RAPID

DEVELOPMENT Wild

Soffware
Schedules

Steve McConnell

Author of Code (um,m'r--.?(-"

Brought to you by Team FlyHeart

: .~ p
Filvieart.corm =

Early Reviews of
Steve McConnell’s Rarip DEVELOPMENT

"Rapid Development is instantly recognizable as another member of that rare breed of highly
original and definitive books. It addresses a dire need in mainstream commercial or "shrinkwrap"
software development that was previously unmet and only dimly perceived. It integrates a vast
amount of practical information within a logical, easily grasped structure. It is soundly grounded
in the author's mastery of his subject and common sense, and it is backed up by hundreds of
references. And, last but hardly least, it is beautifully written in an economical, direct style that
makes every page count.

"In Rapid Development, we are priviliged to see a virtuoso author/programmer and a superb
editing and publishing team working together at the top of their form. Very few books I have
encountered in the last few years have given me as much pleasure to read as this one."

Ray Duncan, Electronic Review of Computer Books

"One of McConnell's key strengths is the sheer range and volume of his research. It seems every
other page contains some empirical data on the best and worst ways to run a software project,
and McConnell isn't afraid to let you know where his own opinions lie. You could enjoyably read
this book from cover to cover thanks to McConnell's excellent prose, and that's certainly the way
to get the most from it. But even if you just dip into it occasionally for ideas and guidance, or
splash out on a copy for your team leader, this book is a bargain, and highly recommended."

Richard Stevens, Delphi Magazine

"Computer programs are perhaps the most complex of human creations, and their very utility
and pervasiveness makes rapid development of software essential. Steve McConnell is a mas-
ter at explaining the basic elements of advanced programming, and his new book provides an
indispensable roadmap for those who wish to write as fast as humanly possible. Even those who
simply admire the artistry and craft of code writing can profit immensely from McConnell's
knowledge."

G. Pascal Zachary, author of SHOWSTOPPER!

"I can hear some of you exclaiming, 'how can you possibly recommend a book about software
scheduling published by Microsoft Press and written by a consultant to Microsoft?!' Well, put
aside any preconceived biases that you might have, as I did mine. This is in fact a tremendous
book on effective scheduling of software development, and it drinks deeply from the wisdom
gf all the classics in the field ... The nine page section entitled 'Classic Mistakes Enumerated' is
alone worth the price of admission, and should be required reading for all developers, leads,
and managers."

Amazon.com

"This book is an essential guide to controlling development schedules and keeping projects
moving on schedule."
Computer Literacy

If you read only one book in the coming year, Rapid Development should be that book.

Kevin Weeks, announcing Star Tech Award, Windows Tech Journal

RAPID

DEVELOPMENT T id

Software
Schedules

T Y- R I M A (PR T It TR T 00 T

Steve McConnell

Bfirrneni® Do

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, '"Washington 98052-6399

Copyright © 1996

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve.
Rapid development : taming wild software schedules / Steve
McConnell.
p- cm.
Includes index.
ISBN 1-55615-900-5

1. Computer software—Development, 1. Title.
QA76.76.D47M393 1996
005.r1068~dc20 96-21517

CIP
Printed and bound in the United States of America.
111213 MLML 04 03 0201 00
Distributed in Canada by Penguin Books Canada Limited.
A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

AT&T is a registered trademark of American Telephone and Telegraph Company. Apple and
Macintosh are registered trademarks of Apple Computer, Inc. Boeing is a registered trademark
of The Boeing Company. Borland and Delphi are registered trademarks of Borland Interna-
tional, Inc. FileMaker is a registered trademark of Claris Corporation. Dupont is a registered
trademark of E.I. Du Pont de Nemours and Company. Gupta is a registered trademark of Gupta
Corporation (a California Corporation). Hewlett-Packard is a registered trademark of Hewlett-
Packard Company. Intel is a registered trademark of Intel Corporation. IBM is a registered
trademark of International Business Machines Corporation. ITT is a registered trademark of
International Telephone and Telegraph Corporation. FoxPro, Microsoft, MS-DOS, PowerPoint,
Visual Basic, Windows, and Windows NT are registered trademarks and Visual FoxPro is a
trademark of Microsoft Corporation. Powersoft is a registered trademark and PowerBuilder is a
trademark of PowerSoft Corporation. Raytheon is a registered trademark of Raytheon Company.
All other trademarks and service marks are the property of their respective owners.

Acquisitions Editor: David J. Clark
Project Editor: Jack Litewka

Case Studies ix
Reference Tables x
Preface xiii

PART | EFFICIENT DEVELOPMENT

Welcome to Rapid Development 1
What Is Rapid Development? * Attaining Rapid Development

Rapid-Development Strategy 5

General Strategy for Rapid Development Four Dimensions of
Development Speed * General Kinds of Fast Development ¢ Which
Dimension Matters the Most? ® An Alternative Rapid-Development
Strategy * Further Reading

Classic Mistakes 29

Case Study in Classic Mistakes ® Effect of Mistakes on a Development
Schedule ¢ Classic Mistakes Enumerated ¢ Escape from Gilligan's
Island * Further Reading

Software-Development Fundamentals 51

Management Fundamentals * Technical Fundamentals ¢ Quality-
Assurance Fundamentals ¢ Following the Instructions e Further
General Reading

Risk Management 31

Elements of Risk Management ¢ Risk Identification ¢ Risk Analysis
Risk Prioritization ¢ Risk Control ¢ Risk, High Risk, and Gambling e
Further Reading

PARTIIRAPIDDEVELOPMENT

Core issues in Rapid Development 109

Does One Size Fit All? « What Kind of Rapid Development Do You
Need? » Odds of Completing on Time ¢ Perception and Reality * Where
the Time Goes * Development-Speed Trade-Offs Typical Schedule-
Improvement Pattern ® Onward to Rapid Development ¢ Further Reading

Contents

7

10

11

12

13

14

15

16

Lifecycle Planning 133

Pure Waterfall e Code-and-Fix * Spiral « Modified Waterfalls ¢ Evolution-
ary Prototyping e Staged Delivery ¢ Design-to-Schedule ¢ Evolutionary
Delivery ¢ Design-to-Tools ¢ Commercial Off-the-Shelf Software e
Choosing the Most Rapid Lifecycle for Your Project ¢ Further Reading

Estimation 163

The Software-Estimation Story e Estimation-Process Overview e Size
Estimation ¢ Effort Estimation ¢ Schedule Estimation ¢ Ballpark Schedule
Estimates ¢ Estimate Refinement ¢ Further Reading

Scheduling 205

Overly Optimistic Scheduling e Beating Schedule Pressure e
Further Reading

Customer-Oriented Development 233

Customers' Importance to Rapid Development e Customer-Oriented
Practices * Managing Customer Expectations ¢ Further Reading

Motivation 249

Typical Developer Motivations * Using the Top Five Motivation
Factors ¢ Using Other Motivation Factors ¢ Morale Killers
Further Reading

Teamwork 273

Software Uses of Teamwork e Teamwork's Importance to Rapid
Development ¢ Creating a High-Performance Team ¢ Why Teams
Fail ¢ Long-Term Teambuilding ¢ Summary of Teamwork
Guidelines * Further Reading

Team Structure 297

Team-Structure Considerations * Team Models * Managers and Technical
Leads ¢ Further Reading

Feature-Set Control 319

Early Project: Feature-Set Reduction ¢ Mid-Project: Feature-Creep

Control « Late Project: Feature Cuts ¢ Further Reading

Productivity Tools 345

Role of Productivity Tools in Rapid Development e Productivity-Tool
Strategy ¢ Productivity-Tool Acquisition * Productivity-Tool Use e
Silver-Bullet Syndrome ¢ Further Reading

Project Recovery 371

General Recovery Options * Recovery Plan ¢ Further Reading

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

Contents

PART Il BEST PRACTICES

Introduction to Best Practices 390

Organization of Best-Practice Chapters ®* Summary of Best-Practice
Candidates * Summary of Best-Practice Evaluations

Change Board 403

Daily Build and Smoke Test 405
Designing for Change 415
Evolutionary Delivery 425
Evolutionary Prototyping 433
Goal Setting 445

Inspections 447

Joint Application Development (JAD) 449
Lifecycie Model Selection 465
Measurement 467

Miniature Milestones 481
Outsourcing 491

Principled Negotiation 503
Productivity Environments 505
Rapid-Development Languages. (RDLs) 515
Requirements Scrubbing 525
Reuse 527

Signing Up 539

Spiral Lifecycie Model 547
Staged Delivery 549
Theory-W Management 559
Throwaway Prototyping 569
Timebox Development 575
Tools Group 585

Top-10 Risks List 587

Contents

42 User-Interface Prototyping 589
43 Voluntary Overtime 599

Bibliography 609
Index 625

viii

Case Studies

2-1.

2-2.
3-1.

5-1.

5-2.

7-1.
72.
8-1.

8-2.
o-1.

101,
102
11-1.
112
1241,
12:2
123
124,
1341,

132

14-1.
151.
152
16-1.

16-2.

Rapid Development Without a Clear Strategy 6
Rapid Development with a Clear Strategy 25
Classic Mistakes 29

Lack of Fundamentals 52

Lack of Contractor Risk Management 82
Systematic Risk Management 103
Wandering in the Fuzzy Front End 124
Ineffective Lifecycle Model Selection 134
Effective Lifecycle Model Selection 159
Seat-of-the-Pants Project Estimation 164
Careful Project Estimation 200

A Successful Schedule Negotiation 229
The Requirements Club 234

The Requirements Club Revisited 246

A Disheartening Lunch with the Boss 250

A Highly Motivational Environment 270

You Call This a Team? 274

A High-Performance Team 277

Typical Team-Member Selection 282

A Second High-Performance Team 294

Mismatch Between Project Objectives and
Team Structure 297

Good Match Between Project Objectives and
Team Structure 315

Managing Change Effectively 342
Ineffective Tool Use 346

Effective Tool Use 368

An Unsuccessful Project Recovery 372
A Successful Project Recovery 385

Reference Tables

3-1.
5-1.
5-2.
5-3.
54.
5-5.
5-6.

o-7.

6-1.
7-1.
8-1.
8-2

8-3.

8-4.

8-5.
8-6.
8-7.

8-8

8-9.

8-10.
8-11.
8-12
9-1.
11-1.

Characteristics of Standard Approaches to Schedule-
Oriented Development 18

Code-Like-Hell Approach Compared to This Book's
Approach 24

Summary of Classic Mistakes 49

Levels of Risk Management 84

Most Common Schedule Risks 86

Potential Schedule Risks 87

Example of a Risk-Assessment Table 92

Example of a Prioritized Risk-Assessment Table 95

Means of Controlling the Most Common
Schedule Risks 98

Example of a "Top-10 Risks List" 101

Approximate Activity Breakdown by Size of Project 122
Lifecycle Model Strengths and Weaknesses 156

Estimate Multipliers by Project Phase 169

Function-Point Multipliers 176

Example of Computing the Number of Function Points 177
Example of a Risk-Quantification Estimate 180

Example of a Case-Based Estimate 181

Example of a Confidence-Factor Estimate 182

Exponents for Computing Schedules from Function Points 185
Shortest Possible Schedules. 190

Efficient Schedules 194

Nominal Schedules 19

Example of a Single-Point-Estimation History 197
Example of a Range-Estimation History 198
Scheduling History of Word for Windows 1.0 208

Comparison of Motivators for Programmer Analysts vs.
Managers and the General Population 252

Reference Tables

11-2 Team Performance Ranked Against Objectives That Teams
Were Told to Optimize 256

12-1. Practical Guidelines for Team Members and Leaders 295
131. Team Objectives and Team Structures 301

151. Example of Savings Realized by Switching from a 3GL to a 4GL
for 50 Percent of a 32,000 LOG Project 361

152 Example of Savings Realized by Switching from a 3GL to a 4GL
for 100 Percent of a 32,000 LOG Project 362

-1, Summary of Best-Practice Candidates 396
2. Summary of Best-Practice Evaluations 400
26-1. Examples of Kinds of Measurement Data 470
26-2. Example of Time-Accounting Activities 472
28-1. Vendor-Evaluation Questionnaire 497

28-2. Contract Considerations 498

30-1. Differences in Office Environments Between Best and Worst
Performers in a Programming Competition 512

31-1. Approximate Function-Points to Lines-of-Code
Conversions 517

31-2. Approximate Language Levels 519

36-1. Example of a Staged-Deiivery Schedule for a
Word Processor 552

37-1. Project Stakeholders and Their Objectives 560
37-2. Steps in Theory-W Project Management 562

Xi

Preface

Software developers are caught on the horns of a dilemma. One horn of the
dilemma is that developers are working too hard to have time to learn about
effective practices that can solve most development-time problems; the other
horn is that they won't get the time until they do learn more about rapid
development.

Other problems in our industry can wait. It's hard to justify taking time to
learn more about quality when you're under intense schedule pressure to
"just ship it." It's hard to learn more about usability when you've worked 20
days in a row and haven't had time to see a movie, go shopping, work out,
read the paper, mow your lawn, or play with your kids. Until we as an in-
dustry learn to control our schedules and free up time for developers and
managers to learn more about their professions, we will never have enough
time to put the rest of our house in order.

The development-time problem is pervasive. Several surveys have found that
about two-thirds of all projects substantially overrun their estimates (Lederer
and Prasad 1992, Gibbs 1994, Standish Group 1994). The average large
project misses its planned delivery date by 25 to 50 percent, and the size of
the average schedule slip increases with the size of the project (Jones 1994).
Year after year, development-speed issues have appeared at the tops of lists

of the most critical issues facing the software-development community
(Symons 1991).

Although the slow-development problem is pervasive, some organizations
are developing rapidly. Researchers have found 10-to-1 differences in pro-
ductivity between companies within the same industries, and some research-
ers have found even greater variations (Jones 1994).

The purpose of this book is to provide the groups that are currently on the
"1" side of that 10-to-1 ratio with the information they need to move toward
the "10" side of the ratio. This book will help you bring your projects un-
der control. It will help you deliver more functionality to your users in less
time. You don't have to read the whole book to learn something useful; no
matter what state your project is in, you will find practices that will enable
you to improve its condition.

Xiil

Preface

Xiv

Who Should Read This Book?

Slow development affects everyone involved with software development,
including developers, managers, clients, and end-users—even their families
and friends. Each of these groups has a stake in solving the slow-develop-
ment problem, and there is something in this book for each of them.

This book is intended to help developers and managers know what's pos-
sible, to help managers and clients know what's realistic, and to serve as an
avenue of communication between developers, managers, and clients so that
they can tailor the best possible approach to meet their schedule, cost, qual-
ity, and other goals.

Technical Leads

This book is written primarily with technical leads or team leads in mind. If
that's your role, you usually bear primary responsibility for increasing the
speed of software development, and this book explains how to do that.
It also describes the development-speed limits so that you'll have a firm
foundation for distinguishing between realistic improvement programs and
wishful-thinking fantasies.

Some of the practices this book describes are wholly technical. As a techni-
cal lead, you should have no problem implementing those. Other practices
are more management oriented, and you might wonder why they are in-
cluded here. In writing the book, I have made the simplifying assumption
that you are Technical Super Lead—{faster than a speeding hacker; more
powerful than a loco-manager; able to leap both technical problems and
management problems in a single bound. That is somewhat unrealistic, I
know, but it saves both of us from the distraction of my constantly saying,
"If you're a manager, do this, and if you're a developer, do that." Moreover,
assuming that technical leads are responsible for both technical and manage-
ment practices is not as far-fetched as it might sound. Technical leads are
often called upon to make recommendations to upper management about
technically oriented management issues, and this book will help prepare you
to do that.

individual Programmers

Many software projects are run by individual programmers or self-managed
teams, and that puts individual technical participants into de facto technical-
lead roles. If you're in that role, this book will help you improve your
development speed for the same reasons that it will help bona fide tech-
nical leads.

Preface

Managers

Managers sometimes think that achieving rapid software development is
primarily a technical job. If you're a manager, however, you can usually do
as much to improve development speed as your developers can. This book
describes many management-level rapid-development practices. Of course,
you can also read the technically oriented practices to understand what your
developers can do at their level.

Key Benefits of This Book

I conceived of this book as a Common Sense for software developers. Like
Thomas Paine's original Common Sense, which laid out in pragmatic terms
why America should secede from Mother England, this book lays out in
pragmatic terms why many of our most common views about rapid devel-
opment are fundamentally broken. These are the times that try developers'
souls, and, for that reason, this book advocates its own small revolution in
software-development practices.

My view of software development is that software projects can be optimized
for any of several goals—lowest defect rate, fastest execution speed, great-
est user acceptance, best maintainability, lowest cost, or shortest develop-
ment schedule. Part of an engineering approach to software is to balance
trade-offs: Can you optimize for development time by cutting quality? By
cutting usability? By requiring developers to work overtime? When crunch
time comes, how much schedule reduction can you ultimately achieve? This
book helps answer such key trade-off questions as well as other questions.

Improved development speed. You can use the strategy and best practices
described in this book to achieve the maximum possible development speed
in your specific circumstances. Over time, most people can realize dramatic
improvements in development speed by applying the strategies and practices
described in this book. Some best practices won't work on some kinds of
projects, but for virtually any kind of project, you'll find other best practices
that will. Depending on your circumstances, "maximum development speed"
might not be as fast as you'd like, but you'll never be completely out of luck
just because you can't use a rapid-development language, are maintaining
legacy code, or work in a noisy, unproductive environment.

Rapid-development slant on traditional topics. Some of the practices
described in this book aren't typically thought of as rapid-development prac-
tices. Practices such asrisk management, software-development fundamen-
tals, and lifecycle planning are more commonly thought of as "good
software-development practices” than as rapid-development methodologies.

XV

Preface

XVi

These practices, however, have profound development-speed implications
that in many cases dwarf those of the so-called rapid-development methods.

This book puts the development-speed benefits of these practices into con-
text with other practices.

Practical focus. To some people, "practical" means "code," and to those
people I have to admit that this book might not seem very practical. I've
avoided code-focused practices for two reasons. First, I've already written 800
pages about effective coding practices in Code Complete (Microsoft Press,
1993). I don't have much more to say about them. Second, it turns out that
many of the critical insights about rapid development are not code-focused;

they're strategic and philosophical. Sometimes, there is nothing more prac-
tical than a good theory.

Quick-reading organization. I've done all I can to present this book's
rapid-development information in the most practical way possible. The first
400 pages of the book (Parts I and II) describe a strategy and philosophy of
rapid development. About 50 pages of case studies are integrated into that
discussion so that you can see how the strategy and philosophy play out
in practice. If you don't like case studies, they've been formatted so that
you can easily skip them. The rest of the book consists-of a set of rapid-
development bestpractices. The practices are described in quick-reference
format so that you can skim to find the practices that will work best on your
projects. The book describes how to use each practice, how much sched-
ule reduction to expect, and what risks, to watch out for.

The book also makes extensive use of marginal icons and text to help you
quickly find additional information related to the topic you're reading about,
avoid classic mistakes, zero in on best practices, and find quantitative sup-
port for many of the claims made in this book.

A new way to think about the topic of rapid development. In no other
area of software development has there been as much disinformation as in
the area of rapid development. Nearly useless development practices have
been relentlessly hyped as "rapid-development practices," which has caused
many developers to become cynical about claims made for any development
practices whatsoever. Other practices are genuinely useful, but they have
been hyped so far beyond their real capabilities that they too have contrib-
uted to developers' cynicism.

Each tool vendor and each methodology vendor want to convince you that
their new silver bullet will be the answer to your development needs. In no
other software area do you have to work as hard to separate the wheat from
the chaff. This book provides guidelines for analyzing rapid-development
information and finding the few grains of truth.

Case Study 2-1. Rapid DevelopmentWithouta Clear Strategy, continued

 As the project began, the developers were happy ahout their private offices,
NEW COmpUters, andm:mp,nduymoﬁmamgmnwntlmg |
'befwmm"ﬂmw vorking wel mmhem&

-Monﬂﬁwmtbr.mdwyuudgmmmmwpmdmdmuﬁy‘
prototype, and continued to produce a steady stream of code. Manigemient
iwp:mcpmmmomjomnenwmdneymmiumdhammﬂw

: tbwsualm:nmes-aomhmk wmumyfomdtrﬂnw but gv-
mmmawmmmmy

Bob tuumedfmmhhblketdpdnrlngmepmjea'sfqunh month, refreshed.
and jumped into the project with some new thoughts he'd had while riding
Mickey wormed about whether Bob could implement as much functionality
mhcwamdwhthodmanom W'Bobmeommmmohmdmmd '
guammedm-ﬁmeddiv«ymuaucrhowmh wotkumok

’ﬂ:mmembmm’mdhﬁepmdcm}ym!hdxpam,mdasvbuatm
~ approached, they began (o integrate their code. They statted at 2:00 in the
‘afncMonﬂmdarbefmthc\dmalﬁmnMwmdmdhmvmdm‘
: d\cpmmmwoxﬂda'tnompﬂc.nm:h!w:mn “The combined code had sev-
~eral dozen syntax errors, mdhmmdﬁhwchmwnxcdgmawd
IOmmMmMn:hcyde&dedtomﬂxum

 'The nex morning, Kim met with the team: I3 the program ready 1o hand aver
: -lo_doammuﬂonandmmg?"

'''''

' 'Nmm Mlckcysm "X%‘Tehnﬂngnomwwuonpmblwm We mighe
~ be ready by this afternoc ""*thmwofktd(halahcmoon and evening,
' hutcouldn'tﬁxallofﬂncbu they were discovering, At the end of the day

MWMMhMmMWnMWrWMMdm:

,Amodtmomliwgcksm&mn the syntax cn'ecmndpuhesynmmmn at
- all. When the team turned over the frozen bulld rwo weeks late, testing and
documentation rejected it immediately. ““This Is too unstable fo document.”
John said. “It crashes every few minutes, nndlhcwnrelm of paths we can't

mnme

'Helenugreed mmsnopoimlnhnvhgmmwmedefmmwim
the system is'so unstable :hax it mshes pmcucany mry ﬂme you mlkc &
menu selection™

Mickeyagreedwiththemmdssidhe«ifocus hnswmseﬂ'onsbnbugﬁxes
- Kim reminded them of the 10-manth. cmr.ﬂine md md that dm product.
couldn’t be late like the last one.

It took a mnmtomakethesymmablemugmohmdommms
and testng it. By then they were only two weeks from the 10-month mark,

(continued)

Case Study 2-1. Rapid Development Without a Clear Strategy, continued

But testing began finding defects faster than the developers Qoutd correct
them. Fixes to one pant of the system frequently caused problems in other
parts. There was no change of mkingthc 10-month ship date, Kim called an
cmergency meeting. “I can see that you're all working hard,” she said, “but
that'’s not good enough. | need results. ve given you every kind ofsuppou :
1 know how, and I don't hiave any sofrware to show for it. lfyou don’t finish
this product soeon, the company <ould go under.”

As the pressure mounted, morale faded fast. More months went by, the pmd:- -
uct began to stabilize, and Kim kept the pressure on. Some of the imerfaces
trned out 1o be extremely mefﬂdcm, and tha; callcd for several more weeks
of performance work.

Bob, despite working virtually around the clmlt dcllvcmd his sot‘twnm latcr :
than the rest of the ream. His code was vl:maﬂybugfrec bmlmchaddmxgcd_ :
some of the usérinterface. cumponcnm and l:csdng and user documauatim;

threw [irs.

Mickey met with John and Helen. *You won't bike i, but our options are as
follows: We can keep Bob's code the way it is and rev the test scripts and user
documenation, or we can throw out Boh's code and write ir all again. Bob
won't rewrite his code, and no one else on the team will either, Looks fike
vou'll have o change the user documentation and test scripts.” Am:r pumns
up token resistance, John and Helen begrudgingly agrccd

[n the end, it ook the developers 15 months mmplue the software. Be-
cause of the visual changes, the user documentation missed its slot in the
printer’s schedule, so after the developers cut the master disks there wasa
two-week shipping delay while Square-Tech waited for documents o come
back from the printer. After release, user response to Squan:»Calc version 3.0
was lukewarm, and within months it slipped from second place in market
share to fourth. Mickey realized that he had delivered his: sccond ptoiect S0
percent over schedule, just like the first.

General Strategy for Rapid Development

The pattern described in Case Study 2-1 is common. Avoidance of the pat-
tern takes effort but is within reach of anyone who is willing to throw out
their bad habits. You can achieve rapid development by following a four-
part strategy:

1. Avoid classic mistakes.

2. Apply development fundamentals.

Rapid product
development is not a
quick fix for getting
one product—which
is probably already
late—to market
faster. Instead, itis a
strategic capability
that must be built
from the ground up.
Preston G. Smith and
Donald G. Seinertsen,

Developing Products
in Half the Time

2.1 General Strategy for Rapid Development

3. Manage risks to avoid catastrophic setbacks.
4. Apply schedule-oriented practices such as the three kinds of practices
shown in Figure 1-2 in Chapter 1.

As Figure 2-1 suggests, these four practices provide support for the best pos-
sible schedule.

R
vl o)

457 Bes Ry
Possible
Sch

e Devdopuen Kink Sutsadules

Miwakes Puncamentals Mans poneni Urensed
Avusdance Pracuces

Figure 2-1. Thefourpillars of rapid development. The best possible schedule
depends on classic-mistake avoidance, development fundamentals, and risk
management in addition to the use of schedule-oriented practices.

Pictures with pillars have become kind of hokey, but the pillars in this pic-
ture illustrate several important points.

The optimum support for the best possible schedule is to have all four pil-
lars in place and to make each of them as strong as possible. Without the
support of the first three pillars, your ability to achieve the best possible
schedule will be in jeopardy. You can use the strongest schedule-oriented
practices, but if you make the classic mistake of shortchanging product
quality early in the project, you'll waste time correcting defects whenit's most
expensive to do so. Your project will be late. If you skip the development
fundamental of creating a good design before you begin coding, your pro-
gram can fall apart when the product concept changes partway through de-
velopment, and your project will be late.. And if you don't manage risks, you
can find out just before your release date that a key subcontractor is three

months behind schedule. You'll be late again.

Chapter 2: Rapid-Development Strategy

14

Motivation. A person who lacks motivation is unlikely to work hard and is
more likely to coast. No factor other than motivation will cause a person to
forsake evenings and weekends without being asked to do so. Few other fac-
tors can be applied to so many people on so many teams in soO many orga-
nizations. Motivation is potentially the strongest ally you have on a
rapid-development project.

[refer o several rutos relared 10 vadatons in productivity in this book, and
keeping them straight can get confusing. FHere's a summary of the variations
that researchers have found:

® Greater than 10-to-1 differences in productivity among individuals svith
different depths and breadths of experience.

® (0101 ditferences in productivity among individuals with the same levels
of experience

® Sa0-]1 diffcrences m productivity among groups with different levels of
eXpoenendce,

® . 5-10-1 differences in productivity among groups with similar levels of
experience

Process

Process, as it applies to software development, includes both management
and technical methodologies. The effect that process has on a development
schedule is easier to assess than the effect that people have, and a great deal
of work is being done by the Software Engineering Institute and other or-
ganizations to document and publicize effective software processes.

Process represents an area of high leverage in improving your development
speed—almost as much as people. Ten years ago it might have been reason-
able to debate the value of a focus on process, but, as with peopleware,
today the pile of evidence in favor of paying attention to process has become
overwhelming. Organizations such as Hughes Aircraft, Lockheed, Motorola,
NASA, Raytheon, and Xerox that have explicitly focused on improving their
development processes have, over several years, cut their times-to-market
by about one-half and have reduced cost and defects by factors of 3 to 10
(Pietrasanta 1991a, Myers 1992, Putnam and Myers 1992, Gibbs 1994, Putnam
1994, Basili et al. 1995, Raytheon 1995, Saiedian and Hamilton 1995).

Some people think that attention to process is stifling, and there's no doubt
that some processes are overly rigid or overly bureaucratic. A few people
have created process standards primarily to make themselves feel powerful.
But that's an abuse of power—and the fact that a process focus can be
abused should not be allowed to detract from .the benefits a process focus

CROSS-REFERENCE
For more on quality
assurance, see Section 4.3,
"Quality-Assurance
Fundamentals."

CROSS-REFERENCE
Formore on development
fundamentals, see
Section 4.2, "Technical
Fundamentals."

CROSS-REFERENCE
Formore on risk manage-
ment, see Chapter 5,
"Risk Management."

2.2 Four Dimensions of Development Speed

can offer. The most common form of process abuse is neglect, and the
effect of that is that intelligent, conscientious developers find themselves
working inefficiently and at cross-purposes when there's no need for them
to work that way. A focus on process can help.

Rework avoidance. If requirements change in the late stages of project, you
might have to redesign, recede, and retest. If you have design problems that
you didn't find until system testing, you might have to throw away detailed
design and code and then start over. One of the most straightforward ways
to save time on a software project is to orient your process so that you avoid
doing things twice.

