grid obtained
from Gauss-Lobatto grid after division of prolate cells into smaller ones.

Improvements of the CLS method proposed here allow one to carry out-
calculations in a wide range of Reynolds numbers (from 1 to 7500) on fine
grids (up to 1280 × 1280). There are about 25 · 106 unknowns in the CLS
method on the grid 1280 × 1280. The accuracy of the solution on this grid
is not smaller that on previous one (640 × 640) because of a large amount
of arithmetical operations in the CLS method, but grid 1280 × 1280 has
better resolution capability then 640×640. It allows to properly specify fine-
scale vortex structures in the fluid. Results of numerical experiments are in a
good agreement with highly accurate results obtained by a spectral method,
Botella and Peyret (1998), and those obtained by a compact finite-difference
scheme, Garanzha and Konshin (1999). Eddies located near the bottom right
corner of the cavity are usually called BR1, BR2, BR3, etc. Vortices BR1 and
BR2 were detected here at Re=100, BR1, . . . , BR4 at Re=7500. This work
was supported by the RFBR, Projects No. 06-01-00080-a, 08-01-08210.
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Abstract. In this paper a combined experimental and numerical analysis has been
carried out to study incompressible flow around an airfoil. Numerical analysis com-
bined vortex panel method techniques for solving potential flow around the airfoil
and Von Karman boundary layer Integral equation solver. The governing equation
(Laplace’s equation or the linearized form in compressible flow) is recast into an
integral equation. This integral equation involves quantities such as velocity, only
on the surface, whereas the original equation involved the velocity potential all over
the flow field. The inviscid solution then is injected into a Von Karman Integral
equation solver to predict Drag coefficient. In this paper this method has been used
to analysis the flow over a prototype airfoil and results were compared with exper-
imental values achieved from wind tunnel tests. Results show that this method has
a good capability to predict velocity profile and pressure and drag coefficients over
the surface.

1 Introduction

The first step in airfoil design is choosing a method that has the proper bal-
ance of fidelity and speed for the given application. As such, a variety of com-
putational analysis methods are available to the airfoil designer. These range
from linear methods, concerned with solving the velocity potential equation,
to more complicated methods that involve solving the Euler (inviscid) or
Navier-Stokes (viscous) equations at various points on and around the airfoil
to determine the nature of the flow. The linear methods are much faster but
much more limiting in application while the flow solver methods, often re-
ferred to as Computational Fluid Dynamics (CFD) are less limiting but more
computationally intense to solve. The airfoil to be designed over the course
of this project is planned for application into a subsonic low-Reynolds num-
ber environment as described earlier. Therefore, the otherwise limited linear
methods can be used to determine the airfoil characteristics. Specifically, a
vortex panel method will be employed for the calculation of lift and pitch-
ing moment properties, while a boundary layer analysis will be necessary for
some of the peculiarities associated with a low-Reynolds number flow. The
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vortex panel method belongs to a class of more general methods known as
panel methods. These methods work by stating that the governing flow equa-
tions can be solved via a superposition of elementary flows. These elementary
flows can be sources, sinks, doublets, vortices, and others. The elementary
flows are placed at control points along the perimeter of a body, typically
at the centre of a straight segment. Lifting bodies can only be approximated
with vortex flows, while non lifting (symmetrical) flow can be approximated
with sources and sinks, among others. The vortex allows for the creation of
circulation, an abstraction quite necessary for lifting flow fields.

2 Numerical Method

A one-way coupled inviscid - boundary layer model is used in the numeri-
cal analysis. The inviscid flow is computed with a linear vortex panel method
(boundary element method), which provides the lift and moment coefficients.
Firstly, the method divides the airfoil surface into a number of panels , a to-
tal of N as show in Fig. 1. Then The method begin by stating that the
Laplace equation can be solved as a superposition of several simple solutions,
which have physical interpretation. By superposing these solutions, flow pat-
tern that resembles the flow over the given geometry can be computed. The
boundary layer is computed using Von Karman integral formulation: the lam-
inar part of the flow is computed with a two-equation formulation, and the
turbulent part is solved with Head’s model. An e9-type amplification formu-
lation is used to locate the transition area. Finally, the drag coefficient is
computed using the Squire-Young formula.

3 Experimental Apparatus

For experimental measurements a prototype coincident airfoil with a chord
length of 74.9 mm was considered and its profile is given in table 1. Six
pressure tapping with the whole diameter of 1.7 mm were used on the body
and dynamic pressure around the airfoil could be obtained. In figure 2 the
location of pressure tappings and the dimensions of model are given. The

Fig. 1. Panels elements on an airfoil
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Fig. 2. Pressure tapping location of the airfoil model

tunnel, of the open circuit type, is constructed mainly in aluminum and
supported by a tubular steel framework. The air enters the tunnel through
a carefully shaped inlet, the entrance being covered by a protective screen.
The working section is of perplex giving full visibility and the various models
are supported from one of the sidewalls. At the upstream end of the working
section there is a static tapping and a total head tube to get static pressure.
Maximum air velocity is about 47.57 m/s and it is controlled by means of a
double butterfly valve on the fan outlet.

4 Results and Discussions

The computation has been carried out for a prototype airfoil. The airfoil
has been discreted to 45 elements. Figure 3 show the variation of pressure
coefficient around airfoil. Results have been obtained for angle of attack 0 to
12 degree with step of 3 degree. Here only one case has been presented. As it
can be seen, the good agreement has been obtained between numerical and
experimental values.

Figure 4 shows the effect of angle of attack on the lift coefficient for com-
putation and measured values. The comparison of the lift characteristics be-
tween the test cases with the experimental data yielded some interesting
results. The computed values were reasonably close to the experimental data
at small angles of attack, but over predicted lift as angle of attack increased.
Over prediction of lift is to be expected from this type of analysis. This is
because the panel method, even when combined with a boundary layer anal-
ysis, assumes that the flow is 100% attached. A thicker airfoil such as this
will exhibit separation at the trailing edge as the angle of attack is increased,
which will tend to decrease the lift and increase the drag. This is explained
by the fact that, at large angles of attack the body ceases to be streamlined.
The point of separation moves a considerable way towards the front of the
body and the wake consequently becomes wider.
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Fig. 3. Experimental and theorical pressure coefficient variation around the airfoil
with angle of attack 9

Fig. 4. Experimental and Numerical lift coefficient variation with angle of attack
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Fig. 5. Variation of shape factor on upper side of airfoil for attack angles 3 to 12
degree

Fig. 6. Variation of drag coefficient for attack angles 3 to 12 degree

Analysis of the boundary layer can be used to predict where separation will
occur. Since the adverse pressure gradient is the necessary part of separation
and also shape factor increases in adverse pressure gradient, so by evaluating
the variation of shape factor on upper side and lower side of the airfoil we can
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predict the probability of separation. In figure 5 the variation of the shape
factor for upper of the airfoil are shown for various attack angles. According
to the figure it can be seen that shape factor has the maximum value at
angle of attack 9 and its value is about 3.6. In laminar flows the value of
shape factor from 2.6 at zero pressure gradient reaches to a value about 3.5
at separation and in turbulent flows it reaches from 1.3 to 2.5.

In figure 6 variation of drag coefficient has shown for various attack angles.
According to figure 6 with increment in attack angle, the plane area of the
airfoil that is in front of the flow will be increased and thus the drag force
will be increased. At attack angle after 9 degree because of turbulence the
drag coefficient has a significant drop. It’s because of that turbulent flow has
a higher momentum than laminar flow and can resist opposite separation.

5 Conclusion

In this study a combined numerical and experimental study has been carried
out to analysis flow field around an airfoil. The numerical method has based
on boundary element method which extremely fast comparing Euler (inviscid)
or full Navier-Stokes Navior-Stukes solver. The results show good agreement
with measured values for non-separated flow fields. As expected for separated
flow files, the method predicts poor results and boundary layer analysis used
to predict separation point on airfoil and skin friction and drag coefficients.
The method would be an ideal tool for analyzing airfoils.