Raytheon won the IEEE Computer Society's Software Process Achievement
Award in 1995 for reducing their rework costs from 41 percent to less than
10 percent and simultaneously tripling their productivity (Raytheon 1995).
The relationship between those two feats is no coincidence.

Quality assurance. Quality assurance has two main purposes. The first pur-
pose is to assure that the product you release has an acceptable level of
quality. Although that is an important purpose, it is outside the scope of this
book. The second function of quality assurance is to detect errors at the stage
when they are least time-consuming (and least costly) to correct. This nearly
always means catching errors as close as possible to the time that they are
introduced. The longer an error remains in the product, the more tune-
consuming (and more costly) it will be to remove. Quality assurance is thus
an indispensable part of any serious rapid-development program.

Development fundamentals. Much of the work that has been done in the
software-engineering field during the last 20 years has been related to de-
veloping software rapidly. A lot of that work has focused on "productivity"
rather than on rapid development per se, and, as such, some of it has been
oriented toward getting the same work done with fewer people rather than
getting a project done faster. You can, however, interpret the underlying
principles from a rapid-development viewpoint. The lessons learned from
20 years of hard knocks can help your project to proceed smoothly. Although
standard software-engineering practices for analysis, design, construction, in-
tegration, and testing won't produce lightning-fast schedules by themselves,
they can prevent projects from spinning out of control. Half of the challenge
of rapid development is avoiding disaster, and that is an area in which stan-
dard software-engineering principles excel.

Risk management. One of the specific practices that's focused on avoiding
disaster is risk management. Developing rapidly isn't good enough if you get
your feet knocked out from under you two weeks before you're scheduled
to ship. Managing schedule-related risks is a necessary component of a rapid-
development program.

15

Chapter 2: Rapid-Development Strategy

CROSS-REFERENCE
For more on lifecycle
planning, see Chapter 7,
"Lifecycle Planning."

CROSS-REFERENCE
For more on customer

orientation, see Chapter 10,

16

"Customer-Oriented
Development.”

Resource targeting. Resources can be focused effectively and contribute to
overall productivity, or they can be misdirected and used ineffectively. On
a rapid-development project, it is even more important than usual that you
get the maximum bang for your schedule buck. Best practices such as pro-
ductivity offices, timebox development, accurate scheduling, and voluntary
overtime help to make sure that you get as much work done each day as
possible.

Lifecycle planning. One of the keys to targeting resources effectively is to
apply them within a lifecycle framework that makes sense for your specific
project. Without an overall lifecycle model, you can make decisions that are
individually on target but collectively misdirected. A lifecycle model is use-
ful because it describes a basic management plan. For example, if you have
a risky project, a risk-oriented lifecycle model will suit you; and if you have
vague requirements, an incremental lifecycle model may work best. Lifecycle
models make it easy to identify and organize the many activities required by
a software project so that you can do them with the utmost efficiency.

Customer orientation. One of the gestalt shifts between traditional, main-
frame software development and more modern development styles has been
the switch to a strong focus on customers' needs and desires. Developers
have learned that developing software to specification is only half the job.
The other half is helping the customer figure out what the product should
be, and most of the time that requires an approach other than a traditional
paper-specification approach. Putting yourself on the same side as the cus-
tomer is one of the best ways to avoid the massive rework caused by the
customer deciding that the product you just spent 12 months on is not the
right product after all. The best practices of staged releases, evolutionary
delivery, evolutionary prototyping, throwaway prototyping, and principled
negotiation can all give you leverage in this area.

““Who'ls “The Clstomer'2<. —+

i this ook, when [refer 1o “customers,” I'm referring to the people whao pay
to have the software developed and the people who are respansible for ac-
cepling or rejecting the product, On some projects, those will be the same
person or groups; on others, they'll be different. On some projeces, the cus
tomer is a real flesh-and-blood client who pays your project’s development
costs digectly. On other projects, it's another internal group within your or-
ganization. On still other projects, the customer s the person who plunks
down $200 for a shrink-wrap software package. In that case, the real customer
is remote. and there s uswally o manager or marketer who represents the
custoamer 1O you

Depending on your sitvation, you might understand the term “customer” 1o
mean “client,” “macketern” “end-user,” of “bass.”

CROSS-REFERENCE

For an example of the
benefits of efficient develop-
ment, see Section 4.2,
"Technical Fundamentals"
and Chapter 4,

"Software Development
Fundamentals," generally.

2.3 General Kinds of Fast Development

Efficient Development

As you can see from Table 2-1, average practice is...average. The second
approach listed in the table is what I call "efficient development," which is
the combination of the first three pillars of maximum development speed as
shown in Figure 2-4. That approach produces better than average results in
each of the three categories. Many people achieve their schedule goals af-
ter they put the first three pillars into place. Some people discover that they
didn't need rapid development after all; they just needed to get organized!
For many projects, efficient development represents a sensible optimization
of cost, schedule, and product characteristics.

Possible

Figure 2-4. Efficient development. Thefirst three steps in achieving the best
possible schedule make up "efficient development." Many project teams find
that efficient development provides all the development speed they need.

Can you achieve shorter schedules without first attaining efficient develop-
ment? Maybe. You can choose effective, schedule-oriented practices and
avoid slow or ineffective practices without focusing on efficient development
per se. Until you attain efficient development, however, your chances of
success in using schedule-oriented practices will be uncertain. If you choose
specific schedule-oriented practices without a general strategy, you'll have
a harder time improving your overall development capability. Of course, only
you can know whether it's more important to improve your overall devel-
opment capabilities or to try completing a specific project faster.

19

Chapter 2: Rapid-Development Strategy

CROSS-REFERENCE

For more on the relationship
between quality and
develogpment speed, see
Section 4.3, "Quality-
Assurance Fundamentals,”

CROSS-REFERENCE
For more on deciding
between speed-oriented and
schedule-risk-oriented
practices, see Section 1.2,
"Attaining Rapid Develop-
rmerit" and Section 6.2,
'What Kind of Rapid
Development Do You Need?"

CROSS-REFERENCE
For more on nominal schedules,
see "Nominal Schedules" in
Section 8.6. For more on the

costs of schedule compression,
see "Two Facts of Life"
in Section 8.6.

Another reason to focus on efficient development is that for most organiza-
tions the paths to efficient development and shorter schedules are the same.
For that matter, until you get to a certain point, the paths to shorter sched-
ules, lower defects, and lower cost are all the same, too. As Figure 2-5 shows,
once you get to efficient development the roads begin to diverge, but from
where they are now, most development groups would benefit by setting a
course for efficient development first.

To get here, use schedule-
oriented, effective practices. -

To get here, use any effective

practices whatsoever.
Predictable-Coot- \
And-Schedule Town

Most
organizations
are here. S
Dcvclopm:m
Sometimes -Predictable Town
Cost-and-Schedule Town
M:,'. High-Cost-and-Loag To Lowest-
Q0" Sehedule Town Development-Coss
pe j: ‘oul Town

e

o L
. - |
Classic-Mistakes Town

Figure 2-5. Tlje road to rapid development. From where most organizations are
now, the route to rapid developmentfollows the same road as the route tofewest
defects, maximum user satisfaction, and lowest development costs. After you
reach efficient development, the routes begin to diverge.

Efficient Development Tilted Toward Best Schedule

The third development approach listed in Table 2-1 is a variation of efficient
development. If you are practicing efficient development and find that you
still need better schedule performance, you can choose development prac-
tices that are tilted toward increasing development speed, reducing sched-
ule risk, or improving progress visibility. You'll have to make small trade-offs
in cost and product characteristics to gain that speed or predictability; if you
start from a base of efficient development, however, you'll still be much better
off than average.

All-Out Rapid Development

The final schedule-oriented development approach is what I call "all-out
rapid development"—the combination of efficient and mefficient schedule-
oriented practices. There comes a point when you're working as smart as you
can and as hard as you can, and the only thing left to do at that point is to
pay more, reduce the feature set, or reduce the product's polish.

CROSS-REFERENCE

For more on whether you
need ail-out rapid develop-
ment, see Section 6.2,
"What Kind of Rapid
Developmert Do You Need?"

2.4

CROSS-REFERENCE
For more on customizing
software processes to the
needs of specific projects,
see Section 6.1, "Does
One Size Fit All?"

2.4 Which Dimension Matters the Most?

Here's an example of what I mean by an "inefficient™ practice: you can com-
press a project's nominal development schedule by 25 percent simply by
adding more people to it. Because of increased communications and man-
agement overhead, however, you have to increase your team size by about
75 percent to achieve that 25-percent schedule reduction. The net effect of
a shorter schedule and larger team size is a project that costs 33 percent more
than the nominal project.

The move to all-out rapid development is a big step and requires that you
accept increased schedule risk or large trade-offs between cost and product
characteristic—or both. Few projects welcome such trade-offs, and most
projects are better off just choosing some form of efficient development.

Which Dimension Matters the Most?

Boeing, Microsoft, NASA, Raytheon, and other companies have all learned
how to develop software in ways that meet their needs. At the strategy level,
these different organizations have a lot in common. They have learned how
to avoid classic mistakes. They apply development fundamentals. And they
practice active risk management. At the tactical level, there is a world of
difference in the ways that each of these successful organizations emphasize
people, process, product, and technology.

Different projects have different needs, but the key in all cases is to accept
the limitations on the dimensions you can't change and then to emphasize
the other, dimensions to get the rest of the schedule benefit you need.

If you're developing a fuel-injection system for a car, you can't use 4GLs or
a visual programming environment to develop the real-time, embedded soft-
ware; you need greater performance and better low-level control than these
tools can provide. You're prevented from exercising the technology dimen-
sion to the utmost. Instead, you have to emphasize technology as much as
you can—and then get your real leverage from the people, process, and
product dimensions.

If you're working on an in-house business program, perhaps you can use a
4GL, a visual programming environment, or a CASE tool. You're able to
exercise technology to the utmost. But you might work for a stodgy corpo-
ration that prevents you from doing much in the people dimension. Empha-
size people as much as the company allows, and then get the remaining
leverage you need from the product and process dimensions.

If you're working in a feature-driven shrink-wrap market, you might not be
able to shrink your feature set much to meet a tight schedule. Shrink it as
much as you can, and then emphasize people, process, and technology to
give you the rest of what you need to meet your schedule.

21

Chapter 2: Rapid-Development Strategy

28

Further Reading

I know of no general books that discuss the topics of product or technol-
ogy as they have been described in this chapter. This book discusses the
topics further in Chapter 14, "Feature-Set Control," Chapter 15, "Productiv-
ity Tools," and Chapter 31, "Rapid-Development Languages."

The next three books provide general information on peopleware ap-
proaches to software development. The first is the classic.

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams. New York: Dorset House, 1987.

Constantine, Larry L. Constantine on Peopleware. Englewood Cliffs, N.J.:
Yourdon Press, 1995.

Plauger, P. J. Programming on Purpose Il: Essays on Software People.
Englewood Cliffs, N.J.: PTR Prentice Hall, 1993.

The following books provide information on software processes, the first at
an organizational level, the second at a team level, and the third at an indi-
vidual level.

Carnegie Mellon University/Software Engineering Institute. The Capability
Maturity Model: Guidelinesfor Improving the Software Process. Read-
ing, Mass.: Addison-Wesley, 19935. This book is a summary of the Soft-
ware Engineering Institute's latest work on software process
improvement. It fully describes the five-level process maturity model,
benefits of attaining each level, and practices that characterize, each
level. It also contains a detailed case study of an organization that has
achieved the highest levels of maturity, quality, and productivity.

Maguire, Steve. Debugging the Development Process. Redmond, Wash.:
Microsoft Press, 1994. Maguire's book presents a set of folksy maxims
that project leads can use to keep their teams productive, and it pro-
vides interesting glimpses inside some of Microsoft's projects.

Humphrey, Watts S. A Discipline for Software Engineering. Reading, Mass.:
Addison-Wesley, 1995- Humphrey lays out a personal software process
that you can adopt at an individual level regardless of whether your or-
ganization supports process improvement.

3.1

ClassicMistakes

Contents

3.1 Case Study in Classic Mistakes

3.2 Effect of Mistakes on a Development Schedule
3.3 Classic Mistakes Enumerated

3.4 Escape from Gilligan'slsland

Related Topics

Risk management: Chapter 5
Rapid-development strategy: Chapter 2

SOFTWARE DEVELOPMENT IS A COMPLICATED ACTIVITY. A typical soft-
ware project can present more opportunities to learn from mistakes than
some people get in a lifetime. This chapter examines some of the classic mis-
takes that people make when they try to develop software rapidly.

Case Study in Classic Mistakes

The following case study is a little bit like the children's picture puzzles in
which you try to find all the objects whose names begin with the letter "M".
How many classic mistakes can you find in the following case study?

Case Study 3-1. Classic Mistakes

B A R e e e e L S PSS B

Mike, a technical lead for Gigu Safe, waus eating lunch in his office and look
ing out his window on a brght April morning

‘Mike, you got the funding for the Giga-Quote progrun’ Congeoatulations!™ It
was Bill. Mike's boss ar Giga, a medical insurance company. “The executive
commitiee loved the idea of automating our medical insurance guoies. It also

(continued)

29

Chapter 3: Classic Mistakes

Case Study 3-1. Classic Mistakes, continued

loved the idea of uploading the day’s quotes 10 the bead office every aight
s0 that we always have the latest sales leads online. F've got me&nxmw ~
but we can discuss the details later Good job on that proposal’” :

Mike had writen the proposal for the Giga-Quote program maonths earlier, but
his praposal had been for « stand-alone PC program without any ability ©
commuunicate with the head office. Oh well, This would give him a chance
10 bead a dient-server project in a modern GUI environment—~something he
had wanted 10 do. They had almost a year 1o do the project, and that should
wive them pleaty of tme to add a new feature. Mike picked up the phone and
dialed his wife's number. “Honey, let's go out to dinner tonight o celebrate...”

The next moming, Mike met with Bill o discuss the project. "OK, Bill. What's
up? This doesn’t sound like quite the same propasal I worked on,”

Bill felt uneasy. Mike hadn't panticipated in the revisions 10 the proposal, but
there hado't been time 10 nvolve hom. Once the executive conumittee heard
about the Giga-Quote program, they'd raken over. “The executive committee
loves the dea of building software o avtomate medical insurance quotes. But
they want 10 be able wo mansfer the ficld quotes into the mainframe computer
avtomatically. And they want to have the system done before our new rates
take eflect January 1. They moved the software-complete dawe you proposed
up from March 1 o November 1, which shrinks your schedale to 6 months.

Mike had estimated the job would take 12 months. He dido't think they had
much chance of finishing in 6 months, and he told Bill so, “Let me' get this
straight,” Mike said. “It sounds like you're saying that the commitice added a
big communications requitement and chopped the schedule from 12 months
w 6"

Bill shrugged. “I know it will be 4 challenge, but you're creative, and I think
you can pull it off. They appraved the budget you wanted, and adding the
communications link can't be that hard, You asked for 36 staff-monthis, and
you g0t it. You can rechuil anyone you like 10 work on the project and increase
the team size, 100.” Bill told him to go wik with some other dcvek»pemand
flgure out a2 way (o deliver the sofltware on ime.

Mike got rogether with Casl, another technicat k'ld, and they looked for ways
vo shorten the schedule, *“Why don't you use C++ and object-oriented design?”
Casl asked. “You'll be mote productive than with €, and that should shave a
month or two off the schedule.” Mike thought that sounded good, Carl also
knew of a report-building teol thar was supposed to cut development time
in half. The project had a lotof reports, so those two changes would get them
down 1© about 9 months, They were due for newer, faster hardware, 100, and
that could shave off 4 couple weeks. If he could recruit really top-nowh de-
velopers, that might bring them dosvn to about 7 months. Thar should be close
cnough. Mike took his findings back to Bill.

(continued)

30

CROSS-REFERENCE
For more on heroics

and commitmentbased
projects, see Section 2.5,
"An Alternative Rapid-
Development Strategy,'
"Commitment-Based
Scheduling" in Section
8.5, and Chapter 34,
"Signing Up."

CROSS-REFERENCE
For alternative means of
rescuing a late project,
see Chapter 16,
“Project Recovery."

CROSS-REFERENCE

For more on the effects of the
physical environment on
productivity, see Chapter 30,
"Productivity Environments."

CROSS-REFERENCE

For more on effective
customer relations, see
Chapter 10, "Customer-
Oriented Development.”

3.3 Classic Mistakes Enumerated

problem employee is the most common complaint that team members have
about their leaders (Larson and LaFasto 1989). In Case Study 3-1, the team
knew that Chip was a bad apple, but the team lead didn't do anything about
it. The result—redoing all of Chip's work—was predictable.

4: Heroics. Some software developers place a high emphasis on project
heroics, thinking that certain kinds of heroics can be beneficial (Bach 1995).
But I think that emphasizing heroics in any form usually does more harm
than good. In the case study, mid-level management placed a higher pre-
mium on can-do attitudes than on steady and consistent progress and mean-
ingful progress reporting. The result was a pattern of scheduling
brinkmanship in which impending schedule slips weren't detected, acknowl-
edged, or reported up the management chain until the last minute. A small
development team and its immediate management held an entire company
hostage because they wouldn't admit that they were having trouble meet-
ing their schedule. An emphasis on heroics encourages extreme risk taking
and discourages cooperation among the many stakeholders in the software-
development process.

Some managers encourage heroic behavior when they focus too strongly on
can-do attitudes. By elevating can-do attitudes above accurate-and-some-
times-gloomy status reporting, such project managers undercut their ability
to take corrective action. They don't even know they need to take correc-
tive action until the damage has been done. As Tom DeMarco says, can-do
attitudes escalate minor setbacks into true disasters (DeMarco 1995).

5: Adding people to a late project. This is perhaps the most classic of the clas-
sic mistakes. When a project is behind, adding people can take more pro-
ductivity away from existing team members than it adds through new ones.

Fred Brooks likened adding people to a late project to pouring gasoline on
a fire (Brooks 1975).

6: Noisy, crowded offices. Mostdevelopers rate their working conditions as
unsatisfactory. About 60 percent report that they are neither sufficiently quiet
nor sufficiently private (DeMarco and Lister 1987). Workers who occupy
quiet, private offices tend to perform significantly better than workers who
occupy noisy, crowded work bays or cubicles. Noisy, crowded work envi-
ronments lengthen development schedules.

7: Friction between developers and customers. Friction between develop-
ers and customers can arise in several ways. Customers may feel that develop-
ers are not cooperative when they refuse to sign up for the development
schedule that the customers want or when they fail to deliver on their prom-
ises. Developers may feel that customers are unreasonably insisting on un-
realistic schedules or requirements changes after the requirements have
been baselined. There might simply be personality conflicts between the
two groups.

41

Chapter 3: Classic Mistakes

42

CROSS-REFERENCE
For more on setting
expectations, see
Section 10.3, "Managing
Customer Expectations.”

The primary effect of this friction is poor communication, and the second-
ary effects of poor communication include poorly understood requirements,
poor user-interface design, and, in the worst case, customers' refusing to
accept the completed product. On average, friction between customers and
software developers becomes so severe that both parties consider canceling
the project (Jones 1994). Such friction is time-consuming to overcome, and
it distracts both customers and developers from the real work of the project.

8: Unrealistic expectations. One of the most common causes offriction be-
tween developers and their customers or managers is unrealistic expectations.
In Case Study 3-1, Bill had no sound reason to think that the Giga-Quote
program could be developed in 6 months, but that's when the company's
executive committee wanted it done. Mike's inability to correct that unreal-
istic expectation was a major source of problems.

In other cases, project managers or developers ask for trouble by getting
funding based on overly optimistic schedule estimates. Sometimes they prom-
ise a pie-in-the-sky feature set.

Although unrealistic expectations do not in themselves lengthen develop-
ment schedules, they contribute to the perception that development sched-
ules are too long, and that can be almost as bad. A Standish Group survey
listed realistic expectations as one of the top five factors needed to ensure
the success of an in-house business-software project (Standish Group 1994).

9: Lack of effective project sponsorship. High-level project sponsorship is
necessary to support many aspects of rapid development, including realis-
tic planning, change control, and the introduction of new development prac-
tices. Without an effective executive sponsor, other high-level personnel in
your organization can force you to accept unrealistic deadlines or make
changes that undermine your project. Australian consultant Rob Thomsett

argues that lack of an effective executive sponsor virtually guarantees project
failure (Thomsett 1995).

10: Lack of stakeholder buy-in. All the major players in a software-develop-
ment effort must.buy in to the project. That includes the executive sponsor,
team leader, team members, marketing staff, end-users, customers, and any-
one else who has a stake in it. The close cooperation that occurs only when
you have complete buy-in from all stakeholders allows for precise coordi-
nation of a rapid-development effort that is impossible to attain without good
buy-in.

11: Lack of user input. The Standish Group survey found that the number
one reason that IS projects succeed is because of user involvement (Standish
Group 1994). Projects without early end-user involvement risk misunderstand-
ing the projects' requirements and are vulnerable to time-consuming feature
creep later in the project.

CROSS-REFERENCE
For more on healthy politics,
see Section 10.3, "Managing

Customer Expectations."

3.3 Classic Mistakes Enumerated

12: Politics placed over substance. Larry Constantine reported on four teams
that had four different kinds of political orientations (Constantine 1995a).
"Politicians” specialized in "managing up," concentrating on relationships
with their managers. "Researchers" concentrated on scouting out and gath-
ering information. "Isolationists" kept to themselves, creating project bound-
aries that they kept closed to non-team members. "Generalists" did a little
bit of everything: they tended their relationships with their managers, per-
formed research and scouting activities, and coordinated with other teams
through the course of their normal workflow. Constantine reported that ini-
tially the political arid generalist teams were both well regarded by top
management. But after a year and a half, the political team was ranked dead
last. Putting politics,over results is fatal to speed-oriented development.

13: Wishful thinking. I,am amazed at how many problems in software de-
velopment boil down to wishful thinking. How many times have you heard
statements like these from different people:

"None of the team members really believed that they could complete
the project according to the schedule they were given, but they thought
that maybe if everyone worked hard, and nothing went wrong, and they
got a few lucky breaks, they just might be able to pull it off."

"Our team hasn't done very much work to coordinate the interfaces
among the different parts of the product, but we've all been in good
communication about other things, and the interfaces are relatively
simple, so it'll probably take only a day or two to shake out the bugs."

"We know that we went with the low-ball contractor on the database
subsystem, and it was hard to see how they were going to complete the
work with the staffing levels they specified in their proposal. They didn't
have as much experience as some of the other contractors, but maybe
they can make up in energy what they lack in experience. They'll prob-
ably deliver on time."

"We don't need to show the final round of changes to the prototype to
the customer. I'm sure we know what they want by now."

"The team is saying that it will take an extraordinary effort to meet the
deadline, and they missed their first milestone by a few days, but I think
they can bring this one in on time."

Wishful thinking isn't just optimism. It's closing your eyes and hoping some-
thing works when you have no reasonable basis for thinking it will. Wish-
ful thinking at the beginning of a project leads to big blowups at the end of
a project. It undermines meaningful planning and may be at the root of more
software problems than all other causes combined.

43

Chapter 3: Classic Mistakes

CROSS-REFERENCE

For more on unrealistic
schedules, see Section9.1,
"Overly Optimistic
Scheduling.”

CROSS-REFERENCE

For more on risk manage-
ment, see Chapter 5, "Risk
Management."

CROSS-REFERENCE
For more on contractors, see
Chapter 28, "Outsourcing."

CROSS-REFERENCE
For more on planning, see
"Planning" in Section 4.1.

CROSS-REFERENCE

For more on planning under
pressure, see Section 9.2,
"Beating Schedule Pressure,"
and Chapter 16, "Project
Recovery."

44

Process

Process-related mistakes slow down projects because they squander people's
talents and efforts. Here are some of the worst process-related mistakes.

14: Overly optimistic schedules. The challenges faced by someone building
a 3-month application are quite different from the challenges faced by some-
one building a 1-year application. Setting an overly optimistic schedule sets
a project up for failure by underscoping the project, undermining effective
planning, and abbreviating critical upstream development activities such as
requirements analysis and design. It also puts excessive pressure on devel-
opers, which hurts long-term developer morale and productivity. This was
a major source of problems in Case Study 3-1.

15:Insufficientriskmanagement. Some mistakes are not common enough
to be considered classic. Those are called "risks." As with the classic mistakes,
if you don't actively manage risks, only one thing has to go wrong to change
your project from a rapid-development project to a slow-development one.
The failure to manage such unique risks is a classic mistake.

16: Contractor failure. Companies sometimes contract out pieces of a project
when they are too rushed to do the work in-house. But contractors frequently
deliver work that's late, that's of unacceptably low quality, or that fails to meet
specifications (Boehm 1989). Risks such as unstable requirements or ill-
defined interfaces can be magnified when you bring a contractor into the
picture. If the contractor relationship isn't managed carefully, the use of con-
tractors can slow a project down rather than speed it up.

17: Insufficient planning. If you don't plan to achieve rapid development,
you can't expect to achieve it.

18: Abandonment of planning under pressure. Project teams make plans and
then routinely abandon them when they run into schedule trouble
(Humphrey 1989). The problem isn't so much in abandoning the plan as in
failing to create a substitute, and then falling into code-and-fix mode instead.
In Case Study 3-1, the team abandoned its plan after it missed its first deliv-
ery, and that's typical. The work after that point was uncoordinated and
awkward—to the point that Jill even started working on a project for her old
group part of the time and no one even knew it.

19: Wasted time during the fuzzy front end. The "fuzzy front end" is the time
before the project starts, the time normally spent in the approval and bud-
geting process. It's not uncommon for a project to spend months or years
in the fuzzy front end and then to come out of the gates with an aggressive
schedule. It's much easier and cheaper and less risky to save a few weeks
or months in the fuzzy front end than it is to compress a development sched-
ule by the same amount.

CROSS-REFERENCE

For more on shortchanging
upstream activities, see
"Effects of Overly Optimistic
Schedules" in Section 9.1.

L

HARD DATA

CROSS-REFERENCE
For more on quality
assurance, see Section 4.3,
"Quality-Assurance
Fundamentals."

HARD DATA

CROSS-REFERENCE

For more on management
controls, see Tracking" in
Section 4.1 and Chapter 27,
‘Miniature Milestones."

CROSS-REFERENCE
For more on premature
convergence, see
"Premature convergence"
in Section 9.1.

3.3 Classic Mistakes Enumerated

20: Shortchanged upstream activities. Projects that are in a hurry try to cut
out nonessential activities, and since requirements analysis, architecture, and
design don't directly produce code, they are easy targets. On one disastrous
project that I took over, I asked to see the design. The team lead told me,
"We didn't have time to do a design."

The results of this mistake—also known as "jumping into coding"—are all
too predictable. In the case study, a design hack in the bar-chart report was
substituted for quality design work. Before the product could be released,
the hack work had tq be thrown out and the higher-quality work had to be
done anyway. Projects that skimp on upstream activities typically have to do
the same work downstream at anywhere from 10 to 100 times the cost of
doing it properly in'the first place (Pagan 1976; Boehm and Papaccio 1988),
If you can't find the 5 hours to do the job right the first time, where are you
going to find the 50 hours to do it right later?

21: Inadequate design. A special case of shortchanging upstream activities
is inadequate design. Rush projects undermine design by not allocating
enough time for it and by creating a pressure cooker environment that makes
thoughtful consideration of design alternatives difficult. The design emphasis
is on expediency rather than quality, so you tend to need several ultimately
time-consuming design cycles before you can finally complete the system.

22: Shortchanged quality assurance. Projects that are in a hurry often cut
corners by eliminating design and code reviews, eliminating test planning,
and performing only perfunctory testing. In the case study, design reviews
and code reviews were given short shrift in order to achieve a perceived
schedule advantage. As it turned out, when the project reached its feature-
complete milestone it was still too buggy to release for 5 more months. This
result is typical. Shortcutting 1 day of QA activity early in the projectis likely
to cost you from 3 to 10 days of activity downstream (Jones 1994). This short-
cut undermines development speed.

23: Insufficient management controls. In the case study, few management
controls were in place to provide timely warnings of impending schedule
slips, and the few controls that were in place at the beginning were aban-
doned once the project ran into trouble. Before you can keep a project on
track, you have to be able to tell whether it's on track in the first place.

24: Premature or overly frequent convergence. Shortly before a product is
scheduled to be released, there is a push to prepare the product for release—
improve the product's performance, print final documentation, incorporate
final help-system hooks, polish the installation program, stub out function-
ality that's not going to be ready on time, and so on. On rush projects, there
is a tendency to force convergence early. Since it's not possible to force the
product to converge when desired; some rapid-development projects try to

45

Chapter 3: Classic Mistakes

CROSS-REFERENCE
For a list of commonly
omitted tasks, see "Dont
omit common tasks"

in Section 8.3.