References

[Abb59] Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Sections. Dover, New
York (1959)

[CEB99] Cebeci, T., Cousteix, J.: Modeling and computation of boundary layer
flows. Horizons publishing Inc., Long beach (1999)

[CHR00] Christian, W.: Shape Optimization of Low Speed Airfoils using MAT-
LAB and Automatic Differentiation. Licentiate’s Thesis Royal Institute
of Technology Department of Numerical Analysis and Computing Sci-
ence (2000)

[APS05] Apsley, D.: Turbulent Boundary Layers (2005)
[MOO03] Moores, J.: Potential Flow 2-Dimensional Vortex Panel Model: Applica-

tions to Wing mills, A Thesis Submitted In Partial Fulfillment Of The
Requirements For The Degree Of Bachellor Of Applied Science, Faculty
Of Applied Science And Engineering University Of Toronto (2003)

[SCH79] Schilichting, H.: Boundary layer theory, 7th edn. McGraw-Hill Inc., New
York (1979)

[WHI74] White, F.M.: Viscous fluid flow. McGraw-Hill Inc., New York (1974)



CFD Simulation of Gas-Water Two-Phase
Flow in Turbocharger

J. Yao1, Y. Yao1, P.J. Mason1, T. Zhang1, F.J.G. Heyes2, and P.E. Roach2

1 Faculty of Engineering, Kingston University, London SW15 3DW, UK
2 Napier Turbochargers Ltd., Lincoln LN5 7FD, UK

A turbocharger is widely used by industry as an efficient thermal performance
enhancement device, and its efficiency is often dependent on the conditions
and properties of the working fluid. One industry problem is the use of low-
grade diesel, that produces various combustion products, and thus causes
blade throat blockage, blade corrosion, damage, etc. At present, one solution
is to attach an ad hoc online water washing system that operates daily to
remove in part any accumulated solid deposits. While the method works well,
an in-depth understanding of the washing mechanism is still quite limited.
Complementary to essential in-house rig testing, it is now feasible to carry
out numerical simulation of flow thus to provide further understanding. A
combined experimental and numerical study of gas-water two-phase flow in
turbocharger has therefore been proposed with some results presented here.

The configuration considers a generic turbocharger, which consists of a
90-degree bent duct, three guide struts with a central cone, and a row of 24
blades downstream. It is mounted onto an in-house test bed, which runs at
conditions close to engine operation conditions. Assessment of water washing
performance (i.e. coverage area) is indirectly evaluated by measuring the
blade surface temperature, and data are used for numeircal validation.

The same configuration including three water injectors, located evenly in
the circumferential directions, is used in simulation. The Eulerian-Lagrangian
model is adopted, with the gas flow treated as the continuous phase and the
water droplets as the dispersed phase. The particle tracking technique in
ANSYS-CFX package is used for capturing the water droplets’ trajectory.
The physical process of water droplet splitting is considered by a primary
break-up model in the vicinity of injector exit, and a secondary break-up
model in the near-field. Other sub-models are also adopted, including a liq-
uid evaporation model. To represent continuous water flow, a total of 30,000
liquid particles (at room temperature) were injected into the flow domain
from three water injectors in an un-correlated manner. The CFD predic-
tion of water coverage on the blades is used to compare with experimental
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measurements. The simulation provides further flow details, e.g. the wa-
ter droplet trajectory and distribution: all are difficult to obtain in the
experiment.

Figure 1 gives the comparison of percentage of water coverage by numer-
ical prediction and experimental measurement and the distribution of parti-
cle sizes along the trajectory length between the injector exit and the blade
row surface. Here we only present the results obtained under the condition
of water mass flow rate of ṁ = 0.15 kg/sec, water pump pressure of 4 bars,
and the turbocharger operating at a loading between 750 and 950 (N/Sqrt). It
can be seen that the CFD predicted water converge on the blade surface has
fairly good agreement with the measurement in general, despite slight over-
predictions observed (about 8% in max). Similar results were also obtained at
higher water pump pressure of 8 bars (not shown here).The possible reason is
probably due to the influence of the sub-models, e.g. liquid break-up and evap-
oration, and thus further optimization is needed to improve the predictions. It
also shows the particle size variations at 800 (N/Sqrt) loading along the trajec-
tory path, which is difficult to measure. In agreement with the primary break-
up model adopted, the initial particle size is kept as a constant of 6 mm in the
vicinity of the injector exit, equivalent to injector diameter. While the water
droplet breaks up, its size decreases along the trajectory path with smallest wa-
ter droplets (about 0.001 mm) predicted on the blade surfaces. While the size
and distribution of water droplets on the blade surface are dependent on vari-
ous factors (e.g. the mainstream gas inflow and the water injection conditions),
further simulation studies will focus on parameter optimization, especially the
correlation of the injector number and the water coverage, the effect of injector
exit shape and orientation, etc. In summary, we have presented the numerical
prediction of water coverage, water droplets size and distribution on a blade
row ring in a turbocharger, using the CFD modeling of two-phase flow. The re-
sults obtained agree fairly well with the test and further optimization studies
are ongoing based on this work.
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Abstract. We have developed a computer-aided analysis tool for shadow-
graph and schlieren optical systems by combining computational fluid dynam-
ics (CFD) and ray-tracing method. Investigation of the effect of shape and
location of optical components has been succeeded by using this technique.
It opens a way to develop a computer-aided analysis tool for optimization of
optical systems in laboratory.

1 Introduction

Shadowgraph method and schlieren method have been used for experimental
compressible flow visualization for a long time. The quality of the image
depends on various factors of the optical systems such as shape and location
of the optical components [Set01]. Therefore, it is necessary to optimize an
optical system for the experimental condition by taking a few tests and only
an experienced person can do that efficiently, especially for experiment in
large scale facilities. In order to solve this problem, we propose a technique
to simulate numerical images to optimize an optical system on the computer
before an experiment. In this technique, the flowfield in test section is given
by computational fluid dynamics (CFD) and numerical images are obtained
by tracing rays through the numerical solution given by CFD as well as the
optical system (ray-tracing method).

In the previous studies, numerical shadowgraph and schlieren images were
displayed by using ray-tracing method [Yat93]. But, this technique is based on
a formula of density gradient that are valid under straight-ray approximation
in the flowfield for very simple optical systems. Therefore, this technique is
not general enough for the purpose of optimization of optical systems.

We attempt to display optical images by simulating propagation of rays
in the flowfield in the test section only based on geometrical optics. For this
purpose, it is necessary to simulate refraction of rays due to density variation
and trace each ray in the flowfield.
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2 Optical Systems

Fig.1 shows shadowgraph and schlieren optical systems using in this paper.
First, rays radiate from a light source and are transformed into parallel beams
by a lens in both optical systems. In the flowfield in the test section, rays are
refracted due to density variation in the case of compressible flows, and finally
forming bright and dark pattern at the recording plane. The pattern of light
irradiance at the recording plane is due to light refraction in the flowfield in
shadowgraph systems, and shadowgraph image approximately reflects second
derivative of density in the test section. Schlieren systems are different from
shadowgraph systems by a cutoff inserted into the focus of the lens, and only
rays not intercepted by the cutoff can reach the recording plane. Therefore,
schlieren image reflects density gradient in the test section.

(a) Shadowgraph optical system (b) Schlieren optical system

Fig. 1. Optical systems

3 Simulation Techniques

3.1 CFD

Density distribution in the test section is simulated by VAS2D (2-D Vec-
torized adaptive solver) [ST99]. Computational grid of VAS2D is used as
boundary planes in ray-tracing method. Fig. 2 shows density distribution
and computational grid around a sphere flying at M = 3.2 in air simulated
by VAS2D.

(a) Density distribution (b) Computational grid

Fig. 2. Flowfield around a sphere flying at M = 3.2 in air simulated by VAS2D
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3.2 Ray-Tracing Method

In illuminating optical system and recording system as shown in Fig.1, rays
are traced from a light source to the incident window and from the transmit-
ting window to the recording plane based on geometrical optics. In schlieren
systems, the light intensity of a ray blocked by the cutoff is set to zero. In
color schlieren systems, the hue of a ray is represented in RGB format. Their
intensities are reduced by a factor proportional to those of the color filter. In
the test section, the distribution of refractive index is derived from density
distribution based on Gladstone-Dale equation,

n = 1 + Kρ (1)

where n, K, and ρ denote refractive index, Gladstone-Dale constant and den-
sity respectively. Propagation of rays through flowfield is simulated by Fer-
mat’s principle [Mer74],
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Numerical images: (a) shadowgraph image focused on the left of the test
section; (b) shadowgraph image focused on the right of the test section; (c) schlieren
image using horizontal knife-edge; (d) schlieren image using circular cutoff; (e) color
schlieren image using horizontal color filter; (f) color schlieren image using circular
color filter
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where x-axis and z-axis denote the direction of the light axis and that of the
flow respectively as shown in Fig.1.