CROSS-REFERENCE
For more on reestimation,
see "Recalibration"

in Section 8.7.

CROSS-REFERENCE

For more on the Code-and-

Fix approach, see Section
7.2, "Code-and-Fix."

CROSS-REFERENCE

Formore on feature creep,

46

see Chapter 14,
"Feature-Set Control."

force convergence a half dozen times or more before they finally succeed.
The extra convergence attempts don't benefit the product. They just waste
time and prolong the schedule.

25: Omitting necessary tasks from estimates. If people don't keep careful
records of previous projects, they forget about the less visible tasks, but those
tasks add up. Omitted effort often adds about 20 to 30 percent to a devel-
opment schedule (van Genuchten 1991).

26: Planning to catch up later. One kind of reestimation is responding inap-
propriately to a schedule slip. If you're working on a 6-month project, and
it takes you 3 months to meet your 2-month milestone, what do you do?
Many projects simply plan to catch up later, but they never do. You learn
more about the product as you build it, including more about what it will take
to build it. That learning needs to be reflected in the reestimated schedule.

Another kind of reestimation mistake arises from product changes. If the
product you're building changes, the amount of time you need to build it
changes too. In Case Study 3-1, major requirements changed between the
original proposal and the project start without any corresponding
reestimation of schedule or resources. Piling on new features without adjust-
ing the schedule guarantees that you will miss your deadline.

27: Code-like-hell programming. Some organizations think that fast, loose,
all-as-you-go coding is a route to rapid development. If the developers are
sufficiently motivated, they reason, they can overcome any obstacles. For
reasons that will become clear throughout this book, this is far from the truth.
This approach is sometimes presented as an "entrepreneurial" approach to
software development, but it is really just a cover for the old Code-and-Fix
paradigm combined with an ambitious schedule, and that combination al-
most never works. It's an example of two wrongs not making a right.

Product
Here are classic mistakes related to the way the product is defined.

28: Requirementsgold-plating. Some projectshavemorerequirementsthan
they need, right from the beginning. Performance is stated as a requirement
more often than it needs to be, and that can unnecessarily lengthen a soft-
ware schedule. Users tend to be less interested in complex features than mar-
keting and development are, and complex features add disproportionately
to a development schedule.

29: Featurecreep. Even if you're successful at avoiding requirements gold-
plating, the average project experiences about a 25-percent change in re-
quirements over its lifetime (Jones 1994). Such a change can produce at least

CROSS-REFERENCE

For an example of the way
that develgper gold-plating
can occur even accidentally,
see "Uncearor Impossible
Goals" in Section 14.2.

CROSS-REFERENCE

For more on the silver-bullet
syndrome, see Section 15.5,
"Silver-Bullet Syndrome."

3.3 Classic Mistakes Enumerated

a 25-percent addition to the software schedule, which can be fatal to a rapid-
development project.

30: Developer gold-plating. Developers are fascinated by new technology
and are sometimes anxious to try out new features of their language or en-
vironment or to create their own implementation of a slick feature they saw
in another product—whether or not it's required in their product. The effort
required to design, implement, test, document, and support features that are
not required lengthens the schedule.

31:Push-me, pull-menegotiation. Onebizarrenegotiatingployoccurswhen
a manager approves a schedule slip on a project that's progressing slower
than expected and then adds completely new tasks after the schedule
change. The underlying reason for this is hard to fathom, because the man-
ager who approves the schedule slip is implicitly acknowledging that the
schedule was in error. But once the schedule has been corrected, the same
person takes explicit action to make it wrong again. This can't help but
undermine the schedule.

32: Research-oriented development. Seymour Cray, the designer of the Cray
supercomputers, says that he does not attempt to exceed engineering lim-
its in more than two areas at a time because the risk of failure is too high
(Gilb 1988). Many software projects could learn a lesson from Cray. If your
project strains the limits of computer science by requiring die creation of new
algorithms or new computing practices, you're not doing software develop-
ment; you're doing software research. Software-development schedules are
reasonably predictable; software research schedules are not even theoreti-
cally predictable.

If you have product goals that push the state of the art—algorithms, speed,
memory usage, and so on—you should assume that your scheduling is highly
speculative. If you're pushing the state of the art and you have any other
weaknesses in your project—personnel shortages, personnel weaknesses,
vague requirements, unstable interfaces with outside contractors—you can
throw predictable scheduling out the window. If you want to advance the
state of the art, by all means, do it. But don't expect to do it rapidly!

Technology

The remaining classic mistakes have to do with the use and misuse of modern
technology.

33:Silver-bulletsyndrome. In the case study, there was too much reliance
on the advertised benefits of previously unused technologies (report genera-
tor, object-oriented design, and C++) and too little information about how

47

Chapter 3: Classic Mistakes

CROSS-REFERENCE
For more on estimating
savings from productivity
tools, see "How Much
Schedule Reduction to
Expect" in Section 15.4.

CROSS-REFERENCE
For more on reuse, see
Chapter 33, "Reuse."

CROSS-REFERENCE
For more on source-code
control, see "Software

Configuration Management"

48

in Section 4.2.

well they would do in this particular development environment. When project
teams latch onto a single new practice, new technology, or rigid process and
expect it to solve their schedule problems, they are inevitably disappointed
(Jones 1994).

34: Overestimated savings from new tools or methods. Organizations seldom
improve their productivity in giant leaps, no matter how many new tools or
methods they adopt or how good they are. Benefits of new practices are par-
tially offset by the learning curves associated with them, and learning to use
new practices to their maximum advantage takes time. New practices also
entail new risks, which you're likely to discover only by using them. You are
more likely to experience slow, steady improvement on the order of a few
percent per project than you are to experience dramatic gains. The team in
Case Study 3-1 should have planned on, at most, a 10-percent gain in pro-
ductivity from the use of the new technologies instead of assuming that they
would nearly double their productivity.

A special case of overestimated savings arises when projects reuse code from
previous projects. This kind of reuse can be a very effective approach, but
the time savings is rarely as dramatic as expected.

35: Switching tools in the middle of a project. This is an old standby that
hardly ever works. Sometimes it can make sense to upgrade incrementally
within the same product line, from version 3 to version 3.1 or sometimes even
to version 4. But the learning curve, rework, and inevitable mistakes made
with a totally new tool usually cancel out any benefit when you're in the
middle of a project.

36: Lack of automated source-code control. Failure to use automated source-
code control exposes projects to needless risks. Without it, if two develop-
ers are working on the same part of the program, they have to coordinate
their work manually. They might agree to put the latest versions of each file
into a master directory and to check with each other before copying files into
that directory. But someone invariably overwrites someone else's work.
People develop new code to out-of-date interfaces and then have to rede-
sign their code when they discover that they were using the wrong version
of the interface. Users report defects that you can't reproduce because you
have no way to re-create the build they were using. On average, source code
changes at a rate of about 10 percent per month, and manual source-code
control can't keep up (Jones 1994).

Table 3-1 contains a complete list of classic mistakes.

3.4 Escape from Gilligan's Island

Table 3-1. Summary of Classic Mistakes

SRS PR PLAN TEATAN LA LEEIT A RIS L St W VL a N e e N LR Y pind S e gy

People-Related Process-Related Product-Related Technology-Related
Mistakes Mistakes Mistakes Mistakes
1. Undermined 14. Overly optimistic 28. Requirements 33. Silver-bullet
motivation schedules gold-plating syndrome
2. Weak personnel 15. Insufficient risk 29. Feature creep 34. Overestimated
3. Uncontrolled management 30. Developer savings from
problem employees 16. Contractor failure gold-plating new tools or
. .. methods
4. Heroics 17. Insufficient 31. Push-me, pull-me 35. Switchine tool
- e . ching tools
5. Adding people to planning negotiation irjvtlhe mi%l dle
a late project 18. Abandonment of 32. Research-oriented of a project
6. Noisv. crowded planning under development
' Y eSSULE 36. Lack of
offices P automated
7. Friction between 19, Wasted time during source-code
developers and the fuzzy front end control
customers 20. Shortchanged
8. Unrealistic upstream activities
expectations 21. Inadequate design
9. Lack of effective 22. Shortchanged

10.

11

12.

13

project sponsorship
Lack of stakeholder
buy-in

Lack of user input

Politics placed
over substance

Wishful thinking

23.

24.

25.

26.

27.

quality assurance

Insufficient manage-
ment controls

Premature or overly
frequent convergence

Omitting necessary
tasks from estimates

Planning to catch
up later

Code-like-hell
programming

3.4

“S——

Escape from Gilligan's Island

A complete list of classic mistakes would go on for pages more, but those
presented are the most common and the most serious. As Seattle University's

David Umphress points out, watching most organizations attempt to avoid
these classic mistakes seems like watching reruns of Gilligan's Island. At the

beginning of each episode, Gilligan, the Skipper, or the Professor comes up
with a cockamamie scheme to get off the island. The scheme seems as

though it's going to work for a while, but as the episode unfolds, something

goes wrong, and .by the end of the episode the castaways find themselves

right back where they started-—stuck on the island.

49

Chapter 3: Classic Mistakes

50

Similarly, most companies at the end of each project find that they have made
yet another classic mistake and that they have delivered yet another project
behind schedule or over budget or both.

Your Own List of Worst Practices

Be aware of the classic mistakes. Create lists of "worst practices" to avoid on
future projects. Start with the list in this chapter. Add to the list by conduct-
ing project postmortems to learn from your team's mistakes. Encourage other
projects within your organization to conduct postmortems so that you can
learn from their mistakes. Exchange war stories with your colleagues in other
organizations, and learn from their experniences. Display your list of mistakes
prominently so that people will see it and learn not to make the same mis-
takes yet another time.

Further Reading

Although a few books discuss coding mistakes, there are no books that I
know of that describe classic mistakes related to development schedules.
Further reading on related topics is provided throughout the rest of this book.

Software-Development
Fundamentals

Contents

4.1 Management Fundamentals

4.2 Technical Fundamentals

4.3 Quality-Assurance Fundamentals
4.4 Following the Instructions

Related Topics

Rapid-development strategy: Chapter 2
Summary of inspections: Chapter 23

RED AUERBACH, THE LONG-TIME COACH of the Boston Celtics and until
recently the winningest coach in the history of professional basketball, cre-
ated a videotape called "Red on Roundball." Auerbach drives home the point
that the key to success in professional basketball is fundamentals. He says
at least 20 times that a pass is only a successful pass ifsomeone catches it.
The key to successful rebounding is getting the ball, Auerbach's roadmap to
eight consecutive NBA championships relied on fundamentals.

In software, one path to success is paying attention to fundamentals. You
might be the Bob Cousy, Kareem Abdul Jabbar, or Michael Jordan of your
software organization. You might have a battery of schedule-oriented prac-
tices at your disposal. But if you don't put fundamental development prac-
tices at the heart of your development effort, you will seriously risk failing
to meet your schedule goals.

People often tell you to use good software engineering practices because
they're "right" or because they'll promote high quality. Their admonitions take
on religious tones. But I don't think this is a religious issue. If the practices
work—use them, if they don't—don't! My contention is that you should use
the fundamental software-engineering practices described in this chapter not
because they're, "right," but because they reduce cost and time to market.

51

Chapter 4: Software-Development Fundamentals

Everybody wants to

52

be on a champion-
ship team, but
nobody wants to
come to practice.

Bobby Knight

This position is less theoretical than you might think. In a review of 10 soft-
ware projects that organizations had selected as their "best projects,” Bill
Hetzel concluded that "If there was one high-level finding that stood out, it
is that best projects get to be best based on fundamentals. All of us know
the fundamentals for good software—the difference is that most projects
don't do them nearly so well and then get into trouble" (Hetzel 1993).

The best place to start looking for information on software-development
fundamentals is a general software-engineering textbook. This book is not
a software-engineering textbook, so this chapter confines itself to identify-
ing the development fundamentals, explaining how they affect development
schedules, quantifying how large their effect is (whenever possible), and
providing pointers to more information.

The practices in this chapter are divided into management, technical, and
quality-assurance practices. Some of the practices don't fit neatly into one
category, so you may want to browse all the categories even if you're most
interested in a particular one. But first, you might want to read Case Study
4-1 to put you in an appropriate frame of mind.

Case Study 4-1. Lack of Fundamentals
' ' . . Lptto B e PN A0 VARDN 2220 ST BN LRI EAVOLE AT SPAST TR Nt e

“We theught we had figured out what we were doing,” Bill 1old Charles. Wi
did prety well on version 3 of our Sales Bonus Program, SBE, which is the
program we use to pay our field agents their commissions. But on version 4,
everything fell apart.™ Bill had been the manager of SBP versions 1 through
A, und Charles was 2 consultant Giga-Safe had called inow help figure out why
version 4 had been so prablenutic

“What were the differences between versions 3 and 477 Charles asked,

“We had problems with versions 1 and 2.7 Bill responded, *but by version 3
we felt that we had pur our probiems behind us. Development proceeded with
hardly any problems at all. Our estimates were accurate, pardy because we've
lcarned 1o pad them with a 30-percent safety margin. The developers had
almost no problens with forgotien tasks, wols, or design elements. Everything
wont great.”

“So what happened on version 47° Charles prompted.

“That was a different story. Version 3 was an evolutionary upgrade, but ver-
s1080 4 was a completely new product developed from scratch,

“The team members tried (o apply the lessons they'd learned on SBP versions
I through 3. But partway through the project, the schedule began 1o slip.
Technical tasks wrmed out to be more complicated than anticipated. Tasks that
the developers had estimated would ke 2 days inswead 100k 2 10 3 weeks
There were problems with some new development ools, and the team Jost

(conrinned)

Case Study 4-1. Lack of Fundamentals, continued

% gmundﬁgtﬁngwuhthcm mmmmmbmd{dntknowaﬂﬁmtum'b

mgmmwﬁwoﬁdngmes. inﬂzeendnooneaunldpudlnwmmef
product would be mdymmlmdnﬂta:maltyw mdy Veaion swms.lg

- almost 100 percent late:”

“"matdomsoundprmyma Charles agreed. "You mentioned that you had

had some problems with versions 1 and 2, Can you tell me about thase
 projects?”

“Sure,” Bill replied. “On version 1 of SBY, the project wits complete chaos. Towl-

~ project estimates and 1ask scheduling seemed almost random. Technical prob-

- lems turned out 10 be harder than expecied. Development tools thar were
-~ supposed ta save time acally added time 1o the schedule. The development

»mamtookomsclwduteshpafmrmodm and no one knew when the product

- would be ready to release untl a day or two before it actually was ready. in
tbeend.tthBPmam.dtm'cmdthepmductabmn !Mpemntovctschcdulc

._ ."That soundsa lot like what happened on vegsion 4," Charles said

" “That'sight,” Bill shook his head, *1 thought we had learned our kesson a long!

Hme ago.”
“What about version 27 Charles asked.

: "Onvmionz dewlopmmtpmucdedmmwmmmonvmml The
mmmdmmmmmmc. and the techni-

- cal work seemed to e more uader control, There were fewer problems with
~ development tools, and the development team’s work took about 4s long as

they had estimated They nmdeupﬂlcutimnnonmtsmcydjdhnve through
lnaensedqmime

‘Bmmwﬂmemdcfmemeu.dwmmdmvcredmmmmey
hadn't included in their original esimates, They also discovered fundamen-
tal design flaws, which meant they had to rework 10 to 15 percent of the
- system. They took one big schedule slip 1o include the forgotien tasks and
~the rework. They finished that work, found a few more problems, ok an-
other schedule slip, and finally delivered the product about 30 percent late.
- That's when we learned o add a,!()‘percemsafety margin to our schedules.”

: "‘Mdﬂmvuslonswemmommw ‘Charles usked.
' 'nght.‘ Bill agreed
* *11ake It that versions 1 through 3 used lhem:mcodebase?‘ Charlesa.sl-.cd.
- *Yes.” _
“Did versions 1 through 3 use the same team members?”

(continued)

53

Chapter 4: Software-Development Fundamentals

Case Study 4-1. Lack of Fundamentals, continue

“Yes, but mmldwclopmqvkaﬁmvadonB.mmdtMmﬁmimm ~
hadn't worked on the praject before.”

“Thanks,” Charles said *That's all helpful.”

Charles spent the rest of the day talking with d\edevdopmem team and then
met with Bill again that night. “What I've got 1o tell you might not be easy for,
you 1o hear,” Charles said. “As a consultant. | see dozeas of projects a year,
and throughout my career ['ve seen hundreds of projects in mare than a hun-
dred organizations. The pattern you experienced with SBP versions | thmugh
4 is actually fairly common. '

“Eardier, you implied that the develqm weren't wmg.mmed saume’-eod«e
control, and [confirmed that this afternoon in my talks with your develop-
ers. 1 also confirmed that the development team doesn’t use design or code
reviews. The organization relies on seat-of-the-pants estimates even though
more effective estimation methods are available.”

"OK,” Bill said, "'mosethmgsmnllm But what dowcneedwwsoum
we pever experience nnul.herpm;ect like vetsioné againg”

"That's the part that's going 10 be hard rorvou:o hear,” Chardes sad. “There
isnt any one thing you need to do. You naedmimptovemthesom
development fundamentals or you'll see this sume pattem again and again,
You need to strengthen yous foundation. On the management side, you need
more effective scheduling, p»!uvmg.mckmg and measurement. On the tech-
nica) side, you need more effective tequlremew nunagemmt, design, con-

struction, and configumtion nmmgemmLAndym need much suvnger qmlny
assurance.”

“But we did fine on version 3, Bill objected.

“That's right,* Charles agreed. ‘Youwilldoﬂneonoeinawlulc—whcnyourc |
working on a familiar product with team members whe have worked on the
same product before, Mdﬂwvﬂmjmhtd&owoﬂmdmvcm.
1 and 2. Qne of the reasons that organizations think they don’t need to mas-
ter software-development fundamentals is that theydolmea few successes.
Theycangetprauygoodmmmsmdplannimforaspccwﬂodw ¢!
They think they're doing well, mdxheydon’nbinkdm anvone else is do-
ing any better

“But thewr development capability is built on a fragile foundation. They really
enly know how to develop one specific product in one specific way. When
they are confronted with major changes in personnel, development tools;
development environment, or product concept, that fragile development ca-
pability breaks down. Suddenly they find themselves back at square 1. That's
what happened on SBP 4 swhen you had 1o rewrite the product from scratch
with new developers. That's why your experiences on version 1 and version

4 were so similar”

(continued)

54

4.1

FURTHER READING
Thischapter's description

of development fundamentals
is similar to what the
Software Engineering
Institute calls a "repeatable”
process. For details, see The
Capability Maturity Model:
Guidelines for Improving the
Software Process (Camegie
Mellon University/Software
Engineering Institute, 1995).

CROSS-REFERENCE
For more on estimation, see
Chapter 8, "Estimation." For
more on scheduling, see
Chapter 9, "Scheduling"

4.1 Management Fundamentals

Case Study 4-1. Lack of Fundamentals, continued

“I hadn’t thought about it that way before, but maybe you're right,” Bill said
quictly, "That sounds like a lot of wark, though: 1 don't know if we can
justify 12"

“If you don't master the fundamentals, you'll do OK on the easy projects, but
your hard projects will fall apart,” Charles said, "and those are usually the ones
you feally care about.”

Management Fundamentals

Management fundamentals have at least as large an influence on develop-
ment schedules as technical fundamentals do. The Software Engineering
Institute has repeatedly observed that organizations that attempt to put soft-
ware-engineering discipline in place before putting project-management
discipline in place are doomed to fail (Burlton 1992). Management often
controls all three corners of the classic trade-off triangle—schedule, cost, and
product—although sometimes the marketing department controls the product
specification and sometimes the development department controls the sched-
ule. (Actually, development always controls the real schedule; sometimes de-
velopment also controls the planned schedule.)

Management fundamentals consist of determining the size of the product
(which includes functionality, complexity, and other product characteristics),
allocating resources appropriate for a product of that size, creating a plan
for applying the resources, and then monitoring and directing the resources
to keep the project from heading into the weeds. In many cases, upper
management delegates these management tasks to technical leads explicitly,
and in other cases it simply leaves a vacuum that a motivated lead or devel-
oper can fill.

Estimation and Scheduling

Well-run projects go through three basic steps to create a software schedule.
They first estimate the size of the project, then they estimate the effort needed
to build a product of that size, and then they estimate a schedule based on
the effort estimate.

Estimation and scheduling are development fundamentals because creating
an inaccurate estimate reduces development efficiency. Accurate estimation
is essential input for effective planning, which is essential for efficient
development.

95

Chapter 4: Software-Development Fundamentals

-
8
@

s
|

11/4- ~a 'r¢

CLASSIC MISTAKE

CROSS-REFERENCE

For more on these topics, see
Chapter 12, Teamwork";
Chapter 13, Team Structure";
Chapter 7, 'tifecycle
Planning"; Chapter 5, "Risk
Management"; and Chapter 14,
"Feature-SetControl."

CROSS-REFERENCE

For detais on one project-
tracking practice, see Chapter
27, "Miniature Milestones."

56

Planning

As Philip W. Metzger points out in his classic Managing a Programming
Project, poor planning boils to the surface as a source of problems more
often than any other problem (Metzger 1981). His list of software-develop-
ment problems looks like this:

e Poor planning

e Ill-defined contract

e Poor planning

e Unstable problem definition

e Poor planning

* Inexperienced management

e Poor planning

 Political pressures

* Poor planning

* Ineffective change control

* Poor planning

* Unrealistic deadlines

e Poor planning

In his review of best projects, Bill Hetzel found, that the industry's best projects
are characterized by strong up-front planning to define tasks and schedules
(Hetzel 1993). Planning a software project includes these activities:

* Estimation and scheduling

* Determining how many people to have on the project team, what

technical skills are needed, when to add people, and who the people
will be

* Deciding how to organize the team
» Choosing which lifecycle model to use
* Managing risks

» Making strategic decisions such as how to control the product's feature
set and whether to buy or build pieces of the product

Tracking

Once you've planned a project, you track it to check that it's following the
plan—that it's meeting its schedule, cost,' and quality targets. Typical man-
agement-level tracking controls include task lists, status meetings, status
reports, milestone reviews, budget reports, and management by walking
around. Typical technical-level tracking controls include technical audits,

4.1 Management Fundamentals

technical reviews, and quality gates that control whether you consider mile-
stones to be complete.

Bill Hetzel found that strong measurement and tracking of project status was
evident in every "best project." Status measurement to support project man-
agement appears as a natural by-product of the good planning work and is
a critical success factor (Hetzel 1993).

As Figure 4-1 suggests, on a typical project, project management is almost
a black-box function. You rarely know what's going on during the project,
and you just have to take whatever comes out at the end. On an ideal project,
you have 100 percent visibility at all times. On an efficient project, you al-
ways have at least some visibility and you have good visibility more often
than not.

Begin End

Ideal project's e

Efficient project's jg—l;"r‘ I . B i \‘-L-
TN NN N

Well-run waterfall-

lifecycle-model g ‘ et LN
project's visibility : ' _b__..lﬁ_‘i_l

Typical project's - - -
visibility =] o et b T, ‘_ﬁ—

Figure 4-1. Progress visibility for different kinds of projects. Efficient development
provides much better visibility than typical development.

Project progress

Capers Jones reports that "software progress monitoring is so poor that sev-
eral well-known software disasters were not anticipated until the very day
of expected deployment" (Jones 1995b). After assessing 59 sites between
1987 and 1993, the Software Engineering Institute found that 75 percent of
the sites needed to improve their project tracking and oversight (Kitson and
Masters 1993). When organizations have been assessed, tried to improve, and
then been reassessed, the biggest problems for the organizations that failed
to improve lay in the project planning and tracking-and-oversight areas
(Baumert 1995).

Tracking is a fundamental software management activity. If you don't track
a project, you can't manage it. You have no way of knowing whether your
plans are being carried out and no way of knowing what you should do next.
You have no way of monitoring risks to your project. Effective tracking en-
ables you to detect schedule problems early, while there's still time to do

57

Chapter 4: Software-Development Fundamentals

58

CROSS-HEFERENCE
For more on measure-
ment, see Chapter 26,

"Measurement."

something about them. If you don't track a project, you can't do rapid
development.

Measurement

One key to long-term progress in a software organization is collecting metrics
data to analyze software quality and productivity. Virtually all projects col-
lect data on costs and schedules. But this limited data doesn't provide much
insight into how to reduce the costs or shorten the schedules.

Collecting a little more data can go a long way. If, in addition to cost and
schedule data, you collect historical data on how large your programs are
in lines of code or some other measurement, you will have a basis for plan-
ning future projects that's better than gut instinct. When your boss says, "Can
we develop this product in 9 months?" You can say, "Our organization has
never developed a product of this size in less than 11 months, and the av-
erage time for such a product is 13 months."

You need to have a basic knowledge of software measurement to develop
efficiently. You need to understand the issues involved in collecting metrics,
including how much or how little data to collect and how to collect it. You
should have a knowledge of specific metrics you can use to analyze status,
quality, and productivity. An organization that wants to develop rapidly needs
to collect basic metrics in order to know what its development speed is and
whether it's improving or degrading over time.

Further Reading on Management Fundamentals

The first four volumes listed below discuss far-ranging software topics, in-
cluding pragmatic issues such as what to do with a problem team member,
theoretical issues such as how to model a software project as a system, and
esoteric issues such as the importance of observation to software develop-
ment. Weinberg's writing is entertaining and full of insights.

Weinberg, Gerald M. Quality Software Management, Vol. 1: Systems Think-
ing. New York: Dorset House, 1992.

Weinberg, Gerald M. Quality Software Management, Vol. 2: First-Order
Measurement. New York: Dorset House, 1993.

Weinberg, Gerald M. Quality Software Management, Vol. 3: Congruent
Action. New York: Dorset House, 1994.

Weinberg, Gerald M. Quality Software Management, Vol. 4: Anticipating
Change, New York: Dorset House, 1996.

4.1 Management Fundamentals

Pressman, Roger S. A Manager's Guide to Software Engineering. New Y ork:
McGraw-Hill, 1993. This might be the best overview available on gen-
eral aspects of software project management. It includes introductory
sections on estimation, risk analysis, scheduling and tracking, and the
human element. Its only drawback is its use of a question-and-answer
format that might come across as disjointed to some readers. (It does
to me.)

Carnegie Mellon University/Software Engineering Institute. Tfye Capability
Maturity Model: Guidelines for Improving the Software Process. Read-
ing, Mass.: Addison-Wesley, 1995. This book describes a management-
level framework for understanding, managing, and improving software
development:

Thayer, Richard H., ed. Tutorial: Software Engineering Project Management.
Los Alamitos, Calif.: IEEE Computer Society Press, 1990. This is a col-
lection of about 45 papers on the topic of managing software projects.
The papers are some of the best discussions available on the topics of
planning, organizing, staffing, directing, and controlling a software
project. Thayer provides an introduction to the topics and comments
briefly on each paper.

Gilb, Tom. Principles of Software Engineering Management. Wokingham,
England: Addison-Wesley, 1988. Gilb's thesis is that project managers
generally do not want to predict what will happen on their projects;
they want to control it. Gilb's focus is on development practices that
contribute to controlling software schedules, and several of the prac-
tices he describes in his book have been included as best practices in
this book.

DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press,
1982. Although now in its second decade, DeMarco's book doesn't
seem the least bit dated. He deals with problems that are the same
today as they were in 1982—managers who want it all and customers
who want it all now. He lays out project-management strategies, with
a heavy emphasis on measurement.

Metzger, Philip W. Managing a Programming Project, 2d Ed. Englewood
Cliffs, N.J.: Prentice Hall, 1981. This little book i1s the classic introduc-
tory project-management textbook. It's fairly dated now because of its
emphasis on the waterfall lifecycle model and on document-driven
development practices. But anyone who's willing to read it critically will
find that Metzger still has some important things to say about today's
projects and says them well.

SQ

Chapter 4: Software-Development Fundamentals

The following book is not specifically about software projects, but it is ap-
plicable nonetheless.

Grove, Andrew S. High Output Management. New York: Random House,
1983. Andy Grove is one of the founders of Intel Corporation and has
strong opinions about how to manage a company in a competitive
technical industry. Grove takes a strongly quantitative approach to
management.

4.2 Technical Fundamentals

A 1984 study of "modern programming practices"—technical fundamentals—
found that you can't achieve high productivity without using them. Figure
4-2 illustrates the study's results.

Use of Modern Programming Practices
(percentage of total system)

Percent of
Nominal Low Medium High
Productivity (0-25%) (26-75%) (76-100%)

CROSS-REFERENCE +200
For general comments y
on this kind of graph, L lLegend
see Section 3.2, "Effect +100
of Mistakes on a Devel- Maximum

opment Schedule."