3.3 Adaptive Ray-Tracing Method

To reduce computing time, we propose adaptive ray-tracing method. In this
method, the rays that propagate in large density variation area such as those
in the neighborhood of shock waves and models are automatically increased.
We succeed in reducing the computing time by more than 85% in a total by
using adaptive ray-tracing method compared with the case based on uniform
rays for creating a high quality image.

4 Results

Six images in Fig.3 show the examples of numerical images. They are created
from the same flowfield as shown in Fig.2, but using different optical systems.
These results show the influence of the shape and location of the optical
components. It indicates that individual optical component can be analyzed
using the present method.

5 Conclusions

We succeeded in creating realistic shadowgraph and schlieren images by com-
bining CFD and ray-tracing method, and in analyzing the effect of the shape
and location of the optical components. More than 85% computing time is
successfully reduced for creating a high quality image by using adaptive ray-
tracing method.
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In this technical note we will presnet the idea of the mimic-quadric-interpolation
immersed boundary (MQI-IB) method. A Dispersion-Relation-Preserving (DRP)
upwinding scheme for the convective terms developed in Cartesian grids is also
applied within the present analysis framework.

1 Mimic Interpolation Immersed Boundary Method

In order to satisfy the no-slip condition, the temporarily corrected velocities,ut for
example, at the forcing points in fictitious fine mesh are expressed as

ut =

⎧⎨
⎩

0 on IB
f (u∗) in s-f cell
u∗ in fluid

(1)

where f (u∗) is a function of the intermediate velocitiesu∗. From the Fig. 1, the
corrected velocitiesut in s-f cell are then given as follows

ut =

⎧⎨
⎩

ut
5, f (u∗

3,u
∗
7,u

∗
9,ub) on point 5

ut
6, f (u∗

1,u
∗
5,u

∗
7,ua) on point 6

ut
8, f (u∗

4,u
∗
5,u

∗
9,uc) on point 8

(2)
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Fig. 1. Schematic of the mimic quadratic interpolation

2 Dispersion-Relation-Preserving Scheme

The twelve nodal values ofφ shown in Fig. 2 are used to approximate the first-order
derivativeφx:

φx(x,y) 
1
h

(a1φi−1, j−1 + a2φi, j−1 + a3φi+1, j−1 + a4φi−1, j + a5φi, j + a6φi+1, j

+a7φi−1, j+1+ a8φi, j+1 + a9φi+1, j+1+ a10φi, j−2 + a11φi, j−2 + a12φi−2, j)
(4)

By applying the Taylor series expansions forφi±1, j, φi−2, j, φi, j±1, φi, j±2, φi±1, j±1,
the leading eleven error terms shown in the resulting modified equation will be
eliminated to yield the scheme with the spatial accuracy order of three. One more
equation is needed for uniquely determining the coefficientsa1 ∼ a12 shown in (4).
This is followed by conducting Fourier transform on the left and right hand sides of
Eq. (4), we are led to have the following equation

α̃=
−i
h

(
a1 e−i (αh+βh) +a2 e−iβh +a3 e i (αh−βh) +a4 e−iαh +a5 +a6 e iαh +a7 e−i (αh−βh)

+a8 e iβh +a9 e i (αh+βh) +a10 e i (−β2h) +a11 e i (β2h) +a12 e i (−α2h)
)

(5)
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Fig. 2. Schematic of the twelve stencil points
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To achieve the goal of yielding a low dispersion error, the global errorE defined
below should approach zero over a proper range of the modified wave number

E(α) =
∫ π

2

− π
2

∫ π
2

− π
2

| αh− α̃h |2 d(αh)d(βh) =
∫ π

2

− π
2

∫ π
2

− π
2

| γ1− γ̃1 |2 dγ1 dγ2 (6)

To makeE a minimum value, the condition given by∂E
∂a6

= 0 is enforced for uniquely
determining the coefficientsa1 ∼ a12.



“This page left intentionally blank.”