T5th percentile
0 (average) Mean

25th percentile

Minimum

-100

Figure 4-2. Findings for "Use of Modern Programming Practices" factor
(Vosburgh et al. 1984). You can't achieve top productivity without making
extensive use of "modern programming practices"—what this chapter calls
"technical fundamentals."

This is the same chart that I presented in the "Classic Mistakes" chapter, and
it provides a specific example of the general classic mistakes lesson. Appli-
cation of technical fundamentals, by itself, is hot enough to create high pro-
ductivity. Some projects used modern programming practices a great deal and
still had productivity about as low as other projects that didn't use them at
all. Thus attention to development fundamentals is necessary but not suffi-
cient for achieving rapid development.

60

CROSS-REFERENCE
For more on traditional

requirements-management

practices, see Chapter 14,
"Feature-Set Control."

ﬂ
rm =

HARD DATA

4.2 Technical Fundamentals

Larry Constantine tells a story about the Australian Computer Society Soft-
ware Challenge (Constantine 1995b). The challenge called for three-person
teams to develop and deliver a 200 function-point application in 6 hours.

The team from Ernst and Young decided to follow a formal development
methodology—a scaled-down version of their regular methodology—com-
plete with staged activities and intermediate deliverables. Their approach
included careful analysis and design—part of what this chapter describes as
technical fundamentals. Many of their competitors dived straight into coding,
and for the first few hours, the team from Ernst and Young lagged behind.

By midday, however, the Ernst and Young team had developed a command-
ing lead. At the end of the day, the team from Ernst and Young lost, but not
because of their formal methodology. They lost because they accidentally
overwrote some of their working files, delivering less functionality at the end
of the day than they had demonstrated at lunchtime. Ironically, what would
have saved their bacon was not less formality, but more—namely, formal
configuration management including periodic backups. They got bitten by
the classic mistake of not using effective source-code control.

The moral of this story seems clear enough, but some skeptics, including me,
were left wondering: Would the team from Ernst and Young really have won
without the configuration-management snafu? The answer is "yes." They
reappeared a few months later at another rapid-development face-off—this
time with version control and backup—and they won (Constantine 1996).

In this case, formal methodologies paid off within a single day. If attention
to technical fundamentals can make this much difference in that amount of
time, imagine how much of a difference they can make over a 6- to 12-month
project.

Requirements Management

Requirements management is the process of gathering requirements; record-
ing them in a document, email, user-interface storyboard, executable proto-
type, or some other form; tracking the design and code against them; and
then managing changes to them for the rest of the project.

It's not uncommon for developers to complain about the problems associated
with traditional requirements-management practices, the most common being
that they are too rigid. Some practices can be overly rigid, but the alterna-
tive is often worse. A survey of more than 8000 projects found that the top
three reasons that projects were delivered late, over budget, and with less
functionality than desired all had to do with requirements-management prac-
tices: lack of user input, incomplete requirements, and changing requirements
(Staridish Group 1994). A survey of projects by the Software Engineering

61

Chapter 4: Software-De velopment Fundamentals

CROSS-REFERENCE

For more on controlling
feature creep, see

Section 14.2, "Mid-Project:
Feature-Creep Control."

CROSS-REFERENCE

For more on speeding up
requirements gathering,
see "Requirements
specification” in Section 6.5.

All

HARD DATA

/—1 a

HARD DATA

62

Institute reached essentially the same conclusion: more than half the projects
surveyed suffered from inadequate requirements management (Kitson and
Masters 1993).

Success at requirements management depends on knowing enough differ-
ent practices to be able to choose the ones that are appropriate for a spe-
cific project. Here are the fundamentals of requirements management:

* Requirements-analysis methodologies including structured analysis,
data structured analysis, and object-oriented analysis

e System-modeling practices such as class diagrams, dataflow diagrams,
entity-relationship diagrams, data-dictionary notation, and state-
transition diagrams

 Communication practices such as Joint Application Development
(JAD), user-interface prototyping, and general interview practices

* The relationships between requirements management and the different
lifecycle models including evolutionary prototyping, staged releases,
spiral, waterfall, and code-and-fix

Requirements management provides great development-speed leverage in
two ways. First, requirements gathering tends to be done at a leisurely pace
compared with other software-development activities. If you can pick up the
pace without hurting quality, you can shorten overall development time.

Second, getting a requirement right in the first place typically costs 50 to 200
times less than waiting until construction or maintenance to get it right
(Boehm and Papaccio 1988). The typical project experiences a 25-percent
change in requirements. Some fundamental requirements-management prac-
tices allow you to reduce the number of requirements changes. Other fun-
damental development practices allow you to reduce the cost of each
requirements change. Imagine what the combined effect would be if you
could reduce the number of changes from 25 percent to 10 percent and
simultaneously reduce the cost of each change by a factor of 5 or 10. Rapid
development would be within your grasp.

Design

Just as it makes sense to create a set of blueprints before you begin build-
ing a house, it makes sense to create an architecture and design before you
begin building a software system. A design error left undetected until sys-
tem testing typically takes 10 times as long to fix as it would if it were de-
tected at design time (Dunn 1984).

CLASSIC MISTAKE

CROSS-REFERENCE

For details on a kind of
design well suited to rapid-
development projects,

see Chapter 19,
"Designing for Change."

4.2 Technical Fundamentals

Doesn't everyone already do good design? No. My impression is that good
design receives more lip service than any other activity in software devel-
opment and that few developers really do design at all. A design architect
who works for Microsoft said that in 6 years of interviewing more than 200
candidates for software-development positions, he had interviewed only 5
who could accurately describe the concepts of "modularity" and "informa-
tion hiding" (Kohen 1995).

The ideas of modularity and information hiding are design fundamentals.
They are part of the foundation of both structured design and object design.
A developer who can't discuss modularity and information hiding is like a
basketball player who can't dribble. "When you consider that Microsoft
screens its candidates rigorously before they are even interviewed, you come
to the somewhat frightening conclusion that the situation throughout most
of the software-development world is considerably worse than 195 out of 200
developers who have major gaps in their knowledge of design fundamentals.

Here are the fundamental topics in architecture and design:

* Major design styles (such as object design, structured design, and data-
structure design)

» Foundational design concepts (such as information hiding, modularity,
abstraction, encapsulation, cohesion, coupling, hierarchy, inheritance,
polymorphism, basic algorithms, and basic data structures)

» Standard design approaches to typically challenging areas (including
exception handling, internationalization and localization, portability,
string storage, input/output, memory management, data storage,
floating-point arithmetic, database design, performance, and reuse)

* Design considerations unique to the application domain you're work-
ing in (financial applications, scientific applications, embedded sys-
tems, real-time systems, safety-critical software, or something else)

 Architectural schemes (such as subsystem organization, layering,
subsystem communication styles, and typical system architectures)

* Use of design tools

It is possible to develop a system without designing it first. Major systems
have been implemented through sheer *pding and debugging prowess, high
enthusiasm, and massive overtime—and without systematic design. However,
design serves as the foundation for construction, project scheduling, project
tracking, and project control, and as such effective design is essential to
achieving maximum development speed.

63

Chapter 4: Software-Development Fundamentals

64

By the time you get to construction, most of the groundwork for your
project's success or failure has already been laid. Both requirements man-
agement and design offer greater leverage on your development schedule
than construction does. In those activities, small changes can make a big
difference in your schedule.

Construction might not offer many opportunities for large reductions in
schedule, but construction work is so detailed and labor intensive that it's
important to do a good job of it. If your code quality isn't good to start with,
it's nearly impossible to go back and make it better. It certainly isn't time-
effective to do it twice.

Although construction is a low-level activity, it does present many occasions
to use time inefficiently or to become sidetracked on noncritical but time-
consuming tasks. You can, for example, waste time gold-plating functions
that do not need to be gold-plated, debugging needlessly sloppy code, or
performance-tuning small sections of the system before you know whether
they need to be tuned.

Poor design practices can force you to rewrite major parts of your system;
poor construction practices won't force you to do that. Poor construction
practices can, however, introduce subtle errors that take days or weeks to
find and fix. It can sometimes take as long to find an off-by-one array dec-
laration error as it can to redesign and reimplement a poorly designed mod-
ule. The total work you have to show for your debugging is a "+1" rather
than several pages of new code, but the schedule penalty is just as real.

Construction fundamentals include the following topics:

» Coding practices (including variable and function naming, layout, and
documentation)

» Data-related concepts (including scope, persistence, and binding time)

* Guidelines for using specific types of data (including numbers in
general, integers, floating-point numbers, characters, strings, Booleans,
enumerated types, named constants, arrays, and pointers)

e Control-related concepts (including organizing straight-line code, using
conditionals, controlling loops, using Boolean expressions, controlling
complexity, and using unusual control structures such as goto, return,
and recursive procedures)

» Assertions and other code-centered error-detection practices
* Rules for packaging code into routines, modules, classes, and files
e Unit-testing and debugging practices

4.2 Technical Fundamentals

* Integration strategies (such as incremental integration, big-bang
integration, and evolutionary development)

» Code-tuning strategies and practices
e The ins and outs of the particular programming language you're using

* Use of construction tools (including programming environments,

groupwork support such as email and source-code control, code
libraries, and code generators)

Adherence to some of these fundamentals takes time, but it saves time over
the life of a project. Toward the end of a project, a product manager told a
friend of mine, "You're slower than some of the other programmers on the
team, but you're more careful. There's a place for that on this team because
we have a lot of modules that have too many bugs and will need to be re-
written." That statement reveals a person who doesn't yet understand what
makes software projects take as long as they do.

When all is said and done, paying attention to construction fundamentals is
as much a risk-management practice as a time-savings practice. Good con-
struction practices prevent the creation of a rat's nest of indecipherable code
that causes your project to grind to a halt when a key person gets sick, when
a critical bug is discovered, or when a simple change needs to be made. Such
practices improve the predictability and control you have over your project
and increase the chance of delivering on time.

Software Configuration Management

Software configuration management (SCM) is the practice of managing
project artifacts so that the project stays in a consistent state over time. SCM
includes practices for evaluating proposed changes, tracking changes, han-
dling multiple versions, and keeping copies of project artifacts as they ex-
isted at various times. The project artifact managed the most often is source
code, but you can apply SCM to requirements, plans, designs, test cases,
problem reports, user documentation, data, and any other work you use
to build your product. I even used SCM in writing this book because not
using it on my last book caused too many problems.

Most software-development books treat SCM as a quality-assurance practice—
and it does have a strong effect on quality. But treating it as a QA practice
could imply that it has either a neutral or negative effect on the development
schedule. SCM is sometimes implemented in a way that hurts project effi-
ciency, but it is critical if you want to achieve maximum development speed.
Without configuration management, your teammates can change part of the
design and forget to tell you. You can then implement code that's incompat-
ible with the design changes, which eventually will require either you or your
teammates to redo your work.

65

Chapter 4: Software-Development Fundamentals

g
éfﬁ s
Lnst

66

e —

CLASSIC MISTAKE

Lack of automated source-code control is a common and irksome ineffi-
ciency. Of sites surveyed between 1987 and 1993, the Software Engineering
Institute found that more than 50 percent needed to improve their software
configuration management (Kitson and Masters 1993). On small projects, lack
of configuration management adds a few percentage points to the overall
project cost. On large projects, configuration management is a critical-path
item (Jones 1994).

Further Reading on Development Fundamentals

Many training organizations offer workshops on requirements analysis and
design. Workshops on construction and configuration management may be
more difficult to find. The most readily available source of information on
any of the topics will probably be books, so I've listed the best books on each
topic here.

Requirements management

Yourdon, Edward. Modern Structured Analysis, New York: Yourdon Press,
1989. Yourdon's book contains a survey of requirements specification
and analysis circa 1989 including modeling tools, the requirements-
gathering process, and related issues. Note that one of the most use-
ful sections is hidden in an appendix: "Interviewing and Data Gathering
Techniques."

Hatley, Derek J., and Imtiaz A. Pirbhai. Strategies for Real-Time System Speci-

fication. New York: Dorset House Publishing, 1988. Hatley and Pirbhai

emphasize real-time systems and extend the graphical notation used by
Yourdon to real-time environments.

Gause, Donald C., and Gerald Weinberg. Exploring Requirements: Quality
Before Design. New York: Dorset House, 1989. Gause and Weinberg
chart an untraditional course through the requirements-management
terrain. They discuss ambiguity, meetings, conflict resolution, con-
straints, expectations, reasons that methodologies aren't enough, and
quite a few other topics. They mostly avoid the topics that other re-
quirements books include and include the topics that the other books
leave out,

Design

Plauger, P. J. Programming on Purpose: Essays on Software Design. Engle-
wood Cliffs, N.J.: PTR Prentice Hall, 1993- This is a refreshing collec-
tion of essays that were originally published in Computer Language
magazine. Plauger is a master designer and takes up a variety of top-
ics having as much to do with being a designer as with design in the
abstract. What makes the essays refreshing is that Plauger ranges freely

4.2 Technical Fundamentals

over the entire landscape of design topics rather than restricting him-
self to a discussion of any one design style. The result is uniquely in-
sightful and thought provoking.

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press, 1993.
This book contains several sections about design, particularly design
as it relates to construction. Like the Plauger book, it describes several
design styles.

Yourdon, Edward, and Larry L. Constantine. Stru-ctured Design: Fundamen-
tals ofa Discipline of Computer Program and Systems Design, Engle-
wood Cliffs, N.J.: Yourdon Press, 1979- This is the classic text on
structured design by one of the co-authors (Constantine) of the origi-
nal paper on structured design. The book is written with obvious care.
It contains full discussions of coupling, cohesion, graphical notations,
and other relevant concepts. Some people have characterized the book
as "technically difficult," but it's hard to beat learning about a practice
from its original inventor.

Page-Jones, Meilir. The Practical Guide to Structured Systems Design, 2d Ed.
Englewood Cliffs, N.J.: Yourdon Press, 1988. This is a popular textbook
presentation of the same basic structured-design content as Yourdon
and Constantine's book and is written with considerable enthusiasm.
Some people have found Page-Jones's book to be more accessible than
Yourdon and Constantine's.

Booch, Grady. Object Oriented Analysis andDesign: With Applications, 2d
Ed. Redwood City, Calif.: Benjamin/Cummings, 1994, Booch's book dis-
cusses the theoretical and practical foundations of object-oriented
design for about 300 pages and then has 175 more pages of object-
oriented application development in C++. No one has been a more
active advocate of object-oriented design than Grady Booch, and this
is the definitive volume on the topic.

Goad, Peter, and Edward Yourdon. Object-Oriented Design. Englewood Cliffs,
N.J.: Yourdon Press, 1991. This 1s a slimmer alternative to Booch's book,
and some readers might find it to be an easier introduction to object-
oriented design.

Construction

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press, 1993.
This is the only book I know of that contains thorough discussions of
all the key construction issues identified in the "Construction" section.
It contains useful checklists on many aspects of construction as well
as hard data on the most effective construction practices. The book

contains several hundred coding examples in C, Pascal, Basic, Fortran,
and Ada.

67

Chapter 4: Software-Development Fundamentals

68

Marcotty, Michael. Software Implementation. New York; Prentice Hall, 1991.
Marcotty discusses the general issues involved in constructing software
by focusing on abstraction, complexity, readability, and correctness.
The first part of the book discusses the history of programming, pro-
gramming subculture, programming teams, and how typical program-
mers spend their time. The book is written with wit and style, and the
first 100 pages on the "business of programming" are especially well
done.

The two Bentley books below discuss programming energetically, and they
clearly articulate the reasons that some of us find programming so interest-
ing. The fact that the information isn't comprehensive or rigidly organized
doesn't prevent the books from conveying powerful insights that you'll read
in a few minutes and use for years.

Bentley, Jon. Programming Pearls. Reading, Mass.: Addison-Wesley, 1986.

Bentley, Jon. More Programming Pearls: Confessions ofa Coder. Reading,
Mass.: Addison-Wesley, 1988.

Maguire, Steve. Writing Solid Code. Redmond, W ash.: Microsoft Press, 1993.
This book describes key software-construction practices used at
Microsoft. It explains how to minimize defects by using compiler warn-
ings, protecting your code with assertion statements, fortifying sub-
systems with integrity checks, designing unambiguous function
interfaces, checking code in a debugger, and avoiding risky program-
ming practices.

Software configuration management (SCM)
These Bersoff and Babich books thoroughly cover the SCM topic.

Bersoff, Edward H. et al. Software Configuration Management. Englewood
Cliffs, N.J.: Prentice Hall, 1980.

Babich, W. Software Configuration Management. Reading, Mass.: Addison-
Wesley, 1986.

Bersoff, Edward H., and Alan M. Davis. "Impacts of Life Cycle Models on
Software ConfigurationManagement," Communicationsof 'the ACM 34,
no. 8 (August 1991): 104-118. This article describes how SCM is affected
by newer approaches to software development, especially by proto-
typing approaches.

4.3

CLASSIC MISTAKE

4.3 Quality-Assurance Fundamentals

Quality-Assurance Fundamentals

Like management and technical fundamentals, quality-assurance fundamen-
tals provide critical support for maximum development speed. When a soft-
ware product has too many defects, developers spend more time fixing the
software than they spend writing it. Most organizations have found that they
are better off not installing the defects in the first place. The key to not in-
stalling defects is to pay attention to quality-assurance fundamentals from
Day 1 on.

Some projects try to save time by reducing the time spent on quality-assur-
ance practices such as design and code reviews. Other projects—running
late—try to make up for lost time by compressing the testing schedule, which
is vulnerable to reduction because it's usually the critical-path item at the end
of the project. These are some of the worst decisions a person who wants
to maximize development speed can make because higher quality (in the
form of lower defect rates) and reduced development time go hand in hand.
Figure 4-3 illustrates the relationship between defect rate and development
time.

Most organizations
are somewhera
around this point

Development Fastest schedule E
Time (“best” schedule E
L H :r
Defects Removed

Source: Derived from dala in Applied Software Measurement (Jones 1991).

Figure 4-3. Relationship between defect rate and development time. In most cases,
the projects that achieve the lowest defect rates also achieve the shortest schedules.

A few organizations have achieved extremely low defect rates (shown on the
far right of the curve in Figure 4-3), at which point, further reducing the
number of defects will increase the amount of development time. It's worth
the extra time when it's applied to life-critical systems such as the life-sup-
port systems on the Space Shuttle'—but not when it applies to non-life-critical
software development.

69

Chapter 5: Risk Management

5.6

It is not only the

magnitude of the risk
that we need to be able
to appraise in entre-
preneurial decisions.

It is above all the

character of the risk.
Isit, for instance, the
Kind of risk we can
afford to take, or the
Kind of risk we cannot
afford to take? Or is it
that rare but singularly

important risk,

the risk we cannot
afford not to take—
sometimes regardless

102

of the odds?
Peter Drucker

On a rapid-development project, the project manager and the project
manager's boss should review the Top-10 list once a week. The most use-
ful aspects of the Top-10 list are that it forces you to look at risks regularly,
to think about them regularly, and to be alert to changes in importance.

Interim Postmortems

Although the Top-10 list is probably the most useful risk-monitoring prac-
tice, a fast-track project should also include postmortems conducted through-
out the project. Many project managers wait until the end to do a postmortem.
That produces a nice benefit for the next project, but it doesn't help you
when you really need it—on your current project! For maximum effectiveness,
conduct a small-scale postmortem after you complete each major milestone.

Risk Officer

Some organizations have found appointing a risk officer to be useful. The
job of the risk officer is to be alert to risks to the project and to keep man-
agers and developers from ignoring them in their planning. As with testing
and peer reviews, it turns out that for psychological reasons it's beneficial
to have a person whose job it is to play devil's advocate—to look for all of
the reasons that the project might fail. On large projects (50 persons or more),
the job of risk officer might be full time. On smaller projects, you can assign
someone with other project duties to play the role when needed. For the
psychological reasons mentioned, the person assigned shouldn't be the
project manager.

Risk, High Risk, and Gambling

For purposes of rapid development, some projects are risks, some are high
risks, and some are gambles. It's hard to find a software project that doesn't
involve some risk, and projects that are merely "risks" are the kind best-suited
to achieving maximum development speed. They allow you to move in an
efficient, straight line from the beginning of the project to the end. Fast
development, while not necessarily easy to achieve, is well within the grasp

of the person who understands the strategies and practices described in this
book.

High risk and rapid development make a less compatible combination. Risks
tend to extend development schedules, and high risks tend to extend them
a lot. But business realities sometimes require you to commit to an ambitious
development schedule even when a project involves many risks—vague
requirements, untrained personnel, unfamiliar product areas, strong research
elements, or all of the above.

CROSS-REFERENCE

For more on projects that
have their schedules, feature
sets, and resources dictated
o them see Section 6.6,
"Development-Speed
Trade-Offs."Formore on
code and fix, see Section
7.2, "Code-and-Fix,"

CLASSIC MISTAKE

5.6 Risk, High RisK, am

If you find yourself forced to commit to an ambitious schedule in such cir-
cumstances, be aware of the nature of the commitment. With two or three
high-risk areas, even your best schedule projections will be nearly meaning-
less. Be careful to explain to the people who depend on you that you are
willing to take calculated risks, even high risks, but more likely than not you
won't be able to deliver what everyone is hoping for. In such cases, not just

active but vigorous risk management will help you to make the best of a
difficult situation.

At the extreme end of the risk scale, some projects are scheduled so aggres-
sively that they become out-and-out gambles—they are more like the pur-
chase of a lottery ticket than a calculated business decision. About one-third
of all projects have an impossible combination of schedules, feature sets, and
resources dictated to them before they start. In such circumstances, there is
no incentive to practice risk management because the project starts out with
a 100-percent chance of failure. With no chance of meeting their schedules
through the use of any known development practices, it becomes rational
to gamble on 1000-to-1 long shots such as code-and-fix development. These
projects, which know they need maximum development speed, ironically
become the projects that are most likely to throw effective, proven speed-
oriented practices out the window.

The results are inevitable. The long shot doesn't pay off, and the project is
delivered late—much later than it would have been if the project had been
set up to take calculated risks rather than desperate gambles.

Do one-third of the projects in the industry really need to take desperate
gambles? Do one-third of the projects have business cases for taking 1000-
to-1 long shots? I don't think so. Beware of the risk level on your project,
and try to keep it in the "risk" or "high-risk" category.

Case Study 5-2. Systematic Risk Management

PEIR_ S A PEWp b o A e el LTINS

Sejuare-Cale version 3.0 had beén a disastes, overmunning s schedule by 50
percent. Fddic agreed to take over the project with version 3.5, and he hoped
to do better than the last manager had done,

“As you know, Square-Cale 3.0 didn't do very well compared 1o its planned
schedule,” he told the team at the first plaaning miccting. “It was scheduled
to take 10 months, and it took 15, We need 1o do belter. We've got 4 months
o complete a medium-sized upgrade, and 1 think that's a reasonable amount
of time for this work, Risk management is going to be a wp prionty, The fiest
thing 1 wint 1o do 18 appolnt 3 risk officer, someone who will ook for all of
the things that might go wrong on tus project. Is anyone merested?”

(continued)

103

Chapter 5: Risk Management

Case Study 5-2. Systematic Risk Management, continued

104

_%emrmoaunpommddcthcrdnmenudonxmdme.Wc hiry .

jlllhndworkadalorhmdcrdun:bewnmwmonﬂwlwtpmmmdm’i

willing to help prevent that from Inppeningapm sg shemd "Sum t’m in- 3
terested. What do [need 1o do?” :

'Theﬂmmmgyouneedmdouma&ndknmm wpﬁédmda.-
"1 want you to get tgether with each of the developers this morming and find
out what risks they're aware of, and:henlwntwgau)gulmwm;ywﬂﬂv
afternoon. We'll look at the risks and go from theee.”

That aftermoon, Eddie and Jill met in mdle’s ofﬁw‘i-:vmm mdudmg me,
thinks that the biggest risk inthcsmem 3.0 code base. It really sucks,” |
Jill said. *None of us wants 10 make any major changes to it, and there are
certain modules we don't even wand to touch, ‘

.
=

4 .

late last time partly because we didn’t coordinate well enough with uucr'
documentation. We've got 1o make mﬂm doesn't happen again. 3

“The kast big risk wmﬂngwqukmwms Thmwereakaaﬁwwm

didn’t make the cutoff for version 3.5, and I'm mfmidﬂmmdmwgwmw-
0 shoehom them in,”)mmmmmnuendommuumks b the first
three were the big ones.

“OK, 1 want us 1o -eome upwnh:dskmgemmpian fmmmm' ‘-
Eddie saic. rxemwmmdmwmxommmwwmmm
he wanted 10 rmwmwpwnskswkhthemmmme& 37

To manage the code-buse risk, chcydccklcdw amlm dlclrbug &nahﬁm:
see whether any modulﬁaimhcsystﬂnmmdy esror prane. They ; |
| month of their 4-month sehedule to focus ontmﬁmg:hammm
madules.,

For the user-documentation risk, they dedded to develop s thrownwny me:-
imerface prototype that exactly matched the appeurance of the new cc ‘ -
they'd be writing. They would not allow visual deviarions from the p '
They would also include & rep from user documentation mt}mrwmkly
management meetings, which would help them to stay in synch Mth he
documentation effort. R

For the feature-creep risk, Eddicpmlwdwulkwnﬁmomihthe ol
keting dep.mmmx “I know their number-one goal is to get the pmduce
on time.” he said “We need to restore cusiomer confidence after the s

ule problems on 3.0 'l explain the imporance ofsmlng.uryaﬂ-clcar RO
1 them, und [think thar will cut down on the feature requests.” They als

s
l

t'
‘\

(comtrmmed

5.6 Risk, High Risk, and Gambling

Case Study 5-2. Systematic Risk Management, continued

Invited Carlos from marketing to attend their risk mectings, ressoning that if
someone from marketing understood all the other risks they faced, market-
ing mlmx be less in:llnad to pile on new isks themselves,

_TDuﬂnglhcncxtlw:ks identification and replacement of the error-prone

- modules went about as planned. It muned out that about 5 percent of the moxd-

‘ ulmaccmmwdfurabumﬁopermuofdwmm They were able 1o rede-
sign and reimplement those at a careful pace. They subjected each module
to & thorough review ateach stage, and by the time they were done, they felt
comfortable that the code base could sustain the rest of the modifications they
needed to make for version 3.5, :

At the weekly risk meeting 6 weeks into the schedule, 1l ruised a new issue,
"As you know, J've been monitoring some lower-priofity risks in addivon 10
_the bigger ongs, and one of them has become more important. Bab has been
v wwkmsonepeedmupmormemuﬂcmnm and he told me a
- few weeks ago that he wasn’t sure he could meet (he revised spec. Appar-
“ently he researched the best available algorithms, implemented them, and that
~ only made the functions about 59 percent faster. The spec calls for a 100-
- percent speedup, to Boab's been trying to come up with faster algorithms. |
~told him that J wanted o s¢t a red-alert point in the schedule so that if he
. wasn't done at that point 1 could raise a warning flag. Yesterday we hit the
red-alen point, and Bob says he is nowhere near bemg done. Basically, 1 think
- he's doing software research, and there's no way to predict how long he's
- Roing to take.”

Catlos from marketing spoke up. *T was ane of the peoplc who pushed for
the speed improvement, and | think that *LO0 percent’ number is fexible. 1t's

~ more Important to me (o get the product out on time than it is 1o meet that
performance requirement © the leter. At Jeast we'll he able ro show our
cusiomers that we're responsive.”

~*“That soundsgood, Eddie said. °I Uunkawio-paccmimpmvemwew
already reached is good encugh, sol'ltteduemBubmsomemhumks That's
‘one less risk 1o worry about.”

Alfter that, there were few surprses. Mutor issues arose and were addressed
while they were still minor. Compared 1o the last project, this one seemed 4
litle boring, but no ooe minded. A few marketing people tried 1o add fearures,
‘but Cardos understood the importance of the schedule goal, and he fended
off most of the requests before development even heard about them. The team
_perfumedweu.andthcydeuvemdsqummcaswmeémonﬂ:duemm

105

Chapter 5: Risk Management

Further Reading

Boehm, Barry W., ed. Software Risk Management. Washington, DC: IEEE

Computer Society Press, 1989. This collection of papers is based on the
premise that successful project managers are good risk managers.
Boehm has collected a nicely balanced set of papers from both tech-
nical and business sources. One of the best features of the book is that
Boehm contributed about 70 pages of original writing himself. That 70
pages is a good introduction to software risk management. You might
think that a tutorial published in 1989 would seem dated by now, but
it actually presents a more forward-looking view of software project
management than you'll find most other places.

Boehm, Barry W. "Software Risk Management: Principles and Practices." IEFEE

Software, January 1991, pp. 32-41. This article hits the high points of
the comments Boehm wrote for Software Risk Management and con-
tains many practical suggestions.

Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs,

N.J.: Yourdon Press, 1994. Jones's book is an excellent complement to
Boehm's risk-management tutorial. It says almost nothing about how
to manage software risks in general; instead, it describes 60 of the most
common and most serious software risks in detail. Jones uses a stan-
dard format for each risk that describes the severity of the risk, fre-
quency of occurrence, root causes, associated problems, methods of
prevention and control, and support available through education,
books, periodicals, consulting, and professional associations. Much of
the risk analysis in the book is supported by information from Jones's
database of more than 4000 software projects.

Gilb, Tom. Principles of Software Engineering Management. Wokingham,

England: Addison-Wesley, 1988. This book has one chapter that is
specifically devoted to the topic of risk estimation. The software devel-
opment method that Gilb describes in the rest of the book puts a strong
emphasis on risk management.

Thomsett, Rob. Tinrd Wave Project Management. Englewood Cliffs, N.J.:

106

Yourdon Press, 1993. The book contains a 43-question risk-assessment
questionnaire that you can use to obtain a rough idea of whether your
project's risk level is low, medium, or high.

RAPID

DEVELOPMENT

6.1

Corelssues in
Rapid Development

Contents

6.1 Does One Size Fit All?

6.2 What Kind of Rapid Development Do You Need?
6.3 Odds of Completing on Time

6.4 Perception and Reality

6.5 Where the Time Goes

6.6 Development-Speed Trade-Offs

6.7 Typical Schedule-Improvement Pattern

6.8 Onward to Rapid Development

Related Topics
Rapid-development strategy: Chapter 2

ONCE YOU'VE LEARNED HOW TO AVOID the classic mistakes and mastered
development fundamentals and risk management, you're ready to focus on
schedule-oriented development practices. The first step in that direction is
to understand several issues that lie at the heart of maximum development
speed.

Does One Size Fit All?

You will use different practices to develop a heart-pacemaker control than
you will to develop an inventory tracking system that tracks videotapes. If
a software malfunction causes you to lose 1 video out of 1000. it might af-
fect your profits by a fraction of a percent, but it doesn't really matter. But
if a malfunction causes you to lose 1 pacemaker out of 1000, you've got real
problems.

109

Chapter 6: Core Issues in Rapid Development

Different projects have different rapid-development needs, even when they
all need to be developed "as fast as possible." Generally speaking, products
that are widely distributed need to be developed more carefully than prod-
ucts that are narrowly distributed. Products whose reliability is important
need to be developed more carefully than products whose reliability doesn't
much matter. Figure 6-1 illustrates some of the variations in distribution and

reliability.
4
o PC operating
Horizontal 2 Card ® Word procassor Spreadsheet. aFyatem
market game o ® tax program o \iainirame
® cookbook ® Videodisplay ariver T O
, o Dosidop pubbshing _ Empecdedtonsier _ bacemates coniral
n— Vertical sofware control systam ® Embedded fusk-
ent o Habel ¢ YI0eO-siore on
Distribution market o Motinglabel @ anagement o Gonernl insurance Yoolor yshom
Reai-tima ruce-
Cuslpm, o Sates-lead strck betting o Space-shuttle
iri-house tracking progmm system (smgle woftware
Tece track)
o Useful spreacshest
Personal | — ra
Applications Systems Life-criical
systems

Required Reliability

Figure 6-1. Different kinds of software require different kinds of solutions.
Practices that would be considered to be quick and dirtyfor an embedded bean -
pacemaker control might be overly rigorous for an online cookbook,

cross-REFERENCE The specific entries in the grid are intended to serve only as illustrations. You
Formore on customizing could argue about whether a video-display driver or a tax program needs to
softwareprocessesto he more reliable or whether desktop-publishing software or spreadsheet
proj;gtz’l:d;gtae;ﬂ? programs are more widely distributed. The point is that both the extent of
"Which Dimension distribution and the required reliability vary greatly among different kinds
Matters the Most?* of software. A software failure can cause a loss of time, work, money, or
human life. Some schedule-oriented development practices that are perfectly

acceptable when only time is at stake would be unconscionably reckless

when human life is at stake.

On the other hand, practices that would be considered quick and dirty in a
life-critical system might be overly rigorous for a custom business-software
application. Rapid development of limited-distribution custom software could
conceivably consist of what we think of as "workarounds" in more widely
distributed software. Glue together some pieces that solve today's problem
today, not tomorrow. Tomorrow might be too late—a late solution might be
worthless.

110

6.2

6.2 What Kind of Rapid Development Do YOU

As a result of this tremendous variation in development objectives, it's im-
possible to say, "Here's the rapid-development solution for you" without
knowing your specific circumstances. The right solution for you depends on
where you would place yourself on Figure 6-1's grid. Many products don't
fit neatly into the grid's categories, and products vary in many ways other
than degree of reliability and extent of distribution. That means that most
people will need to customize a solution for their situation. As Figure 6-2
suggests, one size does not fit all. »

Figure 6-2. One size does notfit all.

What Kind of Rapid Development

The most central issue to the topic of rapid development is determining what
kind of rapid development you need. Do you need a slight speed edge, more
predictability, better progress visibility, lower costs, or more speed at all costs?

One of the most surprising things I've discovered while doing the back-
ground research for this book is that many people who initially say they need

111

Chapter 6: Core Issues in Rapid Development

112

faster development find that what they really need is lower cost or more
predictability—or simply a way to avoid a catastrophic failure.

You can ask several questions to help determine what kind of rapid devel-
opment you need:
* How strong is the product's schedule constraint?

* Does the project's emphasis on schedule arise because it is really one
of the common "rapid-development look-alikes"?

e Is your project limited by any weaknesses that would prevent a rapid-
development success?

The following sections describe how to answer these questions.

Products with Strong Schedule Constraints

Products that truly need to focus on all-out development speed rather than
cost or predictability have a different time-value curve than typical products
have. As the value line for a typical product in Figure 6-3 shows, the value
of a typical product declines gradually as time goes by. But with a product
that has a strong schedule constraint, there is a point at which the value of
the product declines precipitously.

A

Typical products

Yalue of
Product

Producis with strong
schedule constraints

Time

Figure 6-3. Depiction ofvalue over timefor typicalproducts and products
with strong schedule constraints. There isn 't as much urgency to complete
a typical product by any particular date as there is for a product that has
a strong schedule constraint.

For a typical product, efficient development usually provides the best com-
bination of development cost and schedule performance. But maybe your
product must be ready in time for the Christmas sales season or you'll have
to wait another year. Maybe you need.to make a payroll-system change in
time to comply with a new tax law. Maybe your company is about to go
under financially, and you need the revenue from the product to save the

6.2 What Kind of Rapid Development Do You Need?

company. Or maybe you need to leapfrog a competitive product, and you
stand to double your revenue if you can beat your competitor to market by
6 weeks instead of releasing your product 2 weeks after they do.

As the graph suggests, on these projects there may be a point by which, if you
haven't released your product, you might as well not have developed it at all.
In these cases, a focus on all-out development speed can be appropriate.

Rapid-DevelopmentLook-Alikes

In some instances the demand for "rapid development" comes via a circui-
tous path from users or customers or upper management. They can apply
an incredible amount of pressure to get a product done fast, but sometimes
they really want lower cost or less risk instead. They just don't know how
to ask for those things—or don't know that those things do not go hand in
hand with all-out development speed.

Before you orient your project toward the shortest schedule rather than the
least cost, lowest risk, or best functionality, find out what's really needed. Sev-
eral rapid-development look-alikes appear to call for all-out development
speed but really call for something else; these are discussed in the follow-
ing subsections.

Runaway prevention. If the software organization has a history of overshoot-
ing its planned schedules and budgets, the customer might ask for "rapid
development." But in this case, what the customer really wants is assurance
that the project will be completed close to its target schedule and budget.

You can distinguish this rapid-development look-alike from a need for all-
out development speed either by realizing that there's no specific schedule
goal other than "as soon as possible" or, if there is a specific goal, by find-
ing that no one can explain why it matters. A history of runaway projects can
be another tip-off. The solution in this case is not the use of schedule-
oriented practices but rather the use of better risk management, project es-
timation, and management control.

Predictability. In many instances, customers want to coordinate the software-
development part of a project with revenue projections, marketing, personnel
planning, and other software projects. Although they might call for "rapid
development," they're really calling for predictability good enough to let
them coordinate related efforts. If your customers emphasize the need to
complete the software "on time" and don't have an external constraint such
as a trade show, they are probably more concerned about predictability than
out-and-out development speed. In that case, focus on efficient development,
and emphasize practices that reduce schedule risk.

113

Chapter 6: Core Issues in Rapid Development

Lowest cost. It isn't uncommon for customers to want to minimize the cost
of a software-development project. In such cases, they will talk about get-
ting the software done quickly, but they will emphasize their budget con-
cerns more than their schedule concerns.

CROSS-REFERENCE If the customers' primary concern is the cost of a project, a focus on devel-

For more on SCTed“'e opment schedule is particularly unfortunate. Although it's logical to assume
In‘ﬁ:g:fzsg;xﬁefzztj that the shortest development schedule is also the cheapest, in actuality the
shorten the schedule below ~ PTactices that minimize cost and schedule are different. Lengthening the
nominal"in Secton86. schedule somewhat beyond the nominal schedule and shrinking the team
size can actually reduce the total cost of a project. Some rapid-development

practices increase the total cost.

Fixed drop-dead date. As shown in Figure 6-3, sometimes the value of a
product declines steadily over time, and sometimes it declines precipitously
after a certain point. If there is a point at which it declines precipitously, it
seems logical to say that: "We need all-out development speed so that we
can be sure to release the product by that point."

But whether you need rapid development really depends on how much
time you have to do the project and how much time it would take to de-
velop the project using efficient-development methods. Figure 6-4 shows
two possibilities.

Time Frame 1 Time Frame 2

'|
://T— Drop-dead date
' |

Value of |
Product l

Time

Figure 6-4. Wljetheryou need to use rapid-developmentpractices depends on how
soon you need the software. If you can develop it in Time Frame 1 by using
efficient-development practices, you should do that and keep risks low instead of
focusing on speed-orientedpractices that can increase risk.

If you can complete the project in Time Frame 1 (before the drop-dead date)
by using efficient-development practices, then do that—and focus on risk-
reduction rather than development speed. That will provide the greatest like-
lihood of completing the project on time. Some rapid-development practices

114

FURTHER READING

For additional moral support In
this situation, see "Spanish
Theory Management" in
Peopleware (DeMarco and
Lister 1987).

6.2 What Kind of Rapid Development Do You Need?

reduce development time but also increase schedule uncertainty, and it would
be a mistake to use practices that increase schedule risk in this situation.

If efficient-development practices alone aren't capable of completing the
project before the drop-dead date—for example if they are capable only of
completing the project in Time Frame 2—then you'll need to use speed-
oriented practices to have any chance of completing the project on time.

Desire for free overtime. In a few instances, the customer's Cor manager's)
interest in rapid development masks a desire to improve rapid development's
bottom line by eking out as much unpaid overtime as possible. The sense
of urgency created by an ambitious schedule helps to do that.

This look-alike is easy to distinguish from true rapid development because
the customer will stress the importance of the schedule and simultaneously
refuse to provide the support needed to improve development speed through
any means other than unpaid overtime. The customer won't kick in for more
developers, improved hardware tools, improved software tools, or other
kinds of support. The customer won't be willing to make feature-set trade-
offs to achieve schedule goals. On a true rapid-development project, the
customer will be eager to consider any and all means of shortening the
schedule.

If meeting the project's schedule is important enough to put pressure on you,
it is important enough for the customer to increase the level of support for
the project. If the company asks its developers to work harder, it must be
willing to work harder, too. If you find yourself in a situation in which your
customer is simply trying to get your team to work for free, there is prob-
ably almost nothing that you can do to improve it. Customers who practice
this style of software development do not have your best interests in mind.
Your most sensible options are to refuse to work on such projects or to
change jobs.

So, Is All-Out Rapid Development Really What You Need?

It's a fact of life that customers—including end-users, marketers, managers,
and others—will always clamor for new features and new releases. But cus-
tomers are also aware of the disruption that a product upgrade can cause.
Be aware that customers expect you to balance product, cost, and schedule
for them. Of course, they will request that you provide a great product at low
cost on a short schedule, but you usually get to pick only two out of these
three desires. Releasing a low-quality product on a short schedule is usually
the wrong combination. If you release a low-quality product on tune, people
will remember that it was low-quality—not that it was on time. If you release
a late product that knocks their socks off, your customers will remember that

115

Chapter 6: Core Issues in Rapid Development

CROSS-REFERENCE

For more on the development
of Word for Windows, see

116

"An Example of Overly
Optimistic Scheduling"
in Section 9.1.

6.3

you released a knockout product; in retrospect, the late delivery won't matter
as much as it seems to now.

To determine whether customer requests justify an all-out rapid-development
effort, try to determine whether the value line of your product looks more
like the typical product or like products with strong schedule constraint
shown in Figure 6-3- Find out whether an external date is driving the sched-
ule or whether the date is really just "as soon as possible." Finally, find out
whether top management will provide the level of support you'll need for
a rapid-development effort. There's little point in going all out if you have
to do it on your own.

If you're not sure that development speed occupies top priority, take your
time and develop software you can be proud of. Develop a program that's
worth waiting for; high-quality products are harder to compete with than are
quickly delivered mediocre products.

The history of the microcomputer software industry is replete with examples
of products that were delivered late but went on to achieve immense popu-
larity. The development of Microsoft Word for Windows 1.0 was originally
scheduled to take one year and took five (lansiti 1994). Microsoft Windows
95 was delivered i1 Va years later than originally announced (Cusumano and
Selby 1995) and became one of the fastest-selling products in software his-
tory. One financial product that I worked on was delivered 50 percent later
than originally scheduled by its company but went on to become the most
popular software product in that company's 25-year history. For each of these
products, timely release (as originally defined) was not a key factor, even
though everyone thought that the development schedule was critically im-
portant at the time.

Odds of Completing on Time

Many projects are perceived to be slow; however, not all projects are slow
in the same way. Some development efforts really are slow; and others
merely appear slow because of unreachable effort estimates.

One view of software-project estimation holds that every project has one
exact time at which it should be completed. This view holds that if the project
is run well, there is a 100-percent chance that it will be completed on a
particular date. Figure 6-5 shows a graphical representation of that view.

Most developers' experience doesn't support this view. Many unknowns
contribute to software schedules. Circumstances change. Developers learn
more about the product they are building as they build it. Some practices
work better than expected, others eworse.

CROSS-REFERENCE
For more on the shortest
possible schedules, see
"Shortest Possible
Schedules" in Section 8.6.

6.3 Odds of Completing on Time

100 percent chance
Y of completing on —
planned date

Probability of
Complecting
Exactly on the
Scheduled Date

Y

Scheduled Completion Date

Figure 6-5. One view ofsoftware scheduling. Tlje project is thought to have a 100-
percent chance of being completed on a specific date.

Software projects contain too many variables to be able to set schedules with
100-percent accuracy. Far from having one particular date when a project
would finish, for any given project there is a range of completion dates, of
which some are more likely and some are less. The probability distribution
of that range of dates looks like the curve shown in Figure 6-6.

]

Probability of
Completing
Exactly on the
Scheduled Date

Scheduled Completion Date

Figure 6-6. The shape of a software schedule. Because of the unknowns thatfeed
into a software project's schedule, some completion dates are more likely and
some are less, but none are certain.

The shape of this probability curve expresses several assumptions. One is
that there is an absolute limit on how quickly you can complete any particular
project. Completion in a shorter amount of time isn't just difficult; it's impos-
sible. Another assumption is that the shape of the curve on the "early" side
isn't the same as the shape on the "late" side. Even though there is a sharp
limit to how quickly you can complete a project, there is no sharp limit to
how slowly you can complete one. Since there are more ways to make a
project late than there are to make it early, the slope of the curve on the late
side 1s more gradual than it is on the early side.

117

6.4

6.4 Perception and Reality

The area on the far left side of the graph is the "impossible-development
zone." This zone represents a level of productivity that no project has ever

achieved. Projects that are scheduled in this zone are guaranteed to overrun
their planned schedules.

The area on the left side of the curve is the "rapid-development zone." A
project that is completed in this zone is considered to be rapid because it had
less than a 50-percent chance of being completed in the scheduled time. A
development team that completes a project in this zone has beaten the odds.

The area in the middle of the curve is the "efficient-development zone." A
project that is completed in this zone is considered to be efficient because
it has neither beaten the odds nor been beaten by them. Most likely, the
project has come in close to its estimated completion date. Effective software-
development organizations consistently schedule and complete their projects
in this zone, which represents a good combination of schedule and cost.

The area on the right side of the curve is the "slow-development zone." A
project that is completed in this zone is considered to be slow because it
actually had a better than 50-percent chance of coming in earlier. As far as
the schedule is concerned, a project that has finished m this zone without
intending to has blown it. Success at 50/50 scheduling depends both on
accurate estimation and on getting an accurate estimate accepted, topics
discussed in detail in Chapters 8 and 9.

Perception and Reality

Suppose that six months from now you plan to move to a new town 100
miles away and build a new house. You arrange with Honest Abe's Construc-
tion Company to construct the house for you. You agree to pay Abe $100,000,
and Abe agrees to have the house ready in six months so that you can move
into it when you move to town. You've already bought the site, and Abe
agrees that it's suitable. So you shake hands, pay him half the money as a
down payment, and wait for your house.

After a few weeks, you get curious about how work on the house is going,
so one weekend you drive the 100 miles to the site to take a look at it. To
your surprise, all you see at the site is an area where the dirt has been lev-
eled. No foundation, no framing, no other work at all. You call Honest Abe
and ask, "How's the work on my house going?" Abe says, "We're getting kind
of a slow start because of another house that we've been finishing. I built

some slack into iny estimate for your house, though, so there's nothing to
worry about."

119

Chapter 6: Core Issues in Rapid Development

CROSS-REFERENCE
For details on problems

associated with unrealistic
schedules, see Section 9.1,

120

"Overly Optimistic
Scheduling."

Your job gets busy again, and by the time you have a chance to look at your
house's progress again, three months have passed. You drive to the site again,
and this time the foundation has been poured, but no other work is visible.
You call the contractor, who says, "No problem. We're right on schedule."
You're still nervous, but you decide to take Abe's word for it.

The fourth and fifth months go by. You call Abe a few times to check on
progress, and each time he says it's going great. At the beginning of the sixth
month, you decide to drive to look at the house one more time before it's
finished. You're excited to see it. But when you get to the site, the only thing
you see 1s the frame for the house. There's no roofing, siding, plumbing,
wiring, heating, or cooling. You're nervous and tense, and you decide to
check some of Honest Abe's references. You find that once in a while Abe
has managed to complete a house when promised, but most of the time his
houses are anywhere from 25 percent to 100 percent late. You're irate. "We're
five months into a six-month schedule, and you hardly have anything done,"
you growl at him. "When am I going to get my house? I need to move into
it a month from now." Abe says, "My crew is working as hard as possible.
You'll get your house on time. Trust me."

Do you decide to trust Abe? Of course not! Not with his track record and the
progress you've seen so far.

Yet in similar cycles in software development—with similar time frames and
even larger amounts of money—we expect our customers to want less in the
way of signs of progress than we would expect from someone building a
house for us. We expect them to sign off on a set of requirements and then
just sit tight for weeks or months or even years before we have anything tan-
gible to show them. No wonder customers get nervous! No wonder custom-
ers think that software development takes a long time!

Even if you're completely on schedule, be aware that the perception of slow
development can affect your project as much as the reality. Even though we
do it all the time, it's unreasonable to expect customers to sit tight for months
on end, and it's part of our job to provide them with steady signs of progress.

Unrealistic Customer Expectations

Sometimes overcoming the perception of slow development requires more
than providing steady signs of progress. Most of today's projects are sched-
uled in the rapid or impossible zones. Most projects lack the planning and
resource commitments needed to meet their aggressive schedules. The project
planners often do not even realize just how ambitious their schedules are, and,
as Figure 6-9 suggests, they are usually completed in the slow zone.

6.4 Perception and Reality

4 Most projects are
scheduled in one of
these zones

Most projects are

Probability of ' completedin one of
Completing : these zones
Exactly on the :

Scheduled Date 2

Scheduled Completion Date

Figure 6-9. Typical planning in relation to the software-schedule curve. Because
of unrealistic expectations, mostprojects will be perceived as slow even ifthey are
completed in the efficient or rapid zones.

The gap between the scheduled completion date and the actual completion
date accounts for much of the perception that software projects are slow. If
the average project is scheduled in the impossible zone but staffed and
completed in the efficient zone, people will consider it to have failed even
though its developers have completed it efficiently and might actually have
completed it as quickly as possible given the resources provided.

Overcoming the Perception of Slow Development

In general terms, you can overcome the problem of slow development in
either of two ways:

» Address the reality ofslow development. Make the actual schedules
shorter by moving from slow development to efficient development
or by moving from efficient development to rapid development.

» Address the perception ofslow development. Eliminate wishful thinking,
and make planned schedules more realistic by lengthening them to
close the gap between planned and actual completion dates. Use
practices that highlight progress visibility. Sometimes customers don't
want increased development speed as much as they just want you to
keep them informed.

The development speed zone you're in currently will determine whether you
should focus on slow development itself or on the perception of slow de-
velopment. Most often, you'll need to address the problem on both levels.

121

Chapter 6: Core Issues in Rapid Development

6.5

CROSS-REFERENCE

For details on figuring out

where the time goes on your

own projects, see Chapter

122

26, "Measurement."

Where the Time Goes

One strategy for achieving rapid development is to determine the area in
which most of the time is spent on a typical project and then try to reduce
that time. You can shrink some areas more readily than others, and attempt-
ing to reduce some areas can inadvertently lengthen the schedule.

You can view time on a software project from many angles, and the differ-
ent views produce different insights into where the time goes. The next
subsection presents the classic (phase-by-phase) view, and the subsections
after that present other views.

The Classic View

Most projects start outin anill-defined, pre-requirements phase that can last
for quite a long time. At some point, requirements gathering starts in earnest,
and at some point after that, software development officially begins. The
post-requirements activities tend to be the better defined part of the project.
Table 6-1 provides a rough idea of where the time is spent on post-require-
ments activities on efficiently run small and large projects.

Table 6-1. Approximate Activity Breakdown by Size of Project

Small Project Large Project

Activity (2,500 lines of code) (500,000 lines of code)
Architecture/design 10% 30%

Detailed design 20% 20%

Code/debug 25% 10%

Unit test 20% 5%

Integration 15% 20%

System test 10% 15%

Source: Adapted from Code Complete (McConnell 1993).

The most time-expensive activities of a small project are the construction
activities of detailed design, code/debug, and unit test. If you were able to
magically eliminate them, you could cut your project's effort by 65 percent.
On a large project, construction activities take up less of the total effort.
Magically eliminating them would reduce your project's effort by only about
35 percent.

CLASSIC MISTAKE

|

HARD DATA

HARD DATA

CROSS-REFERENCE

For more on the importance
of avoiding rework, see
Section 4,3, "Quality-
Assurance Fundamentals,”

CROSS-REFERENCE
For more on feature creep,
see Section 14.2, "Mid-
Project: Feature-Creep
Control."

6.5 Where the Time Goes

Most of us have learned through hard experience not to arbitrarily abbrevi-
ate the upstream activities of architecture and design. Cutting design time by
5 percent might seem as though it would reduce the development schedule
by 5 percent, but what is more likely to happen is that any time saved by
shortchanging design will be paid back with interest during the later stages
of the project, (Actually, the amount you'll pay back will seem more like
usury than interest.) Put another way, a design defect that takes an hour-and-
a-half to fix at design time will take anywhere from two days to a month to
fix if it isn't detected until system testing (Pagan 1976).

A more effective strategy than trying to abbreviate the earlier stages arbitrarily
is to perform them as efficiently as possible or to pick practices that require
less design. (An example would be using a code library for part of the sys-
tem.) You're more likely to reduce total development time by spending more
time in upstream activities, not less.

Soft Spots

After surveying more than 4000 projects, Capers Jones reported that the soft-
ware industry on the whole is probably about 35 percent efficient (Jones
1994). The other 65 percent of the time is spent on harmful or unproduc-
tive activities such as use of productivity tools that don't work, repair of
carelessly developed modules, work lost because of lack of configuration
control, and so on. Where might time be saved? The next few subsections
describe some of those areas.

Rework. Reworking defective requirements, design, and code typically con-
sumes 40 to 50 percent of the total cost of software development (Jones
1986b; Boehm 1987a). Correcting defects early, when they're cheapest to
correct and when such corrections preempt later rework, represents a power-
ful opportunity to shorten your projects.

Feature creep. Feature creep can arise from requirements changes or devel-
oper gold-plating. The typical project experiences about a 25-percent change
in requirements throughout its development, which adds more than 25-per-
cent effort to the project (Boehm 1981, Jones 1994). Failing to limit changes
to those that are absolutely essential is a classic development-speed mistake,
and eliminating feature creep goes a long way toward eliminating schedule
overruns.

123

Chapter 6: Core Issues in Rapid Development

CROSS-REFERENCE

For more on requirements

analysis, see Section 141,
"Early Project: Feature-Set

Reduction."

124

CLASSIC MISTAKE

Requirements specification. An activity that isn't shown in Table 6-1 is re-
quirements specification. Whereas the activities listed in Table 6-1 are con-
cerned with specifying the solution to a problem, requirements specification
is concerned with specifying the problem itself. It is more open-ended than
other development activities, and the amount of time you spend gathering
requirements doesn't bear any particular relationship to the total time you'll
spend building the program. You could spend 12 months amassing require-
ments for a system that will take 36 months to build. Or you could spend
the same 12 months mediating among several groups to define a system that
will ultimately take only 6 months to build. Typically, requirements specifi-
cation takes between 10 percent and 30 percent of the elapsed time on a
project (Boehm 1981).

Because requirements gathering is such an open-ended activity, it's possible
to burn huge amounts of time unnecessarily. A moderate sense of urgency
during requirements gathering can help to prevent a full-scale sense of panic
at the end of a project.

Rapid-development practices that have been developed to combat wasted
time during requirements specification include Joint Application Develop-
ment (JAD), evolutionary prototyping, staged releases, and various risk

management approaches. These practices are described elsewhere in this
book.

The "fuzzy frontend." Another kind of activity that isn't described in Table
6-1 is the "fuzzy front end." The total time needed to develop a software
product extends from the point at which the product is just a glimmer in
someone's eye to the point at which the working software is put into the
customer's hands. At some time after the software is a glimmer in someone's
eye, a "go" decision is made, and the software project officially commences.
The time between the initial glimmer and the "go" decision can be a long time
indeed. That "fuzzy front end" can consume much of the time available for
getting a product to market. A typical pattern is described in Case Study 6-1.

Case Study 6-1. Wandering in the Fuzzy Front End

BT e et b e bGn TS REE § G adine SOkl sb el el el 2o L ET LI L T BEa T - L w Lener T s S

Bill 1s a nunager at Giga Sale Insurance Company. Here are the notes he took
abourt the approval process for Giga-Quote 1.0, an insurance guoie program

Octaber 1 We want to develop a new quote program for our field agents. We
want the program to upload the day's quotes tox the head office each might.
[t will take about 12 months to complete its development, sO we can't get it
done in time for this January’s rute increase, but we should be able to get it
done for the rate increase after that (15 months from now). We should aim
to complete it by November 1 (13 months from now) so that we have time

(comtinued)

)

>

FURTHER READING
For more on the fuzzy front
end, see Developing Products
in Half the Time (Smith and

Reinertsen 1991).

6.5 Where the Time Goes

Case Study 6-1. Wandering in the Fuzzy Front End, continued

to train the field agents before the new rates go into effect 1l propese the
project at the exccutive committee meeting at the end of the month

January 2. The Giga-Quote praposal got bumped off the executive comumit-
tee agenda twvo months in o row, Tinally brought it up 21 the end of Decembes
and got the approval 1o daw up a business-case analysis.

February 1. Business-case analysis is complets; it just needs o be reviewed.
March 1. Two key sales manugers are on vacation, The business-case analy.
sis can't be approved until they've reviewed it

Aprid 15, All reviews are complete, and the project is a “go.” The executive
committee stll wunts the project complated by November 1, though, so the
team had better stant voding now

Because no formal management controls are in place—no schedule, no
budget, no goals, and 110 objectives—progress during this period can be hard
to track. Moreover, managers tend to give this phase a low priority because

the financial impact is distant. You can lose time during the front end in
several ways:

* No one has been assigned responsibility for the product's development.

* No sense of urgency exists for making a go/no-go decision about
developing the product.

* No mechanism exists to keep the product from slipping into dormancy.

* No mechanism exists to revive the product once it has slipped into
dormancy.