Convergence Acceleration Method for Linear
Iterative Process

Vadim Isaev1 and Vasily Shapeev2

1 Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
issaev.vadim@gmail.com

2 Khristianovich Institute of Theoretical and Applied Mechanics,
Siberian Branch of Russian Academy of Sciences, Institutskaya str. 4/1,
Novosibirsk, 630090, Russia
shapeev@itam.nsc.ru

A multistep method of least squares is described in [1]. It accelerates the
convergence of iterative process

xn+1 = Txn + f , n = 0, 1, . . . (1)

of solving a system of linear algebraic equations (SLAE) Ax = b. Here, A, T
are square matrices, b is a right-hand side parts vector, x0 is an initial approx-
imation for the exact solution x. In this method, correction y ∗

n is added to a
current approximation of xn every k steps, i.e. x ∗

n = xn + y ∗
n . Vector x ∗

n is
an improved approximation for the n-th iteration here. The correction is a lin-
ear combination of k residual vectors ri = Txi + f − xi = xi+1 − xi, where
i = (n − k), ..., (n − 1), k < n. The error of the n-th iteration is vector

yn = x− xn = x− xn+1 + rn = yn+1 + rn.

Errors and residuals satisfy equations

rn+1 = Trn, yn+1 = Tyn, (I − T )yn = rn.

Multiplying of both sides of the latter system by T−1 yields SLAE

(T−1 − I)yn = rn−1. (2)

Correction y ∗
n for vector xn is sought in the form y ∗

n =
k−1∑
i =1

αi rn−k+i here.

Substitution of vector y ∗
n into (2) yields overdetermined system

α1M1 + . . . + αk−1Mk−1 = −rn−1, (3)

where columns Mi = rn−k+i − rn−k+i−1, i = 1, . . . , k − 1. In [1] coefficients
α1, . . . , αk−1 are found by the least squares method (LSM). Sleptsov showed
that this acceleration algorithm allows one to attain a good acceleration. How-
ever, it has also a weak point. System (3) becomes ill-conditioned or degen-
erates with the growth of iteration number, because norms of the residuals
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tend to zero when process (1) is convergent. Particularly this problem could be
solved by changing of unknown variables and normalization of column-vectors
Mi (i = 1, . . . , k − 1). However, this trick does not eliminate all the problems
arising when some of these vectors are close to linearly dependent ones. To get a
working algorithm, it is necessary to decrease the number of residuals used for
the correction. Otherwise, the correction y ∗

n would be calculated with a large
error and the convergence acceleration would deteriorate. Formulas of the ac-
celeration method are derived in [1] for an arbitrary k, but a general working
algorithm for specifying of the appropriate number of residuals is not proposed
there. The method is implemented in [1] for k ≤ 3 only.

A new version of Sleptsov’s method is proposed and implemented here. An
orthogonal method based on QR decomposition is used here for overdeter-
mined system (3) solving. The orthogonal method is stabler to round-off errors
than the LSM and yields the same solution in case of exact calculations without
rounding. The number of residuals is determined here via a process of orthogo-
nal elimination which is performed for system (3) solving. If a leading element
of the elimination becomes smaller than ε = 10−15 for a column number j
(j = 1, . . . , k − 1) then column-vectors Mi (i = 1, . . . , j) are close to linearly
dependent. The elimination must be stopped in such a case. Only residuals
rn−k+1, . . . , rn−k+j−1 should be used for the correction. Values of coefficients
αi, i = j, . . . , k − 1 should be set to zero. Thus, as many residuals as possi-
ble are used in the new version of convergence acceleration method, and the
number of residuals is automatically specified. Iterative sequence χn = xn·s,
n = 1, 2, . . . can be used instead of (1) in the acceleration algorithm. Here, s
is a natural number, s ≥ 1. This trick yields additional acceleration in some
cases. The correction y ∗

n for k = 2 completely coincides with those calculated
in Eitken’s δ2-process. Therefore, Sleptsov’s algorithm and its new version pro-
posed here may by considered as generalizations of δ2-process.

Numerical experiments show that the use of more than two residuals in the
new algorithm yields essential additional acceleration. The new version of the
acceleration algorithm was used in the collocations and least squares method
of solving the boundary value problem for Navier–Stokes equations The use
of acceleration made it possible to reduce the number of iterations needed for
deriving an approximate solution by a factor of more than four. This work
was supported by the RFBR, Projects No. 06-01-00080-a, 08-01-08210.
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1   Introduction 

A number of analytic, numerical, and experimental research have been carried out 
to predict plate fin heat sinks thermal performance and pressure drop [KW03, 
KK98]. However, the effect of the number of cross-cut is rarely studied. The pre-
sent study investigates the influence of the number of cross-cut, Reynolds number, 
and fin pitch on heat transfer performance and pressure drop using CFD. The 
simulation result was compared with the proposed model for plate-fin heat  
sinks with duct flow [SW02]. Figure 1 shows a schematic diagram and boundary 
conditions of this study 
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Fig. 1. Schematic diagram of Problem 