» Key aspects of the product's viability—technical feasibility and market
appeal—can't be explored until the product receives budget approval.

e The product must wait for an annual product-approval cycle or bud-
geting cycle before it can receive budget approval.

* The team that develops the product isn't built from the team that
worked for the product's approval. Time and momentum are lost

assembling the development team, familiarizing it with the product,
and handing off the product to it.

The effort expended in the front end of a project is usually low, but the cost
resulting from delayed time-to-market can be high. The only way to recap-
ture a month wasted on the front end is to shorten the product-development
cycle by a month on the back end. Shortening the full-scale development
effort by a month costs far more than shortening the front end by the same

amount. The front end presents one of the cheapest and most effective rapid-
development opportunities available.

125

Chapter 6: Core Issues In Rapid Development

6.6

With rare exceptions,
initial resource esti-
mates and schedules
are unacceptable.
This is not because
the programmers are
unresponsive, but
because the users
generally want more
than they can afford.
If the job doesn't fit
the available schedule
and resoureces, it
must either be pared
down or the time and
resources increased.

Watts Humphrey

126

Development-Speed Trade-Offs

One of the philosophies undergirding this book is that it is better to make
trade-off decisions with your eyes open than closed. If development speed
is truly your top priority, then go ahead and increase the cost of the project
and compromise the product's feature set in order to deliver it on time. But
understand the implications of the decisions you make. Don't close your eyes
and hope that somehow you'll be able to optimize your project for sched-
ule, cost, and features all at the same time. You won't. Instead, you'll end
up optimizing it for none of them; you'll waste time and money and deliver
a product with less functionality than you otherwise could have.

Schedule,Cost, andProductTrade-Offs

A trade-off triangle with schedule, cost, and quality at its corners is a gen-
eral management fundamental. In software, however, having a "quality"
corner on a trade-off triangle doesn't make much sense. A focus on some
kinds of quality reduces cost and schedule, and on other kinds increases
them. In the software arena, a better way to think of trade-offs is among
schedule, cost, andproduct. The product corner includes quality and all other
product-related attributes including features, complexity, usability, modifi-
ability, maintainability, defect rate, and so on. Figure 6-10 illustrates the soft-
ware trade-off triangle.

schedule

Cost Prodoct

Figure 6-10. Software trade-offtriangle. You have to keep schedule, cost, and
product in balancefor the project to succeed.

To keep the triangle balanced, you have to balance schedule, cost, and prod-
uct. If you want to load up the product corner of the triangle, you also have
to load up cost or schedule or both. The same goes for the other combina-
tions. If you want to change one of the corners of the triangle, you have to
change at least one of the others to keep it in balance.

To help me think about which option to manipulate, during planning dis-
cussions I like to visualize a large cardboard triangle with the corners labeled
"schedule," "cost," and "product." The customers hold the corner or corners

;::."Z a
L)
Wl e e A

CLASSIC MISTAKE

CROSS-REFERENCE
For more on negotiating in
difficut environments, see

Section 9.2, "Beating
Schedule Pressure."

CROSS-REFERENCE
Fordetailson the
relationship between detect
rate and development time,
see Section 4.3, "Quality-
Assurance Fundamentals."

CROSS-REFERENCE

For details on how to use this
kind of quality to reduce
development time,

see Chapter 14,
"Feature-Set Control."

6.6 Development-Speed Trade-Offs

that they want to control. Our job as software developers is to let custom-
ers show us which corners they are holding and then to teil them what has
to be done to balance the triangle. If a customer is holding the "product" and
"cost" corners, we tell them what the "schedule" corner has to be. If they are
holding only the "product" corner, we can give them a variety of cost-and-
schedule combinations. But we developers absolutely must have at least one
corner to hold on to. If your customer won't give you a corner of the triangle,
you usually can't do the project.

Jim McCarthy reports that in informal polling he has found that about 30 to
40 percent of all development projects suffer from simultaneously dictated
features, resources, and schedules (McCarthy 1995a). If schedule, cost, and
product aren't initially in balance—and they rarely are—that suggests that
30 to 40 percent of all development projects start out with no ability to bal-
ance their project characteristics for success. When a customer hands you a
product definition, a fixed cost, and a fixed schedule, they are usually #ry-
ing to put a 10-pound product into a 5-pound sack. You can try to force the
10-pounder into the sack, stretch the sack, and tear the sack, but in the end
all you'll do is wear yourself out—because it just won't fit. And you'll still
have to decide whether you want to get a bigger sack or put less into the
sack you have.

Quality Trade-Offs

Software products have two kinds of -quality, which affect the schedule in
different ways. One kind of quality is a low defect rate. To a point, low
defects and short development times go together, so there is no way to trade
off that kind of quality for schedule. The road to the shortest possible sched-
ule lies in getting the product right the first time so that you don't waste time
reworking design and code.

The other kind of quality includes all the other characteristics that you think
of when you think of a high-quality software product—usability, efficiency,
robustness, and so on. Attention to this kind of quality lengthens the devel-
opment schedule, so there is an opportunity for trading off this kind of
quality against the schedule.

Per-Person-Efficiency Trade-Off

Is there a conflict between trying to achieve the greatest per-person produc-
tivity and the greatest schedule efficiency? Yes, there is. The easiest way to
maximize per-person productivity is to keep the team size small. One of the
easiest ways to shorten a software schedule is to increase team size, which
increases total productivity but usually makes each person less efficient.
Rapid development isn't always efficient.

127

Chapter 6: Core Issues in Rapid Development

6.7 Typical Schedule-iImprovement Pattern

FURTHER READING

For a similar discussion, see

"Capability Maturity Model for

128

. Software, Version 1.1°
(Paulketal.1993).

Organizations that try to improve their development speed by moving toward
efficient development follow a predictable pattern. If you take 100 typical
projects, you'd find that their chances of coming in on time would look like
Figure 6-11.

Planned schedule 50/50 schedule

Probability of
Completing
Exactly on the
Scheduled Date

Scheduled Completion Date

Figure 6-11. Typical-development schedule curve. Typical projects make schedule
plans that they have almost no chance of meeting.

Among typical projects, the spread of project performance is wide, and many
of the projects have severe overruns. Look at how much of the curve in
Figure 6-11 is to the right of the planned-schedule line on typical projects.
Few typical projects come anywhere close to meeting thek cost or sched-
ule goals.

As Figure 6-12 shows, among efficient-development projects, the schedule
spread is narrower, with most projects coming in close to their cost and
schedule targets. About half the projects finish earlier than the target date,
and about half finish later. The planned schedules are longer than they are
in typical development, but the actual schedules are shorter. This is partly
a result of learning how to set targets more realistically and partly a result
of learning how to develop software faster. The move from wishful think-
ing to meaningful project planning is a big part of what it takes to move from
typical development to efficient development.

6.7 Typical Schedule-Improvement Pattern

Planned schedule and 50/50
schedule are the same

Probability of
Completing
Exactly on the
Scheduled Date

Scheduled Completion Date

Figure 6-12. Efficient-development schedule curve. Planned schedules in efficient

projects are longer (ban planned schedules in typical projects, but"~actual sched-
ules are shorter,

Once you've achieved efficient development, the improvement pattern de-
pends on whether you want to improve raw development speed or sched-
ule predictability or both. Ideally, you could employ practices that would give
you the tall, skinny curve shown in Figure 6-13-

1

Probability of

Completing
Exactly on the
Scheduled Date

-

Scheduled Completion Date

Figure 6-13. Ideal rapid-development schedule curve. Ifevery single thing goes as
planned, the result is great speed and predictability.

Unfortunately for all of us, the ideal curve in Figure 6-13 is as elusive in soft-
ware development as it is in fad dieting. As shown in Figure 6-14, that means
that most rapid-development practices are tilted either toward increasing
development speed or reducing schedule risk, but not both.

129

Chapter 6: Core Issues in Rapid Development

130

6.8

Probability of
Completing
Exactly on the
Scheduled Date

Scheduled Completion Date

Figure 6-14. Scheduling options. Rapid development canfocus on either
increasing development speed or reducing schedule-related risks.

When you choose rapid-development practices, you need to decide whether
you would rather improve the chance of delivering a product earlier or re-
duce the risk that the product will slip past a certain date. The rest of the
book describes such practices.

Onward to Rapid Development

The remaining chapters in this part of the book describe approaches that
contribute to rapid development. Here are the practices:

* Lifecycle Planning

Estimation

Scheduling

Customer-Oriented Development

Motivation

Teamwork

Team Structure

Feature-Set Control

Productivity Tools
* Project Recovery

Some of these topics could be considered as part of what I have described
as "development fundamentals" or "efficient development." Because these
approaches are critical to achieving maximum development speed, though,
they are discussed in this part of the book.

Further Reading

Further Reading

DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press,
1982. This book contains much of the inspiration for this chapter's
discussion of the shape of software schedules. DeMarco paints a hu-
morous and sometimes painfully vivid picture of current estimating
practices—which as far as I can tell haven't changed since he published
his book in 1982. He lays out one approach for improving estimation

and scheduling.

Martin, James. Rapid Application Development. New York: Macmillan Pub-
lishing Company, 1991. This book presents a different perspective on
the core issues of rapid development for IS applications.

Smith, P.O., and D.G. Reinertseiv. Developing Products in Halfthe Time. New
York: Van Nostrand Reinhold, 1991. Although not about software de-
velopment specifically, this book contains many insights that relate to
developing software products more rapidly. Chapter 3 contains a full
discussion of the "fuzzy front end."

131

Lifecycle Planning

Contents

7.1 Pure Waterfall

7.2 Code-and-Fix

7.3 Spiral

7.4 Modified Waterfalls

7-5 Evolutionary Prototyping

7.6 Staged Delivery

7.7 Design-to-Schedule

7.8 Evolutionary Delivery

7.9 Design-to-Tools

7.10 Commercial Off-the-Shelf Software
7.11 Choosing the Most Rapid Lifecycle for Your Project

Related Topics

Evolutionary delivery: Chapter 20

Evolutionary prototyping: Chapter 21

Staged delivery: Chapter 36

Summary of spiral lifecycle model: Chapter 35
Summary of lifecycle model selection: Chapter 25

EVERY SOFTWARE-DEVELOPMENT EFFORT goes through a "lifecycle,"
which consists of all the activities between the time that version 1.0 of a
system begins life as a gleam in someone's eye and the time that version
6.74b finally takes its last breath on the last customer's machine. A lifecycle
model is a prescriptive model of what should happen between first glimmer
and last breath.

For our purposes, the main function of a lifecycle model is to establish the
order in which a project specifies, prototypes, designs, implements, reviews,
tests, and performs its other activities. It establishes the criteria that you use
to determine whether to proceed from one task to the next. This chapter

133

Chapter 7: Lifecycle Planning

13#

focuses on a limited part of the full lifecycle, the period between the first glim-
mer and initial release. You can direct this focus either to new product de-
velopment or to maintenance updates of existing software.

The most familiar lifecycle model is the well-known waterfall lifecycle model,
which has some equally well-known weaknesses. Other lifecycle models are
available, and in many cases they are better choices for rapid development
than the waterfall model is. (The waterfall model is described in the next
section, "Pure Waterfall.")

By defining the master plan for the project, the lifecycle model you choose
has as much influence over your project's success as any other planning
decision you make. The appropriate lifecycle model can streamline your
project and help ensure that each step moves you closer to your goal. De-
pending on the lifecycle model you choose, you can improve development
speed, improve quality, improve project tracking and control, minimize
overhead, minimize risk exposure, or improve client relations. The wrong
lifecycle model can be a constant source of slow work, repeated work,
unnecessary work, and frustration. Not choosing a lifecycle model can pro-
duce the same effects.

Many lifecycle models are available. In the next several sections, I'll describe
the models; and in the final section, I'll describe how to pick the one that
will work best for your project.

Case Study 7-1. Ineffective Lifecycle Model Selection

v oireon odemis

The field agents at Giga-Safe were clamoring for an update 10 Giga-Quote 1.0,
both to correct defects and 1o fix some annoying user-interface glitches. Bill
had been remstated as the project manager for Giga-Quote 1.1 afier being
removed at the end of Giga-Quote 1.0, and he brought in Randy for some
advice. Randy was a high-priced consultant he had met a1 a sports bar.

“Here's what you should do," Randy said. *You had a lot of scheédule prob-
lems last time, 50 this tune you need to omanize your project for all-out de-
velopient speed. Prototyping is the fastest approach, 50 Have your téam use
that.” Bill thought that sounded good, so when he met with the team later that
day, he told them 16 use prototyping.

Mike was the technical lead on the project, and he was surprised. “Bill, I don’t
follow your reasoning,” he said. “We've got 6 weeks 1o fix a bunch of bugs
and make some minor changes 1o the Ul What do you want a prototype far?”*
“We need a prototype to speed up the project,” Bill said testily. "Prototyping
1s the newest, fastest approach, and that's what [want you to use. Is there
some kind of pltlb[l:ﬂl with thar”

(continued)

Chapter 7: Lifecycle Planning

152

7.9

CROSS-REFERENCE
Formore on productity
tools, see Chapter 15,
"Productivity Tools;'

and Chapter 31,
"Rapid-Development
Languages (RDLs)."

In evolutionary delivery, your initial emphasis is on the core of the system,
which consists of lower level system functions that are unlikely to be changed
by customer feedback.

#incremental Development Practices.

The phirase “incremental development practices® refers to development prac- ‘j
tices that allow a program o be developed and delivered in stages. Incremen-
tal practices reduce nsk by breaking the project into a series of small
subprofects. Completing small subprojecis tends to be ecasier than complet-
ing a single monohthic project Incremental development practices increase
progress visibility by providing finished, operational picces of a system long, &
before vou could make the complete system opeeational. These practices
provide a greater ability to make midcourse changes in direction because the
sysiem is brought 10 a shippable state severu! times during its development—
vou canuse any of the shippable versions as a pumping-off point rather than
accding to wal until the very end.

Lifecycle models that support incremental development include the spiral,
evolutionary-prototyping, staged-delivery, and evolutionary-delivery models
(discussed earlier in this chapter).

- e

—

Design-to-Tools

The design-to-tools lifecycle model is a radical approach that historically has
been used only within exceptionally time-sensitive environments. As tools
have become more flexible and powerful—complete applications frame-
works, visual programming environments, full-featured database program-
ming environments—the number of projects that can consider using
design-to-tools has increased.

The idea behind the design-to-tools model is that you put a capability into
your product only if it's directly supported by existing software tools. If it isn't
supported, you leave it out. By "tools," I mean code and class libraries, code
generators, rapid-development languages, and other software tools that dra-
matically reduce implementation time.

As Figure 7-12 suggests, the result of using this model is inevitably that you
'won't be able to implement all the functionality you ideally would like to
include. But if you choose your tools carefully, you can implement most of
the functionality you would like. When time is a constraint, you might ac-
tually be able to implement more total functionality than you would have
been able to implement with another approach-—but it will be the function-
ality that the tools make easiest to implement, not the functionality you
ideally would like.

7.10 Commercial Off-the-Shelf Software

Functionality
f supportad by the tools
| |
Functionality that
will not be in the
product
= Functionality that will
be built

Ideal funclionality

Figure 7-12. Design-to-tools product concept. Design-to-tools can provide excep-
tional development speed, but it typically provides less control over your product's
functionality than other lifecycle models would provide.

This model can be combined with the other flexible lifecycle models. You
might conduct an initial spiral to identity the capabilities of existing software
tools, to identify core requirements, and to determine if the design-to-tools
approach is workable. You can use a design-to-tools approach to implement
a throwaway prototype, prototyping only the capabilities that can be imple-
mented easily with tools. Then implement the real software using one of the
other lifecycle models. You can also combine this model with staged deliv-
ery, evolutionary delivery, and design-to-schedule.

The design-to-tools model has a few main disadvantages. You lose a lot of
control over your product. You might not be able to implement all the fea-
tures that you want, and you might not be able to implement other features
exactly the way you want. You become more dependent on commercial
software producers—on both their product strategies and their financial sta-
bilities. If you're writing small, mostly disposable programs, that might not
be much of a problem; but if you're writing programs that you intend to
support for a few years, each vendor whose products you use potentially
becomes a weak link in the product chain.

7.10 Commercial Off-the-Shelf Software

One alternative that is sometimes overlooked in the excitement surround-
ing a new system is the option to buy software off the shelf. Off-the-shelf
software will rarely satisfy all your needs, but consider the following points.

153

Chapter 7: Lifecycle Planning

CROSS-REFERENCE
For detais on problems
associated with relying
on outside vendors for
technical products, see

Chapter 28, "Outsourcing."

154

711

off-the-shelf software is available immediately. In the intervening time be-
tween when you can buy off-the-shelf software and when you could release
software of your own creation, your users will be provided with at least some
valuable capabilities. They can learn to work around the products' limitations
by the time you could have provided them with custom software. As time
goes by, the commercial software might be revised to suit your needs even
more closely.

Custom software probably won't turn out to match your mental vision of the
ideal software. Comparisons between custom-built software and off-the-shelf
software tend to compare the actual off-the-shelf software to the idealized
custom-built software. However, when you actually build your own software,
you have to make design, cost, and schedule concessions, and the actual
custom-built product will fall short of the ideal you envisioned. If you were
to deliver only 75 percent of the ideal product, how would that compare to
the off-the-shelf software? (This argument applies to the design-to-tools
model, too.)

Choosing the Most Rapid
Lifecycle for Your Project

Different projects have different needs, even if they all need to be developed
as quickly as possible. This chapter has described 10 software lifecycle
models, which, along with all their variations and combinations, provide you
with a full range of choices. Which one is fastest?

There is no such thing as a "rapid-development lifecycle model" because the
most effective model depends on the context in which it's used. (See Fig-
ure 7-13.) Certain lifecycle models are sometimes touted as being more rapid
than others, but each one will be fastest in some situations, slowest in oth-
ers. A lifecycle model that often works well can work poorly if misapplied
(as prototyping was in Case Study 7-1).

To choose the most effective lifecycle model for your project, examine your
project and answer several questions:

* How well do my customer and I understand the requirements at the
beginning of the project? Is our understanding likely to change signifi-
cantly as we move through the project?

* How well do I understand the system architecture? Am I likely to need
to make major architectural changes midway through the project?

* How much reliability do I need?

* How much do I need to plan ahead and design ahead during this

project for future versions?
(continued on page 156)

7.11 Choosing the Most Rapid Lifecycle for Your project

Dinner Menu LJ..
Welcome to le Cafe de Lifecycle Rapide. Bon Appetit!

Entrees

Spiral
Handmade rotini finished with a risk-reduction sauce.
$1595

EvolutionaryDelivery
Mouth-watering melange of staged delivery and evolutionary prototyping.
$1595

Staged Delivery
Afive-course feast. Ask yourserver for details,
$14.95

Design-to-Schedule
Methodology medley, ideal for quick executive lunches.
$1195

Pure Waterfall
A classic, still made from the original recipe.
$14.95

Salads

Design-to-Toois
Roast canard generously stuffed with juiienned multi-color beans.
Market Price

Commercial Off-the-Shelf Software
Chef's alchemic fusion of technology du jour. Selection varies daily.

$4.95

Code-and-Fix
Bottomless bowl of spaghetti lightly sprinkled with smoked design
and served with reckless abandon.

$5.95

Figure 7-13. Choosing a lifecvcle model. No one lifecycle model is bestfor ai
projects. The best lifecycle modelfor any particular project depends on that
project's needs.

155

Chapter 7: Lifecycle Planning

* How much risk does this project entail?
e Am I constrained to a predefined schedule?
* Do I need to be able to make midcourse corrections?

* Do I need to provide my customers with visible progress throughout
the project?

* Do I need to provide management with visible progress throughout
the project?

* How much sophistication do I need to use this lifecycle model
successfully?

CROSS-REFERENCE

For more on why a linear,
waterfall-ike approach is
most efficient, see "Wisdom
of Stopping Changes
Altogether" in Section 14.2.

After you have answered these questions, Table 7-1 should help you decide
which lifecycle model to use. In general, the more closely you can stick to
a linear, waterfall-like approach—and do it effectively—the more rapid your
development will be. Much of what I say throughout this book is based on
this premise. But if you have reasons to think that a linear approach won't
work, it's safer to choose an approach that's more flexible.

Table 7-1. Lifecycle Model Strengths and Weaknesses

R IR LI AR VIRV E AL SITTEX TP

Lifecycle Model Pure Code-and- Modified Evolutionary
Capability Waterfall Fix Spiral Waterfalls Prototyping
Works with poorly Poor Poor Excellent Fair to Excellent
understood requirements excellent

Works with poorly Poor Poor Excellent Fair to Poor to
understood architecture excellent fair
Produces highly reliable Excellent Poor Excellent Excellent Fair
system

Produces system with Excellent Poor to Excellent Excellent Excellent
large growth envelope fair

Manages risks Poor Poor Excellent Fair Fair

Can be constrained to Fair Poor Fair Fair Poor

a predefined schedule
Has low overhead Poor Excellent Fair Excellent Fair
Allows for midcourse Poor Poor to Fair Fair Excellent
corrections excellent

Provides customer Poor Fair Excellent Fair Excellent
with progress visibility

Provides management Fair Poor Excellent Fair to Fair

with progress visibility excellent

Requires little manager Fair Excellent "Poor Poor to Poor

or developer sophistication fair

156

SRS IITATITENAGLETIASMI S Lt TR M TASIET i AT i AR FA BRI AT &% 23 & SV Tory s o 1ne

7.11 Choosing the Most Rapid Lifecycle for Your Project

Each rating is either "Poor," "Fair," or "Excellent." Finer distinctions than that
wouldn't be meaningful at this level. The ratings in the table are based on
the model's best potential. The actual effectiveness of any lifecycle model
will depend on how you implement it. It is usually possible to do worse than
the table indicates. On the other hand, if you know the model is weak in a
particular area, you can address that weakness early in your planning and
compensate for it—perhaps by creating a hybrid of one or more of the
models described. Of course, many of the table's criteria will also be strongly
influenced by development considerations other than your choice of lifecycie
models.

Here are detailed descriptions of the lifecycle-model criteria described in
Table 7-1:

Works with poorly understood requirements refers to how well the lifecycle
model works when either you or your customer understand the system's
requirements poorly or when your customer is prone to change require-
ments. It indicates how well-suited the model is to exploratory software
development.

PN e) »

Commercial
Lifecycle Model Staged Evolutionary =~ Designto- Design-to- Qff-the-Shelf
Capability Delivery Delivery Schedule Tools Software
Works with poorly Poor Fair to Poor to Fair Excellent
understood requirements excellent fair
Works with poorly Poor Poor Poor Poor to Poor to
understood architecture excellent excellent
Produces highly reliable Excellent Fair to Fair Poor to Poor to
system excellent excellent excellent
Produces system with Excellent Excellent Fair to Poor N/A
large growth envelope excellent
Manages risks Fair Fair Fair to Poor to N/A
excellent fair
Can be constrained to Fair Fair Excellent Excellent Excellent
a predefined schedule
Has low overhead Fair Fair Fair Fair to Excellent
excellent
Allows for midcourse Poor Fair to Poor to Excellent Poor
corrections excellent fair
Provides customer Fair Excellent Fair Excellent N/A
with progress visibility
Provides manage ment Excellent Excellent Excellent Excellent N/A
with progress visibility
Requires little manager Fair Fair Poor Fair Fair

or develooer soohistication

——

157

Chapter 7: Lifecycle Planning

158

Works with poorly understood architecture refers to how well the lifecycU:
model works when you're developing in a new application area or when
you're developing in a familiar applications area but are developing unfa*
miliar capabilities.

Produces highly reliable system, refers to how many defects a system devel-
oped with the lifecycle model is likely to have when put into operation.

Produces system ivith large growth envelope refers to how easily you're likely
to be able to modify the system in size and diversity over its lifetime. This
includes modifying the system in ways that were not anticipated by the origi-
nal designers.

Manages risks refers to the model's support for identifying and controlling
risks to the schedule, risks to the product, and other risks.

Can be constrained to a predefined schedule refers to how well the lifecycle
model supports delivery of software by an immovable drop-dead date.

Has low overhead refers to the amount of management and technical over-
head required to use the model effectively. Overhead includes planning,
status tracking, document production, package acquisition, and other activi-
ties that aren't directly involved in producing software itself.

Allowsfor midcourse corrections refers to the ability to change significant
aspects of the product midway through the development schedule. This does
not include changing the product's basic mission but does include sijv fi
cantly extending it.

Provides customer with progress visibility refers to the extent to which the
model automatically generates signs of progress that the customer can use
to track the project's status.

Provides mana gement with progress visibility refers to the extent to which the
model automatically generates signs of progress that management can use
to track the project's status.

Requires little manager or developer sophistication refers to the level of edu-
cation and training that you need to use the model successfully. That includes
the level of sophistication you need to track progress using the model, to
avoid risks inherent in the model, to avoid wasting time using the model, and
to realize the benefits that led you to use the model in the first place.

7.11 Choosing the Most Rapid Lifecycle tor Your Project

Case Study 7-2. Effective Lifecycle Model Selection

;'mmmmom\qummdfsdcw}omdampm

et code named "Cube-Ir,” 4 scientific graphics package. Rex, the CEO, felt
g xbxtSqmre-CalchmglvenmemaloamthedoorMm:Adusembccm '
a parke! leader in scientific graphics, '

Eddie met with George and Jill, both developers, 10 plan the project. “This is
'anewam»ﬁmus,solwmmmmmedneconmny‘smkonthUpmiea
~ Rex told me that he wanted the preliminary product spec implemented within
@ year. T don't know whether that's possible, so I want you to use 4 spirdl
- lifecycle model. For the first ierarion of the spiral. we need o find out whether
,mbpsdmﬁwyspechmm&nmorwhc:hcrwcmnmkchamlnty '

 George undjﬂ}woried{ortwo weeks und then met with Eddie 10 evaluate
- the alternatives they had identified. “Here's what we found out. If the objec-

tive is10 build the market-leading scientific-graphics package, there are two
: baﬂ:ahcrhmwbwdnmmudmmﬁmmormnminmdm
4 mghtnow 'thecnslernldlcmﬁllaecmmbceaacofme

CWe amlynd the dsks for each alternative. If we go the full-feature route,
wemlnoldngatamknimumofabout%ﬂsmﬁ-nxmﬁuwdwelopa markels
leading product. We have the constraints of a maximum of 1 year to ship 3
‘rmduaandnmaxiummmsbcufﬁmople We can't meet those consiraints
with the full-featured product. If we go the usability route, we're looking at
-mare like 75 stall-months. That fits with our constrains, and there will be miore

, momindiemﬂ:et for us.”

"E’hafs good work,” Eddie said. *1 think Rex will lke that." Bddie met withi
chlatenhn day, and then he gat back together with George and Jill the
foumns morning '

 “Rex pointed out that we need 0 develop some in-house usability experts,
He thought that developing a product thal emphasizes usability was a good
stmeglcmove so he gave us the thumbs-up.

“Now we nead to plan the next itertion of the sparal, Qui goal for this itera-
. uonistouﬂmmeprommspccm ways that minimize our develapment time
and maximize usability.”

George and Jill spent 4 weeks on the iteration, and then they met with Eddie
to review their findings, 'Wevecmdapmnuzcdtmdpmlimmm require-
ments,” George teported. *The list is sorted by usability and then by estimated

(continaed)

159

Chapter 7: Lifecycle Planning

Case Study 7-2. Effective Lifecycle Model Selection, continued

160

‘would also be the least usable. T recommend. that we just climinate some of

‘Either one should be a Jor more usable than anything else on the market, The

implementation tme. We've made both best-case and worst-case effon e _.-~
mates [or each feature. You can see that there’s a Jot of varistion. and a lot
nlthatvaﬂaﬁon}wahaamdowhhhowmdeﬁucmcapcdﬁmofeach("f'
ture. mmmmmmawdmummwmmmw vl
takes Lo implement. g

“Having maximum usability as our clear, primary objective mnymkesms
decisions easy for us, Some of the miost time-consuming fearures to implement

them because it will be & win for both the schedule a.nclthtpmdua” .

“That's interesting,” Eddie responded. “What high-evel alternatives have yw !
come up withr”

“We recommend either of two possibilities.” Jill said. '%vegotdwwew |

sion, which pmsasmmmphmmusnMuyMcmpmmmW
And we've got the ‘risky’ version, which pushes the usability state of the art,

risky version will make it hardef for the competition to catch up with us, but it -
will also nominally take about 60 staff-months compared with the safe version's
40 staff-months. That's not all thar much of 2 ditference, but the worst case for
the risky version is 120 swaff-months compared with the safe version’s $5.%

“Wow!™ Eddie said. “Thar's good information, Is it possible to unp!emcm ‘ :
safe version but design ahead so that we can pushthe state of the an | m% |
sion 277 1

“Fm glad you usked that,” Jill said. *We caﬁmnled’ that the sale version wm :
design-ahead for version 2 would mmimﬂym ﬁmﬂ-mﬁm wftha m
case of 60.*

“That makes it prety clear, doesn't i Eddie said, “We've got 107 monthshfr,k
s0 let's do the safe version with &eskc&aludforwsimz‘ ‘While you all w i
focusing on the technical schedule risk, Pve been Loa.ming an the personne]
schedule risk, and 1've aotﬂmedwﬁopeu lmed up. Welladd them to the;.
team now and start the next lleratkm. :

“George, you mentioned that a ot of the variation in schedule has lodawhh
how each Feature 1s ultimately defined, nght? For the next spiral teration, we
need to focus on minimizing our design and.mplcmcmum risk, and’ that ;
means defimog as many of those features to take as litde implementation time 4
as possible while staying consistent sith aur usability goal, T also want 10 have
the new dcwlopcm review your cstimates 1o reduce the risk of any esu:m 3
ton error” Georgge and Jill agreed,

The next iteration, which focused on design, ook 3 months, bringing the
project to the 4Yemonath mark. Their reviews had convinced them that their

(continued

Further neauing

Case Study 7-2. Effective Lifecycle Model Selection, continued

design was solid—including the design-ahead for version 2. The Jdesign work
had aliowed them 10 refine their estimates, and they now estimated that the
remaining implementation would take 30 staff-months, with @ worst case of
40. Eddie thought that was exceptional because it meant that the worst case
had them delivering the saftware only 2 weeks lale.

At the beginsiing of the coding iteration, the developers ideniified low code
guality and poor statas visibility as their primacy risks. To mioimize those risks,
they established code reviews ta detect and correct. coding errors, and they
usedh miniswre milestones 10 provide excellent status visibility.

Their estimates hadn't been perfea, and the final tecation ook 2 weeks longer
than pominal, They delivered the first release candidate to svstem (esting 4t
11 manths instead of ar 104, But the product’s quality was excellent, and it
ook anly two release candidates (o dedare a winner, Cube- It 1O was released
On wme.

Further Reading

DeGrace, Peter, and Leslie Hulet Stahl. Wicked Problems, Righteous Solutions.
Englewood Cliffs, N.J.: Yourdon Press, 1990. The subtitle of this book
is "A Catalog of Modern Software Engineering Paradigms," and it is by
far the most complete description of software lifecytie models avail-
able. The book was produced through an unusual collaboration in
which Peter DeGrace provided the useful technical content and Leslie

Hulet Stahl provided the exceptionally readable and entertaining writ-
ing style.

Boehm, Barry W., ed. Software Risk Management. Washington, DC: IEEE
Computer Society Press, 1989. This tutorial is interesting for the intro-
duction to Section 4, "Implementing Risk Management." Boehm de-
scribes how to use the spiral model to decide which software lifecycle
model to use. The volume also includes Boehm's papers, "A Spiral
Model of Software Development and Enhancement” and "Applying
Process Programming to the Spiral Model," which introduce the spiral
lifecycle model and describe an extension to it (Boehm 1988; Boehm
and Belz 1988).

Jones, Capers. Assessment and Control ofSoftware Risks. Englewood Cliffs,
N.J.: Yourdon Press, 1994. Chapter 57, "Partial Life-Cycle Definitions'
describes the hazards of not breaking down your lifecycie description
into enough detail. It provides a summary of the 25 activities thatJones
says make up most of the work on a successful software project.

161

HARD DATA

Estimation

Contents

8.1 The Software-Estimation Story
8.2 Estimation-Process Overview
8.3 Size Estimation

8.4 Effort Estimation

8.5 Schedule Estimation

8.6 Ballpark Schedule Estimates
8.7 Estimate Refinement

Related Topics

Scheduling: Chapter 9

Measurement: Chapter 26
50/50 scheduling: Section 6.3

SOME ESTIMATES ARE CREATED CAREFULLY, and others are created by
seat-of-the-pants guesses. Most projects overshoot their estimated schedules
by anywhere from 25 to 100 percent, but a few organizations have achieved

schedule-prediction accuracies to within 10 percent, and 5 percent is not
unheard of (Jones 1994).

An accurate schedule estimate is part of the foundation of maximum devel-
opment speed. Without an accurate schedule estimate, there is no founda-
tion for effective planning and no support for rapid development. (See Case
Study 8-1.)

This chapter provides an introduction to software project estimation. It de-
scribes how to come up with a useful estimate—how to crunch the numbers
and create something reasonably accurate. Coming up with a perfect estimate
doesn't do any good if you can't get the estimate accepted, so the next chap-
ter describes how to handle the interpersonal elements involved in sched-
uling software projects.

163

Chapter 8: Estimation

Case Study 8-1. Seat-of-the-Pants Project Estimation

Carl had been put in charge of vl 1 o!! Giga-Safe's &nventory com:ol*
system (1CS). He had a general idea of the capabilities desired when he at-
rended the first meeting of the oversight: committee for the project. Bill was
the head of the oversight committee. "Carl, lmmmcs 1.0 gdnglomke?" ;
he asked.

“1 think it will take about 9 months, but that's just a rough estimate at this
point,” Car said.

“That's not going to work,™ Bill said. *1 was hoping vou'd say 3 urhnmms.
Wee absalutely need to bring that system in within 6 mmrhs Cau you do ii
in 67

“I'm not sure,” Card said honestly. '!'dhavcmlooknmcprﬁeammate-
fully, but | can wry to find a way o get it done in 6.° s

“Treat 6 monihs as @ goal then,” Bill said, "l'hall"swbitl s 8ot Lo be, anyway.™ "3
The rest of the committes agreed. ‘;

By ek 5, addiional ok on thé prixit cance Bt 141 chavinced Cal that
ihe project would take closer to his origical 9-month guess than 10 6 months,
but he thought that with some luck he sull nnght be able to ccmphﬂeitin&
He didn’t want 10 be branded auoublemaker 10 he deddedtodthm

Carl's team made sieady progress, but tequimmcms analysis took Imgeﬂlun
they had hoped. They were now almost 4 months into what was supposed 1
1 be a G-memth project. “There's no way we can do the rest of the work we «E
have to do in 2 manths,” e told Bill. He told Bill he needed a 2-month adwd-“*
ule slip and rescheduled the project 1o tike 8 months, 2 -t

;Q
A few weeks later. Carl redlized that design wasn't proceeding s quockly as
he had hoped either. “Implement the parts you can do casily,” he told (be
teanm, ‘W;llwmryalx;mtbcrcstol‘dwpanawhmwcgummcm. :

Card met with the oversight commitiee. “We're now 7 months imo our&nwnm J
project. Detailed design is almost complete. and we're making good progress.
But we can't compleie the project in 8 maonths.* Carl announced his second
schedule skip, this time (o 10 months, Bill graumbied and aaked Carl to Iook
for ways to bring the schedule back 1o around 8 months. 223 “

At the 9-month mark, the team had completed detailed d&ign, but coding sill
hadn’t begun on some modules. It was clear thar Cad couldn’t make the 10-
month schedule either. He announced the third schedule slip number—to 12
months. Bill's face wmed red when Carl announced the slip, and the pres-
sure from him became more intense Carl began o fed that his job was on

the line. :

: RJ;.:J...;...;.M-

..‘Ja‘ i -x"

Coding proceeded fairly well, but a few areas needed redesign and reim-
plementaiion. The team hadn't coordinated design details in those areas well,

(continued)

164

8.1

8.1 The Software-Estimation siory

Case Study 8-1 . Seat-of-the-Pants Project Estimation, continued

and some of their implementatdons conflicted. At the LI-month oversight
commitiee meeting, Carl announced the fourth schedule ship—<to 13 months
Bill became livid. “Dao you have any idea what you're doing?® he yvelled. “Yon
obviously don't have any idca! You obviously don’t huve any idea when the
project is going to be done! 'l tell you when it's going 10 be done! It's going
o be done by the 13-month mark, or you're going (o be out of a job! 'm tired
of being ferked around by you software guys! You and your wam are going
6 work 60 hours a week until you delives!™ Carl felt his blood pressute rise,
especially since Bill had backed him into an varcalistic schiedule in the fiss
place. But hie knew that with four scliedule slips under his bely, hi¢ had no
credibility left. He felt that be had w0 knuckle under wo the manddatory over
ume or he would lose his job

Carl told his team about the meeung. They worked hard and managed 10
deliver the software in just over 13 months, Additional '.mpi\‘-mc;ul'.t.li« Wy UNCOv.
eted additional design flaws, but with everyone working 60 hours @ week, they
delivered the product through swieat and sheer wallpower

— - — - - P g— i = P —

The Software-Estimation Story

Software estimation is difficult, and what some people try to do with soft-
ware estimation isn't even theoretically possible. Upper management, lower
management, customers, and some developers don't seem to understand
why estimation is so hard. People who don't understand softw are estimation's
inherent difficulties can play an unwitting role in making estimation even
harder than it already is.

People remember stories better than they remember isolated facts, and there
is a story to be told about why software estimation is hard. I think that we
as developers need to make telling that story a priority. We need to be sure
that customers and managers at all levels of our organizations have heard and
understood it.

The basic software-estimation story is that software development is a process
of gradual refinement. You begin with a fuzzy picture of what you want to
build and then spend the rest of the project trying to bring that picture into
clearer focus. Because the picture of the software you're trying to build is
fuzzy, the estimate of the time and effort needed to build it is fuzzy, too. The
estimate can come into focus only along with the software itself, which means
that software-project estimation is also a process of gradual refinement.

The next several subsections describe the story in more detail.

165

Chapter 8: Estimation

166

Softwareand Construction

Suppose you go to your friend Stan, who's an architect, and say that you want
to build a house. You start by asking Stan whether he can build a three-
bedroom home for under $100,000. He'll say yes, but he'll also say that the
specific cost will vary depending on the detailed characteristics you want.
(See Figure 8-1.)

If you're willing to accept whatever Stan designs, it will be possible for him
to deliver on his estimate. But if you have specific ideas about what kind of
house you want—if you later insist on a three-car garage, gourmet kitchen,
sunroom, sauna, swimming pool, den, two fireplaces, gold-plated fixtures,
floor-to-ceiling Italian marble, and a building site with the best view in the
state—your home could cost several times $100,000, even though the archi-
tect told you it was possible to build a three-bedroom home for under
$100,000.

"A whole yearto build "Good. Let's get
a house here? started. I'm in
No problem." a hurry."

Figure 8-1. It is difficult to know whether you can build the product that the
customer wants in the desired time frame until you have a detailed under-
standing of what the customer wants.

It is the mark of an
instructed mind

to rest satisfied
with the degree of
precision *which the
nature of a subject
admits, and not to
seek exactness when
only an approxi-
mation of the truth
is possible...

Aristotle

8.1 The Software-Estimation Story

How much does a new house cost? It depends on the house. How much
does a new billing system cost? It depends on the billing system. Some or-
ganizations want cost estimates to within £ 10 percent before they'll fund
work on requirements definition. Although that degree of precision would
be nice to have that early in the project, it isn't even theoretically possible.
That early, you'll do well to estimate within a factor of 2.

Until each feature is understood in detail, you can't estimate the cost of a
program precisely. Software development is a process of making increasingly
detailed decisions. You refine the product concept into a statement of re-
quirements, the requirements into a preliminary design, the preliminary
design into a detailed design, and the detailed design into working code. At
each of these stages, you make decisions that affect the project's ultimate cost
and schedule. Because you can't know how each of these decisions will be
made until you actually make them, uncertainty about the nature of the
product contributes to uncertainty in the estimate.

Here are some examples of the kinds of questions that contribute to estima-
tion uncertainty:

e Will the customer want Feature X?

» "Will the customer want the cheap or expensive version of Feature X?
There is typically at least a factor of 10 difference in the implementa-
tion difficulty of different versions of the same feature.

* If you implement the cheap version of Feature X, will the customer
later want the expensive version after all?

* How will Feature X be designed? There is typically at least a factor of
10 difference in the design complexity of different designs for the same
feature.

* What will be the quality level of Feature X? Depending on the care
taken during implementation, there can be a factor of 10 difference
in the number of defects contained in the original implementation.

* How long will it take to debug and correct mistakes made in the
implementation of Feature X? Individual performance among different
programmers with the same level of experience has been found to
vary by at least a factor of 10 in debugging and correcting the same
problems.

* How long will it take to integrate Feature X with all the other features?

167

Chapter9: Scheduling

214

e Removing or turning off partially implemented features that can't be
completed in time to ship the product

* Implementing quick-and-dirty versions of features that absolutely must
be completed in time to ship the product

* Fixing low-priority defects
* Polishing help files and user documents by checking spelling, coordi-
nating page numbers between different source files, inserting exact

cross-references and online help jumps, creating indexes, taking final
screen shots, and so on

¢ Performing end-to-end system tests of the entire product and formally
entering defects into the defect-reporting system

I think of these activities as forcing the product to converge. When a project
tries to force convergence too early, it will fail to converge, and then it has
to do all of those time-consuming activities again later.

Doing activities twice when they could be done once is inefficient. But there
are other time-wasting aspects of premature convergence, too. If software
is released to testing before it is ready, testers will find many more defects
than they would find if it were not released until it was ready. When testers
find more defects, they enter the defects into a formal bug-tracking system,
which adds overhead that takes both testing and development time. Debug-
ging aids have to be turned back on. Removed features have to be put back
in. Quick-and-dirty "ship mode" changes that aren't reliable or maintainable
come back to haunt the developers. To repeat, premature convergence is a
waste of time.

Perhaps worse for the project is the effect that premature convergence has
on developer morale. If you're running a foot race, when the gun goes off
for the last lap, you'll give it your all. You want to arrive at the finish line with
nothing left. With premature convergence, the gun goes off, you give ityour
all, and just before you reach the finish line someone moves it. That wasn't
the last lap after all, but you're left with nothing more to give. In the long
run, pacing is important, and premature convergence burns out developers
too early.

Poorly managed projects often discover their schedule problems for the first
time when their developers aren't able to force convergence. Better managed
projects detect schedule problems much earlier. Symptoms of premature
convergence include:

* Developers can't seem to fix defects without tearing the system apart;
small changes take longer than they should.

HARD DATA

CROSS-REFERENCE
For more on error-prone
modules, see "Error-prone
modules” in Section 4.3.

9.1 Overly Optimistic Scheduling

* Developers have long lists of "trivial" changes, which they know they
need to make but which they haven't made yet.

e Testers find defects faster than developers can correct them.
* Defect fixes generate as many new defects as they correct.

® Tech writers have trouble completing user documentation because the
software is changing too fast to be able to document it accurately.

* Project estimates are adjusted many times by similar amounts; the
estimated release date stays 3 "weeks away for 6 months.

After you can't force convergence the first time, you'll need to back up,
continue working, and try again to converge later. Optimistic schedules lead
to premature and multiple attempts to converge, both of which lengthen
schedules.

Excessive Schedule Pressure

Customers' and managers' first response when they discover they aren't meet-
ing their optimistic schedule is to heap more schedule pressure onto the
developers and to insist on more overtime. Excessive schedule pressure
occurs in about 75 percent of all large projects and in close to 100 percent
of all very large projects (Jones 1994). Nearly 60 percent of developers re-
port that the level of stress they feel is increasing (Glass 1994c).

Schedule pressure has become so ingrained in the software-development
landscape that many developers have accepted it as an unalterable fact of
life. Some developers are no longer even aware that the extreme schedule
pressure they experience could be otherwise. That is unfortunate. Overly
optimistic scheduling hurts the real development schedule in many ways, but
excessive schedule pressure hurts it the most, so I want to explore this par-
ticular problem in detail.

Quality. About 40 percent of all software errors have been found to be
caused by stress; those errors could have been avoided by scheduling ap-
propriately and by placing no stress on the developers (Glass 1994c). When
schedule pressure is extreme, about four times as many defects are reported
in the released product as are reported for a product developed under less
extreme pressure (Jones 1994). Excessive schedule pressure has also been
found to be the most significant causative factor in the creation of extremely
costly error-prone modules (Jones 1991).

With extreme schedule pressure, developers also increase the subtle pres-
sure they put on themselves to focus on their own work rather than on

215

Chapter 9: Scheduling

For

CROSS-REFERENCE
more on the relationship

etween defect-le vel and schedule,
see Section 4.3, "Quality-
Assurance Fundamentals"

CROSS-REFERENCE

Fordetailson the occurrence

of gambling on rapid-

development projects, see
Section 5.6, "Risk, High Risk,

see

216

and Gambling."

CROSS-REFERENCE
For more on schedule
pressure and motivation,
Chapter 11, "Motivation,"
and Section 43,1, "Using
Voluntary Ovettime."

quality-assurance activities. Developers might still hold code reviews, for
example, but when they are faced with a choice between spending an ex-
tra hour reviewing someone else's code or working on their own routines,
the developers usually will choose to spend the extra hour on their own
code. They'll promise themselves to do better on the code review next time.
Thus, quality starts its downward slide.

Projects that aim from the beginning at having the lowest number of defects
usually also have the shortest schedules. Projects that apply excessive sched-
ule pressure and shortchange quality are rudely awakened when they dis-
cover that what they have really shortchanged is the schedule.

Gambling. Since an overly optimistic schedule is impossible to achieve
through normal, efficient development practices, project managers and de-
velopers are provided with an incentive to gamble rather than to take cal-
culated risks. "I doubt that the Gig-O-Matic CASE tool will really improve my
productivity by a factor of 100, but I have absolutely no chance of meeting
my schedule without it, so what dp I have to lose?"

On a rapid-development project, you should be doing everything possible
to reduce risk. Software projects require you to take calculated risks but not
close-your-eyes-and-hope-that-it-works risks. Schedule pressure contributes
to poor risk management and mistakes that slow development.

Motivation. Software developers like to work. A little bit of schedule pres-
sure resulting from a slightly optimistic but achievable schedule can be mo-
tivating. But at some point the optimistic schedule crosses the threshold of
believability, and at that point motivation drops—fast.

An overly optimistic schedule sets up developers to put in Herculean efforts
only to be treated as failures for not achieving an impossible schedule—even
when they have achieved,a schedule that is nothing short of remarkable. The
developers know this, and unless they are very young or very naive, they
will not work hard—they will not commit, they will not "sign up"—to achieve
a schedule that is out of reach. Anyone who tries to motivate by forcing
commitment to an unachievable schedule will achieve exactly the opposite
of what is desired.

Creativity. Many aspects of software development—including product speci-
fication, design, and construction—require creative thought. Creativity re-
quires hard thinking and persistence when the sought-after solution doesn't
immediately spring to mind. The drive to think hard and persist requires
internal motivation. Excessive external motivation (aka stress) reduces inter-
nal motivation and in turn reduces creativity (Glass 1994a).

HARD DATA

9.1 Overly Optimistic Scheduling

Aside from reducing the incentive to be creative, a pressure-cooker environ-
ment is simply the wrong kind of environment for creative thought. The
cogitation required for a breakthrough solution requires a relaxed, contem-
plative state of mind.

Given the same set of requirements, developers will create solutions that vary-
by as much as a factor of 10 in the amounts of code they require (Sackman,
Erikson, and Grant 1968; Weinberg and Schulman 1974: Boehm, Gray, and
Seewaldt 1984; De Marco and Lister 1989). If you're on a rapid-development
schedule, you can't afford to create a pressure-cooker environment in which
people are too rushed to find the solution that is one-tenth as expensive to
implement as the others.

Burnout. If you use too much overtime in one project, your developers will
more than make up for it on the next project. Programmers will putter around
for months after putting in a big push on a major project—cleaning up their
file systems, slowly commenting their source code, fixing low-priority bugs
that they find interesting but which were not important enough to fix for the
release (and may not be important enough to fix now), playing ping-pong,
organizing their email, fine-tuning design documents, reading industry pub-
lications, and so on. If your schedule pushes developers too hard (perhaps
by trying to force a premature convergence), you can experience that burn-
out on your current project rather than the next one.

Turnover. Overly optimistic schedules and the accompanying schedule pres-
sure tend to cause extraordinarily high voluntary turnover, and the people
who leave the project tend to be the most capable people with the highest
performance appraisals (Jones 1991). Finding and training their replacements
lengthens the schedule.

Long-term rapid development Excessive overtime eliminates the free time
that developers would otherwise spend on professional development. De-
velopers who don't continue to grow don't learn about new practices, and
that hurts your organization's long-term rapid-development capacity.

Relationship between developers and managers. Schedule pressure widens
the gap between developers and managers. It feeds the existing tendency
developers have to believe that management doesn't respect them, manage-
ment doesn't care about them, and management doesn't know enough about
software development to know when they're asking for something that's
impossible. (See Figure 9-4.) Poor relationships lead to low morale, miscom-
munication, and other productivity sinkholes.

217

Chapter 9: Scheduling

218

"If the book says that the shortest possible
schedule is 6 months, you 'lljust have to
work extra hard to finish in 4 months!"

Figure 9-4. Unreasonable schedule pressure can cause
developers to lose respectfor their managers.

The Bottom Line

Some people seem to think that software projects should be scheduled
optimistically because software development should be more an adventure
than a dreary engineering exercise. These people say that schedule pressure
adds excitement.

How much sense does that make? If you were going on a real adventure,
say a trip to the south pole by dogsled, would you let someone talk you into
planning for it to take only 30 days when your best estimate was that it would
take 60? Would you carry only 30 days' worth of food? Only 30 days' worth
of fuel? Would you plan for your sled dogs to be worn out at the end of 30
days rather than 60? Doing any of those things would be self-destructive, and
underscoping and underpinning a software project is similarly self-destruc-
tive, albeit usually without any life-threatening consequences.

In Quality Software Management, Gerald Weinberg suggests thinking about
software projects as systems (Weinberg 1992). Each system takes in inputs
and produces outputs. The system diagram for a project that's been accurately
scheduled might look like the picture in Figure 9-5.

9.1 Overly Optimistic Scheduing

pr On-time project -
High-quality product i
Happiness and satistaction
Acoussie shedie p’:c’::‘ with = ter indivicual S
- rate developmeant skills
Other inputs schedule >
increased respect among

developers, managers,
customers, marketers, and
other project stakeholders

Experience releasing
software on time

% w o

Figure 9-5. System diagram for aproject with an accurate schedule. Most people
will be happy with the outputs from an accurately-scheduled project.

The system diagram for a project that's been scheduled overly optimistically
will, unfortunately, look more like the picture in Figure 9-6.

f

P -
—

\ Late project
]
, Low-quality product

! Stress

Oisgruntied, cynical deveiopers

P bject | Higher turnover;
"> timistic >
qs‘n:hcdulc | Strained relations among
| developers, managers,

| customers. marketers, and
| other project stakeholders

| Weakened capacity to
develop the next produdt

-~ ». -

Figure 9-6. System diagram for aproject with an overly optimistic schedule. Most
people won't like the outputsfrom aproject with an overly optimistic schedule.

— >

. Software
Qvearly optimistic schedule

Schedule pressure

Other inputs

>

When you compare the two systems, you can see that one is markedly
healthier than the other.

In the end, I am opposed to the practice of overly optimistic scheduling be-
cause it undermines effective planning, eats into developers' personal lives,
erodes relationships with customers, contributes to high turnover, contrib-
utes to low quality, and hurts the industry by stunting professional growth
and creating the perception that software developers can't deliver what they
promise.

219

Chapter 9: Scheduling

Ifyou are not
outraged, you are
not paying attention.
Bumper sticker

But I am most opposed to overly optimistic scheduling because it doesn 't work,
It doesn't result in shorter actual schedules; it results in longer ones. That's
what happened with WinWord 1.0. That's what happened with the EAA's
Advanced Automation System. That's what happened with every other
project I know of that has tried to work to an impossible schedule.

The shortest actual schedule results from the most accurate planned sched-
ule. A project that has schedule problems needs to look no further for the
source of its problems than an unachievable initial schedule.

9.2 Beating Schedule Pressure

Schedule pressure appears to be endemic to software development, and it
has produced damaging, short-term thinking on two levels. At a local level,
it has encouraged shortcut-taking on specific projects, which damages those
specific projects. At a more global level, it has encouraged a fire-fighting
mentality about schedule pressure itself. People view schedule pressure as
a problem unique to their current project, even though they've felt sched-
ule pressure on every project they've ever worked on and even though it has
been one of the defining characteristics of the software industry for at least
30 years.

Ironically, we can't solve the problem of rapid development until we solve
the problem of schedule pressure. As Figure 9-7 shows, schedule pressure
creates a vicious circle of more stress, more mistakes, more schedule slips,
and ever more schedule pressure.

More

schedule
/ pressiure \
More
More

schedule
slips

N s

mistakes

siress

Figure 9-7. Vicious circle ofschedule-pressure and schedule-slips. Anyone who
wants to solve the problem of rapid development mustfirst solve the problem of
excessive schedulepressure. ©

CROSS-HEFERENCE
For more on the profile of the

Section 11.1, Typical
Developer Motivatiors."

9.2 Beating Schedule Pressure

We as an industry need to learn how to beat schedule pressure. There can-
not be a long-term solution to the schedule-pressure problem until we take
time out to learn how to do our jobs better.

Three factors converge to make up the bulk of the problems associated with
setting software schedules:

® Wishful thinking—Customers, managers, and end-users naturally and
rationally want to get as much as they can for their money, and they
want to get it as soon as possible. Most software project schedules are
ambitious. Think about that. Most aren't average; most are ambitious.
The previous section should provide all the reasons anyone needs to
abandon their wishful thinking about software schedules.

» Little awareness of the software estimation story or the real effects of
overly optimistic scheduling—Software can't be reliably estimated in its
early stages. It's logically impossible. Yet we let people force us into
unrealistic estimates. The estimation story described in Section 8.1
should help with this problem.

® Poornegotiating skills—Philip Metzger observed 15 years ago that
developers were fairly good at estimating but were poor at defending
their estimates (Metzger 1981). I haven't seen any evidence that
developers have gotten any better at defending their estimates in
recentyears.

Developers tend to be bad negotiators for a few reasons.

First, developers are, as a rule, introverts. About three-quarters of develop-
ers are introverts whereas only one-third of the general population would
be described as such. Most developers get along with other people just fine,
but challenging social interactions are not their strong suit.

Second, software schedules are typically set in negotiations between devel-
opment and management or development and marketing. Gerald Weinberg
points out that marketers tend to be 10 years older and negotiate for a liv-
ing—that is, they tend to be seasoned, professional negotiators (Weinberg
1994). The deck is stacked against developers during schedule negotiations.

Third, developers tend to be temperamentally opposed to negotiating tricks.
Such tricks offend their sense of technical accuracy and fairness. Develop-
ers won't offer lopsidedly high initial estimates even when they know that
customers, marketers, or managers will start with lopsidedly low initial bar-
gaining positions.

I have become convinced that developers need to become better negotia-'
tors, and I'll spend the rest of this chapter describing how to negotiate sched-
ules effectively.

Chapter 9: Scheduling

3
Ty

g
)

ST
e

> B
S—

CROSS-REFERENCE
For a related win-win
strategy, see Chapter 37,
“Theory-W Management."

CROSS-REFERENCE

People's expectations can

affect negotiations. For more
on expectations, see Section
10.3,"ManagingCustomer
Expectations."

“False scheduling to mateh the patron's desired date is much more comman ¥
mn our discipline than clsewhere in engincenng. It s very difficuly to make a |
vigorous, plausible, and joberisking defense of an estimate that is denived by
no quantitagive method, supported by linde dutg, and certified chiefly by the
hunches of the managers.”

—Fred Brooks

- a =, e r—ws -t — e = : - o

Principled Negotiation

A good place to start improving your negotiating skills is the principled ne-
gotiation method described in Getting to Yes (Fisher and Ury 1981). This
method has several characteristics that I find appealing. It doesn't rely on ne-
gotiating tricks, but it explains how to respond to tricks when others use
them. It's based on the idea of creating win-win alternatives. You don't try
to beat the person you're negotiating with; you try to cooperate so that both
of you can win. It's an open strategy. You don't have to fear that the person
you're negotiating with has read the same negotiating book and knows the
same tricks. The method works best when all the parties involved know
about it and use it.

The principled-negotiation strategy consists of four parts that deal with
people, interests, options, and criteria:

» Separate the people from the problem

e Focus on interests, not positions

* Invent options for mutual gain

* Insist on using objective criteria

Each of these is described in the following sections.

Separate the People from the Problem

All negotiations involve people first, interests and positions second. When
the negotiators' personalities are at odds—as, for example, developers' and
marketers' personalities often are—negotiations can get hung up on person-
ality differences.

Begin by understanding the other side's position. I've had cases in which a
non-technical manager had good business reasons for wanting a specific
deadline. In one case, a manager felt pressure from the marketing organi-
zation and his boss to produce what was probably a 15-month project in 6

CROSS-REFERENCE
For more on the software
estimation story, see
Section 8.1, The Software-
Estimation Story."