2   Numerical Results and Conclusions 

In this study, thermal performance and pressure drop of cross-cut heat sinks with 
duct-flow type arrangement has been carried out within the range of laminar flow. 
Here, a 3-dimensional CFD simulation of cross cut heat sink have been conducted 
in systematic comparison with plate fin heat sink[SW02]. Numerical results have 
been compared to verify the validity with the theoretical results of parallel plate 
channels Study from Shah and London [SW02]. By compiling the numerical data, 
the heat transfer and friction factor correlations with �2%, and �5% accuracy 
are provided for an effective design of cross cut heat sinks. Equation (1) is the 
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correlation of Nusselts number (Nu), where Nl is (2). Equation (3) is the correla-
tion of f-factor. The suggested correlations for Nu and f-factor are valid in a con-
dition of 250 ≤ Re ≤ 7 50, 4mm ≤ Pitch of fin(Pf), 50mm height of fin.  
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Fig. 2. Nusselts number and f-factor correlation 
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Abstract. This paper looks into the study of a 2D traveling wave thermoa-
coustic heat engine using Fluent. The heat engine demonstration device by
Bastyr K.J. et al [BK03] was adopted as the simulation domain. Initially,
a small pressure, velocity and temperature perturbation was set in the sys-
tem. Simulation result shows traveling wave formation with non-linear effects
occur within the resonator.

1 Introduction

Most of the literatures available on thermoacoustic are based on linear acous-
tic theory. (See [BS00], [BK03]and [C97]). This posses a severe limitation
to the actual system due to (1) intrinsic irreversibility of heat transfer and
(2) nonlinear effects; vortex and acoustic streaming. Simulation of unsteady
acoustic flow field could help to understanding better the nonlinear effects.
A 2D resonator (see Fig. 1) representing the traveling wave thermoacoustic
heat engine was considered. The regenerator is comprised of hot (Hot HX)
and cold (Cold HX) heat exchangers with a stack placed in between.

 

Fig. 1. Computational domain(in cm) and mesh

All boundaries were set as wall except the resonator left end as an outflow.
Temperature at hot heat exchanger was specified at 623K while the cold heat
exchanger, stack, wall of resonator and closed end of resonator as 300K. A
small pressure perturbation (15kPa) is applied at all boundaries to initialize
the solution. Axial velocity of 0.1m/s and initial temperature 300K were set
within the resonator. The unsteady Navier- Stokes equations were solved in
Fluent using the second order implicit density based solver.
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2 Results and Discussions

Half wavelength axial velocity profile (Fig. 2(a)) were formed within the res-
onator, behaving like traveling wave. Induced temperature gradient between
hot and cold heat exchangers causes the pressure different built- up near the
regenerator, causing air particles to oscillate and move towards the cold heat
exchanger. The pressure swing causes the formation of vortex (Fig. 2(b))at
the top right corner of the cold heat exchanger which later shifted in the
reverse manner. Acoustic streaming was also observed along the upper and
lower wall at some distance away from the resonator outlet. We conclude that
Fuent code could be employed in simulating the thermoacoustic flow field.
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Fig. 2. (a)Axial velocity profile through timestep (ts) 1 to 6. (b)Velocity vector at
ts=4s and ts=13s.
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1   Introduction 

A flow field resulting from supersonic gas injection into still medium possesses 
specific acoustical and gasdynamical characteristics and has many engineering 
applications. One of them is acoustic drying of materials. Numerical simulation of 
these kinds of problems meets certain difficulties due to non-stationary character 
of the phenomenon. The problem becomes even more complex if we consider 
amplitude-frequency characteristics of the process which depend essentially on 
gasdynamical and geometric parameters of the flow. 

Experimental investigation of the acoustic drying mechanism has been pro-
vided at ITAM SB RAS, Novosibirsk, where the issue has being studied for a long 
period and a new method of acoustic convective drying of porous media has been 
developed [KFF06]. Numerical results have been obtained by joint effort of ITAM, 
Dooson Corporation LTD and Korea Polytechnic University. 

2   Experimental Results 

Here we describe briefly main results obtained experimentally. It has been shown 
that the most probable way of water extraction from the sample is a sprinkling. It 
concerns with both convective and acoustic regime of drying. Acoustic effect leads 
to an averaged drop radius decreasing. It was shown as well that the experimental 
data on specific humidity vs. time in the processes of convective and acoustic con-
vective drying is described satisfactory by a linear kinetics equation. Performed in-
vestigations have shown advantage of the acoustic convective drying compare to the 
pure convective drying. 

3   Numerical Results 

In order to investigate acoustical parameters of the flow numerical simulation is 
applied. ITAM calculations have been carried out with the aid of an in-house code 
based on Navier-Stokes equations [BF96] and included laminar flow computations 
only. Dooson Corporation LTD results for turbulent flow have been obtained with 
EFD 2007 code based on URANS equations; 3D modeling has been performed in 
SolidWorks 2007. 
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First laminar flow computations of a sonic air injection into an unlimited space 
have been carried out for the purpose of the model validation. The obtained results 
have demonstrated multi-barrel structure of the flow, and comparison with an em-
pirical relation on Mach number distribution along the jet axis has shown good 
agreement. 

Important example for the amplitude-frequency characteristics investigation is 
a problem of a laminar jet interaction with an infinite rigid wall. In order to get 
characteristic frequency of the process obtained pressure distribution at the wall 
point located on the jet axis has been undergone by Fourier transformation and the 
power spectrum has been found. This value of 525 Hz is in a satisfactory agree-
ment with an empirical magnitude 400 Hz [SSU75]. 

Performed evaluations have allowed simulating a 2D problem similar to the 
real drying facility. The numerical instantaneous density gradient field is pre-
sented in Fig. 1. 

 

Fig. 1. Flow density gradient distribution 

Turbulent parameters of the flow in 3D configuration of the drying facility have 
been computed as well and main flow distributions have been obtained. Optimal 
position of the Hartmann generator has been evaluated based on turbulent mixing 
characteristics of the flow. A proposal concerning the drying installation design 
has been made and investigations on this topic are in progress. 
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BEM has been extensively used for solution of sound-scattering problems.
The usual approach is to transform original Helmholtz equation into bound-
ary integral form using Green’s identities or potential relations. However,
numerical experiments have shown that solution to exterior problems based
on the standard representation does not exist or is not unique for some
wave numbers. Theoretical analysis of this issue has been carried out in
[Bur73]. Several techniques have been suggested to overcome this difficulty.
The Burton-Miller modification of the original integral equation seems to be
the most satisfactory, being shown to have unique solution for all values of
wave number. Therefore, we base our solver on this formulation rather than
on the standard one. We seek solution to the equation

{(Mk − 1
2
I + µNk)u}Γ (x, νx) = (1)

= −ui(x) − µwi(x) + {(Lk + µ(M t
k +

1
2
I))w}Γ (x, νx)

for x ∈ Γ , which is a problem for general boundary condition. Here, Γ rep-
resents the boundary and µ �= 0 is a coupling parameter. The operators are
defined as:

{Lku}Γ (x) ≡
∫

Γ

Gk(x, y)u(x)dS,

{Mku}Γ (x) ≡
∫

Γ

∂Gk

∂νy
(x, y)u(x)dS,

{M t
ku}Γ (x, sx) ≡ ∂

∂sx

∫
Γ

Gk(x, y)u(x)dS,

{Nku}Γ (x, sx) ≡ ∂

∂sx

∫
Γ

∂Gk

∂νy
(x, y)u(x)dS,

where Gk(x, y) stands for an apropriate Green’s function.
Discretization of the boundary integral may proceed via collocation or

Galerkin methods. While collocation is often prefered due to its simplicity,
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we implement Galerkin since it is hard to control the error for collocation.
Hence, double integrals with weakly singular kernels must be evaluated nu-
merically, for which we have devised effective procedure. Moreover, Nk is
strongly singular and requires special treatment. So far no general procedure
has been developed for integration of the strongly singular term and it is still
subject of ongoing research.

Problems with plane wave as the incident boundary condition are of great
practical interest (sound-scattering). Faster convergence for these problems
is achieved through application of oscillatory basis functions in the form

ϕ = p(x)e−ikd·x, (2)

where p(x) is the polynomial and d the direction of the initial wave.

Fig. 1. Real and imaginary part of total pressure field in the vicinity of unit circle
for plane wave incident condition
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