9.2 Beating Schedule Pressure

months. He told me that he had to have the software in 6 months. I told him
that the best I could do was 15 months. He said, "I'm not giving you a choice.
Our customers are expecting the software in 6 months." I said, "I'm sorry. I
wish I could. But 15 months is the best I can do." He just froze and stared
at me for 2 or 3 minutes.

Why did he freeze? Was he using silence as a negotiating maneuver ? Maybe.
But I think it was because he felt trapped and powerless. He had promised
his boss a 6-month development schedule, and now the person who was
supposed to head the project was telling him he couldn't keep his promise.

Understand that managers can be trapped by their organization's outdated
policies. Some organizations fund software projects in ways that are essen-
tially incompatible with the way software is developed. They don't allow
managers to ask for funding just to develop the product concept and come
up with a good cost estimate. To get enough funding to do a decent estimate,
managers have to get funding for the whole project. By the time they get a
decent estimate, it can be embarrassing or even career-threatening to go back
and ask for the right amount of funding. People at the highest levels of such
organizations need to hear the software-estimation story so that they can
institute sensible funding practices.

Most middle managers aren't stupid or irrational when they insist on a dead-
line that you know is impossible. They simply don't know enough about the
technical work to know that it's impossible, or they know all too well how
much pressure they feel from their own bosses, customers, or people higher
up in the organization.

What can you do? Work to improve the relationship with your manager or
customer. Be cooperative. Work to set realistic expectations. Be sure that ev-
eryone understands the software-estimation story. Be an advisor on sched-
ule matters, and avoid slipping into the role of adversary. Suggest ways to
change the project that will reduce the schedule, but hold firm to not just
writing down a different date.

It's also useful to try to take emotions out of the negotiating equation. Some-
times the easiest way to do that is to let the other people blow off steam.
Don't react emotionally to their emotions. Invite them to express themselves
fully. Say something like, "I can see that those are all serious concerns, and
I want to be sure I understand your position. What else can you tell me about
your situation?" When they are done, acknowledge their emotions and reit-
erate your commitment to find a win-win solution. The other parts of prin-
cipled negotiation will help you to follow through on that commitment.

223

Chapter 9: Scheduling

Focuson Interests,NotPositions

Suppose you're selling your car in order to buy a new boat, and you've fig-
ured that you need to get $5000 for your car in order to buy the boat you
want. A prospective buyer approaches you and offers $4500. You say,

"There's no way I can part with this car for less than $5000." The buyer says,
"$4500 is my final offer."

When you negotiate in this way, you focus on positions rather than inter-
ests. Positions are bargaining statements that are so narrow that in order for
one person to win, the other person has to lose.

Now suppose that the car buyer says, "I really can't go over $4500, but I
happen to know that you're in the market for a new boat, and I happen to
be the regional distributor for a big boat company. I can get the boat you
want for $1000 less than you can get it from any dealer. Now what do you
think about my offer?" Well, now the offer sounds pretty good because it will
leave you with $500 more than you would have gotten if the buyer had just
agreed to your price.

Underlying interests are broader than bargaining positions, and focusing on
them opens up a world of negotiating possibilities. Your boss might start out
by saying, "I need Giga-Blat 4.0 in 6 months," and you might know imme-
diately that you can't deliver it in less than 9 months. Your boss's interest
might be keeping a promise made to the sales organization, and your inter-
est might be working less than 60 hours a week for the next 6 months.
Between the two of you, you might be able to create a product that would
satisfy the sales organization and would be deliverable within 6 months. If
you focus on interests, you're more likely to find a win-win solution than if
you dig into bargaining positions.

One of the major problems with schedule negotiations is that they tend to
become one-dimensional, focusing only on the schedule. Don't get dug into
a position. Make it clear that you're willing to consider a full-range of alter-
natives—just not pie-in-the-sky options. If other people have dug themselves
into demanding a specific schedule, here are some points you can use to
dislodge them:

Appeal to true development speed. Point out that the worst fault of overly
optimistic schedules is that they undermine actual development speed. Ex-
plain the negative effects of overly optimistic scheduling that were described
in Section 9.1. True rapid development requires that you be firmly connected
to reality, including to a realistic schedule.

Appeal to increasing the chance of success. Point out that you have esti-
mated the most likely completion date and that you already have only a
50/50 chance of meeting that. Shortening the schedule will further reduce
your chances of completing on time. "

CROSS-REFERENCE
For more on the value of
cooperation, see
"Cooperation" in Section 8.1.

CROSS-REFERENCE
For details on the schedule,
cost, andproducttriangk,
see "Schedule, Cost,
and Product Trade-offs"
in Section 6.6.

9.2 Bealing Schedule Pressure

Invoke your organization's track record. Point to your organization's history
of underestimating projects, coming in late, and all the problems that late-
ness has caused. Appeal to the other person's good sense not to do the same
thing again.

Invent Options for Mutual Gain

Rather than thinking of negotiating as a zero-sum game in which one per-
son wins at the other's expense, think of it as an exercise in creative prob-
lem-solving; the truly clever negotiator will find a way for both parties to win.

Your most powerful negotiating ally in schedule negotiations is your ability
to generate options that the other person has no way of knowing about. You
hold the key to a vault of technical knowledge, and that puts the responsi-
bility for generating creative solutions more on your shoulders than on the
nontechnical person you're negotiating with. It's your role to explain the full
range of possibilities and trade-offs.

I find it useful to think about how many degrees of freedom there are in
planning a software project. The basic degrees of freedom are defined by
the schedule, cost, and product triangle. You have to keep the three corners
in balance for the project to succeed. But there are infinite variations on that
triangle, and the person you're negotiating with might find some of those
variations to be a lot more appealing than others. Here are some of the
degrees of freedom you might suggest related to the product itself:

* Move some of the desired functionality into version 2. Few people
need all of what they asked for exactly when they asked for it.

e Deliver the product in stages—for example, versions 0.7, 0.8, 0.9, and
1.0—with the most important functionality coming first.

e Cut features altogether. Features that are time-consuming to implement
and often negotiable include the level of integration with other sys-
tems, level of compatibility with previous systems, and performance.

e Polish some features less—implement them to some degree, but make
them less fancy.

* Relax the detailed requirements for each feature. Define your mission
as getting as close as possible to the requirements through the use of
prebuilt commercial components.

Here are some degrees of freedom related to project resources:

e Add more developers, if it's early in the schedule.
e Add higher-output developers (for example, subject-area experts).
* Add more testers.

* Add more administrative support.

Chapter9:Scheduling

* Increase the degree of developer support. Get quieter, more private
offices, faster computers, on-site technicians for network and machine
support, approval to use higher priced developer-support services, and
SO on.

¢ Eliminate company red tape. Set your project up as a skunkworks
project.

¢ Increase the level of end-user involvement. Devote a full-time end-user
to the project who is authorized to make binding decisions about the
product's feature set.

* Increase the level of executive involvement. If you've been trying to
introduce JAD sessions to your organization but haven't been able
to get the executive sponsorship you need, this is a good time to ask
for it.

Here are some degrees of freedom you can suggest related to the project's
schedule:

* Set a schedule goal but not an ultimate deadline for the whole project

until you've completed the detailed design, product design, or at least
the requirements specification.

e [f it's early in the project, agree to look for ways to reduce the

development time as you refine the product concept, specification,
and design.

* Agree to use estimation ranges or coarse estimates and to refine them
as the project progresses.

You can propose a few additional degrees of freedom in certain circum-
stances. They can make a difference in development time, but they also tend
to be political hot potatoes. Don't bring them up unless you know the per
son on the other side of the table is already sympathetic to your cause.

* Provide exceptional developer support so that developers can focus
more easily on the project—shopping service, catered meals, laundry,
housecleaning, lawn care, and so on.

* Provide increased developer motivation—paid overtime, guarantee of
comp time, profit sharing, all-expenses-paid trips to Hawaii, and so oft.

Whatever you do, don't agree to a lopsided schedule-cost-product triangle.
Remember that once you've settled on a feature set, the size of the triangle
is practically a law of physics—the three corners have to be in balance.

Throughout the negotiations, focus on what you can do and avoid getting-
stuck on what you can't. If you're given an impossible combination of fea-
ture set, resources, and schedule, say, "I can deliver the -whole feature
set with my current team 4 weeks later than you want it. Or I could add a

226

The ultimate act of
disempowerment
is to take away the
responsibility

for the schedule
from those who
mustlive by It.

Jim McCarthy

9.2 Beating Schedule Pressure

person to the team and deliver the whole feature set when you want it. Or
I can cut features X, Y, and Z and deliver the rest with my current team by
the time you want it."

The key is to take attention away from a shouting match like this one: Ican't
do it. "Yes you can." No Ican't. "Can!" Can't! Lay out a set of options, and
focus your discussion on what you can do.

One warning: In the cooperative, brainstorming atmosphere that arises from
this kind of free-wheeling discussion, it's easy to agree to a solution that
seems like a good idea at the time but by the next morning seems like a bad
deal. Don't make any hard commitments to new options until you've had
enough time to analyze them quietly by yourself.

Insist on Using Objective Criteria

One of the oddest aspects of our business is that when careful estimation
produces estimates that are notably longer than desired, the customer or
manager will often simply disregard the estimate (Jones 1994). They'll do that
even when the estimate comes from an estimation tool or an outside esti-
mation expert—and even when the organization has a history of overrun-
ning its estimates. Questioning an estimate is a valid and useful practice.
Throwing it out the window and replacing it with wishful thinking is not.

A key to breaking deadlocks with principled negotiations is the use of ob-
jective criteria. The alternative is to break negotiation deadlocks based on
whoever has the most willpower. I've seen schedules for million-dollar
projects decided on the basis of which person could stare the longest with-
out blinking. Most organizations will be better off using a more principled
approach.

In principled negotiation, when you reach a deadlock, you search for ob-
jective criteria you can use to break the deadlock. You reason with the other
people about which criteria are most appropriate, and you keep an open
mind about criteria they suggest. Most important, you don't yield to pressure,
only to principle.

Here are some guidelines for keeping schedule negotiations focused on
principles and not just desires.

Don't negotiate the estimate itself. You can negotiate the inputs to the esti-
mate — thedegrees of freedom described in the previous section—but not
the estimate itself. As Figure 9-8 suggests, treat the estimate as something
that's determined from those inputs almost by a law of nature. Be extremely

open to changing the inputs and be ready to offer alternatives, but match
your flexibility in those areas with a firm stance on the estimate itself.

227

Chapter 9: Scheduling

g @,
a3 -ﬁ; _

FURTHER READING

For an illustration of using

a software-estimating tool
asan impartial expert, see
Section 2.3.2 of "Theory-W
Software Project Management:
Principles and Examples"
(Boehmand Ross 1989).

228

/
Features ‘
Estimation | Schedule estimate
Resources process]
> L |

Figure 9-8. Treating an estimate as something determined by a law of nature.
You can negotiate the inputs, butyou can't change the output without changing
the inputs.

Suppose you're negotiating with an in-house customer. You could say some-
thing like this: "This is my best estimate. I can write a different date on a piece
of paper, but that won't be a valid estimate. I can write a bigger number in
my checkbook, too, but that doesn't mean that I'll have any more money.
I've already given the team only about a 50-percent chance of delivering the
software on time. Planning for a shorter schedule won't shorten the amount
of time it will take them to create the product you want. It will just increase
the risk of being late."

Point out that by refusing to accept an impossible deadline you're really
looking out for your customer's best interests. Point to your organization's
history of schedule overruns, and tell the in-house customer that you're
unwilling to set either of you up for failure. It's easy to make this argument
once you've demonstrated your willingness to look for win-win solutions.

Insist that the estimate be prepared by a qualified party. Sometimes negotia-
tions produce the absurd situation in which customers who have no idea how
to build a software system nevertheless claim to know how long it will take
to build it. Insist that the estimate be prepared by someone with appropri-
ate qualifications. That will often be you.

Some organizations have had good success creating an independent estima-
tion group. Those groups are effective because they do not have a vested
interest either in delivering the product in the shortest possible time or in
avoiding hard work. If negotiations become deadlocked on the topic of the
estimate, propose submitting the estimate to a third party and pledge to
accept their results. Ask your negotiation foe to pledge to do the same.

A variation on this theme is to bring in a consultant or noted authority to
review your schedule. (An unfamiliar expert sometimes has more credibil-
ity than a familiar one.) Some organizations have also had success using soft-
ware-estimation tools. They've found that once developers calibrate the
estimation tool for a specific project; the tool allows them to easily and
objectively explore the effects of different options in an unbiased way.

In reality, you don't
need permission to
doyour job well.
Larry Constantine

9.2 Beating Schedue Pressure

Insist on a rational estimation procedure. Chapter 8, "Estimation," explains
the basis for creating software project estimates. Insist that the procedure that
is used to create the estimate comply with the following guidelines:

* Nails downfeatures before it nails down the estimate. You can't know
how much a new house costs until you know quite a lot about the
house. You can't tell how much a new software system will cost until
you know quite a lot about the system.

* Doesn'tprovide unrealistic precision. Provide your estimates in ranges
that become increasingly refined as the project progresses.

* Reestimates after changes. The estimate should be the last step in the
process. It's irrational to create an estimate, pile on more features, and
keep the estimate the same.

Don't bow to the pressure to commit to impossible deadlines. That short-term
fix damages your long-term credibility. No one really benefits from pretend-
ing that you can meet an impossible schedule, even though sometimes
people think they do. Improve your credibility by pushing for solutions that
respond to the real business needs of your bosses and customers.

Weatherthe storm. Although people have different tolerances for withstand-
ing pressure, if your customers, managers, or marketers want you to change
your estimate without also changing the feature set or resources, I think the
best approach is to politely and firmly stand by your estimate. Batten down
the hatches and endure the thunderstorm of an unwelcome estimate early
in the project rather than the hurricane of schedule slips and cost overruns
later on.

Case Study 9-1. A Successful Schedule Negotiation

EN WD TRRAUS S D LANS ETA AR rI A MDA I P LESES L TR DY st aAn

Tina's ream had put a lot of work into their estimate for the Giga-Bill 1.0
project, which they had estimated would probably tuke 12 months. Her boss
Bill, wasn't happy with the estimate the: team came up with, He saild o needed
e be shorter. Tina found hersell sitting acrass from Bill at the oversight conmy
mitlce meeimg,

“The team has estimated it can deliver the product in 6 months,” Bill sad

*Err—ahem.” Tina cleared her throat, “What Bill means is that we eshiouted
an ideal-world, best case of 6 maaths, bug in order to achieve that best vase
every single thing on the project has 1o go perfectly. And you Rnow software
projecte-—nothing ever goes perfectly. Our most likely esiimate s 12 months
with @ realistic range of 10 to 15 months.” Tina was sweating and wished she
had a handkerchief o wipe her lorehead

(conrinwed)

229

Chapter 12: Teamwork

CROSS-REFERENCE

For more on team structures,
see Chapter 13, "Team
Structure."

282

Results-Driven Structure

You can structure teams for optimal output, or you can structure them in such
a way that it is almost impossible for them to produce anything at all.

For rapid development, you need to structure the team with maximum de-
velopment speed in mind. You don't put John in charge just because he's the
owner's cousin, and you don't use a chief-programmer team structure on a
three-person project when the three people have roughly equal skills.

Here are four essential characteristics of a results-driven team structure:

* Roles must be clear, and everyone must be accountable for their work
at all times. Accountability is critical to effective decision making and
to rapid execution after the decisions have been made.

* The team must have an effective communication system that supports
the free flow of information among team members. Communication
must flow freely both from and to the team's management.

* The team must have some means of monitoring individual perfor-
mance and providing feedback. The team should know whom to
reward, who needs individual development, and who can assume
more responsibilities in the future.

» Decisions must be made based on facts rather than on subjective
opinions whenever possible. The team needs to be sure that the facts
are interpreted without biases that undercut the functioning of the team.

There are practically an infinite number of team structures that can satisfy these
essential characteristics. It is amazing that so many team structures do not.

Competent Team Members

Just as team structures are chosen for the wrong reasons, team members are
often chosen for the wrong reasons: for example, they are often chosen
because they have an interest in the project, because they are cheap, or most
often simply because they are available. They are not chosen with rapid
development in mind. Case Study 12-3 describes the way in which team
members are typically selected.

Case Study 12-3. Typical Team-Member Selection

ARSI udnd o SR B GG INNT e Tmlias A P A e q.{t.__ﬂ.ﬁla-

Bl had 4 new application to build, and he neoded 10 put a team together st
e project was suppased to take about 6 months and was going 1o involve
a lor of custom graphics, and the eam would have o work closely with the

(continued)

123 Creating a High-Performance Team

Case Study 12-3. Typical Team-Member Selection, continued

custormer. It should take about four developerns, deally, Bill thougin, h'd like
o get Juan, who had worked on GUE Custom graphics on that platiorm be-
fore, and Su¢, who was a database guru and great with customers, But they
were hoth busy on other projects for the next 2 or 3 weeks.

At the manager's meeting Bill found oul that Tomas, Jennifer, Carl, and An-
pela would be available at the end of the week. “Theyll do OK,"™ he said, “That
will let us get starred right away.”

He planned the project this way. “Tomas can work on the graphics. He hasn't
waorked on this pladorm before, but he's done some graphics work fennifer
would be good for the database side. She said she was tired of working on
databases, but she agreed (0 work on them again if we really needed her to
Carl's don¢ same work on this platform befare, so he could tend Tomas a hand
with the graphics. And Angeéla is an expert in the progamoung language . Carl,
Angely, and Tomas have had & few problems working togethier before, but |
think they've put their differences behind them. None of them are particulaly
steong in working with customers, but T can fill in that gap myself "

Case Study 12-3 describes a team that's selected based on who's available
at exactly the right time without much concern for the long-term performance
consequences. It's almost certain that the team would do better on its 6-
month project if it waited the 3 weeks until Juan and Sue were available.

For rapid development, team members need to be chosen based on who has
the competencies that are currently needed. Three kinds of competencies are
important:

* Specific technical skills—application area, platform, methodologies,
and programming language

* A strong desire to contribute
* Specific collaboration skills required to work effectively with others

Mix of Roles

On an effective team, the team members have a mix of skills and they play
several different roles. It obviously doesn't make sense to have a team of
seven people who are all experts in assembly language if your project is in
C++. Likewise, it doesn't make sense to have seven people who are all ex-
perts in C++ if no one of them knows the applications area. Less obviously,
you need team members who have a blend of technical, business, manage-
ment, and interpersonal skills. In rapid development, you need interpersonal
leaders as much as technical leaders.

283

Chapter 12: Teamwork

FURTHER READING
These labels are not

Belbin's but are taken from
Constantino on Peopleware

284

(Constantine 1995a).

Dr. Meredith Belbin identified the following leadership roles:

e Driver'—Controls team direction at a. detailed, tactical level. Defines
things, steers and shapes group discussions and activities.

Coordinator—Controls team direction at the highest, strategic level.
Moves the problem-solving forward by recognizing strengths and
weaknesses and making the best use of human and other resources.

Originator—Provides leadership in ideas, innovating and inventing
ideas and strategies, especially on major issues.

Monitor—Analyzes problems from a practical point of view and
evaluates ideas and suggestions so that the team can make balanced
decisions.

Implementer—Converts concepts and plans into work procedures and
carries out group plans efficiently and as agreed.

e Supporter—Builds on team members' strengths and underpins their
shortcomings. Provides emotional leadership and fosters team spirit.
Improves communications among team members.

» Investigator—Explores and reports on ideas, developments, and
resources outside the group. Creates external contacts that may be
useful to the group.

e Finisher—Ensures that all necessary work is completed in all details.
Seeks work that needs greater than average attention to detail, and
maintains the group's focus and sense of urgency.

Even on a rapid-development project, it's best not to staff a project with
nothing but highrperformance individuals. You also need people who will
look out for the organization's larger interests, people who will keep the
high-performance individuals from clashing, people who will provide tech-
nical vision, and people who will do all the detail work necessary to carry
out the vision.

One symptom of a team that isn't working is that people are rigid about the
roles they will and won't play. One person will do database programming
only and won't work on report formatting. Or another person will program
only in C++ and won't have anything to do with Visual Basic.

On a well-oiled team, different people will be willing to play different roles
at different times, depending on what the team needs. A person who nor-
mally concentrates on user-interface work might switch to database work if
there are two other user-interface experts on the team. Or a person who
usually plays a technical-lead role may volunteer to play a participant role
if there are too many leaders on a particular project.

CROSS-REFERENCE

For more on commitment to
aproject, see Chapter 34,
"Signing Up."

12.3 Creating a High-Performance Team

Commitment to the Team

The characteristics of vision, challenge, and team identity coalesce in the area
of commitment. On an effective team, team members commit to the team.
They make personal sacrifices for the team that they would not make for the
larger organization. In some instances, they may make sacrifices to the team
to spite the larger organization, to prove that they know something that the
larger organization doesn't. In any case, the minimum requirement for team
success is that the team members contribute their time and energy—their
effort—and that calls for commitment.

When team members commit, there must be something for them to commit
to. You can't commit to unstated goals. You can't commit at any deep level
to "doing whatever management wants." Vision, challenge, and team iden-
tity provide the things to which team members commit.

Getting project members to commit to a project is not as hard as it might
sound. IBM found that many developers were eager for the opportunity to
do something extraordinary in their work. They found that simply by ask-
ing and giving people the option to accept or decline, they got project
members to make extraordinary commitments (Scherr 1989).

Mutual Trust

Larson and LaFasto found that trust consisted of four components:

* Honesty

e Openness
» Consistency
* Respect

If any one of these elements is breached, even once, trust is broken.

Trust is less a cause than an effect of an effective team. You can't force the
members of a team to trust each other. You can't set a goal of "Trust your
teammates." But once project members commit to a common vision and start
to identify with the team, they learn to be accountable and to hold each other
accountable. When team members see that other team members truly have
the team's interests at heart—and realize that they have a track record of be-
ing honest, open, consistent, and respectful with each other—trust will arise
from that.

285

Chapter 12: Teamwork

CROSS-REFERENCE
For more on the role of

communication in teamwork,
see "Effective communica-

286

tion" in Section 13.1.

Interdependence Among Members

Team members rely on each other's individual strengths, and they all do
what's best for the team. Everybody feels that they have a chance to contrib-
ute and that their contributions matter. Everybody participates in decisions.
In short, the team members become interdependent. Members of healthy
teams sometimes look for ways they can become dependent on other team
members. "I could do this myself, but Joe is especially good at debugging
assembly language code. I'll wait until he comes back from lunch and then
ask him for help."

On the most effective one-project teams that I've been on, the beginning of
the project is characterized by an unusual measure of tentativeness. Team
members might feel that they have specific strengths to offer the team, but
they are not pushy about asserting their rights to occupy specific roles.
Through a series of tacit negotiations, team members gradually take on roles
that are not just best for them individually but that are best for the team as
a whole. In this way, everyone gravitates toward productive positions, and
no one feels left out.

Effective Communication

Members of cohesive teams stay in touch with each other constantly. They
are careful to see that everyone understands when they speak, and their
communication is aided by the fact that they share a common vision and
sense of identity. Amish barn raisers communicate efficiently during a barn
raising because they live in a tight-knit community and nearly all of them
have been through barn raisings before. They are able to communicate pre-
cise meanings with a few words or gestures because they have already es-
tablished a baseline of mutual understanding.

Team members express what they are truly feeling, even when it's uncom-
fortable. Sometimes team members have to present bad news. "My part of
the project is going to take 2 weeks longer than I originally estimated." In
an environment characterized by interdependence and trust, project mem-
bers can broach uncomfortable subjects when they first notice them, when
there's still time to take effective corrective action. The alternative is cover-
ing up mistakes until they become too serious to overlook, which is deadly
to a rapid-development effort.

Sense of Autonomy

Effective teams have a sense that they are free to do whatever is necessary

123 Creating a High-Performance Team

without interference. The team might make a few mistakes—but the moti-
vational benefit will more than offset the mistakes.

This sense of autonomy is related to the level of trust they feel from their
manager. It is imperative that the manager trust the team. That means not
micromanaging the team, second-guessing it, or overriding it on tough de-
cisions. Any manager will support a team when the team is clearly right-—
but that's not trust. When a manager supports the team when it looks like
it might be wrong—that's trust.

Senseof Empowerment

An effective team needs to feel empowered to take whatever actions are
needed to succeed. The organization doesn't merely allow them to do what
they think is right, it supports them in doing it. An empowered team knows
that it can, as they say at Apple Computer, push back against the organiza-
tion when it feels the organization is asking for something unreasonable or
is headed in the wrong direction.

One common way that teams are denied empowerment is in the purchase of
minor items they need to be effective. I worked on an aerospace project in
which it took 6 months to get the approval to buy two scientific hand-held
calculators. This was on a project whose mission was to analyze scientific data!

As Robert Townsend says, "Don't underestimate the morale value of letting
your people 'waste' some money" (Townsend 1970). The most extreme
example I know of was an episode during the development of Windows 95-
To ensure that Windows 95 worked well with every program, the project
manager and the rest of the team headed over to the local software store and
loaded up a pickup truck with one of every kind of program available. The
total tab was about $15,000, but the project manager said that the benefit to

morale was unbelievable. (The benefit to morale at the software store wasn't
bad, either.)

Small Team Size

Some experts say that you must have fewer than 8 to 10 people for a team
to jell (Emery and Emery 1975, Bayer and Highsrriith 1994). If you can keep
the group to that size, do so, If your project requires you to have more than
10 project members, try to break the project into multiple teams, each of
which has 10 or fewer members.

The 10-person limitation applies mainly to single-project teams. If you can
keep a team together across several projects, you can expand the size of the
team as long as the team shares a deep-rooted culture. The Amish farmers
formed a cohesive team of several dozen people, but they had been together
for generations.

287

Chapter 12: Teamwork

CROSS-REFERENCE
Formore on what
motivates developers, see
Section 11.1, "Typical
Developer Motivations."

CROSS-REFERENCE

For the difference between
managers and team leaders,
see Section 13.3, "Managers
and Technical Leads."

&(@
\ 3K
= 'J‘:_" &

FURTHER READING

For excellent discussions
of each of these points,
see Quality Software
Management, Volume 3:
Congruent Action
(Weinberg 1994).

288

On the other end of the scale, it is possible for a group to be too small to
form a team. Emery and Emery point out that with less than four members,
a group has a hard time forming a group identity, and the group will be
dominated by interpersonal relationships rather than a sense of group re-
sponsibility (Emery and Emery 1975).

High Level of Enjoyment

Not every enjoyable team is productive, but most productive teams are en-
joyable. There are several reasons for this. First, developers like to be pro-
ductive. If their team supports their desire to be productive, they enjoy that.
Second, people naturally spend more time doing things that they enjoy than
doing things that they don't enjoy, and if they spend more time at it, they'll
get more done. Third, part of what makes a team jell is adopting a group
sense of humor. DeMarco and Lister describe a jelled group in which all the
members thought that chickens and lips were funny (DeMarco and Lister
1987). Chickens with lips were especially funny. The group actually rejected
a well-qualified candidate because they didn't think he would find chickens
with lips amusing. I don't happen to think that chickens with lips are funny,
but I know what DeMarco and Lister are talking about. One group I was a
part of thought that cream soda was hilarious and another thought that grape
Lifesavers were a riot. There's nothing intrinsically comical about cream soda
or grape Lifesavers, but those jokes were part of what gave those teams their
identities. I haven't personally seen a cohesive team that didn't have a keen
sense of humor. That might just be a quirk of my specific experience, but I
don't think so.

Howto Managea High-Performance Team

A cohesive team creates an "us" and the manager is in the sticky position of
being not completely "us" and not completely "them." Some managers find
that kind of team unity threatening. Other managers find it exhilarating. By
taking on a great deal of autonomy and responsibility, a high-performance
team can relieve a manager of many of the usual management duties.

Here are some keys to success in managing a cohesive team:

 Establish a vision. The vision is all-important, and it is up to the
manager and team leader to put it into play.

» Create change. The manager recognizes that there is a difference
between the way things should be and the way they are now. Realize
that the vision requires change, and make the change happen.

» Manage the team as a team. Make the team responsible for its actions
rather than making individuals on the team responsible for their
individual actions. Team members often set higher standards for
themselves than their leaders dp (Larson and LaFasto 1989).

FURTHER READING
For an excellent discussion
of team failure, see
Chapter 20, "Teamicide,"

in /%0p/eware(DeMarco
and Lister 1987).

124 Why Teams Fai

* Delegate tasks to the team in a way that is challenging, clear, and
supportive. Unleash the energy and talents of the team members.

* Leave details of how to do the task to the team, possibly including the
assignment of individual work responsibilities.

* When a team isn't functioning well, think about the MOI model, which
states that most team problems arise from Motivation, Organization, or
Information. Try to remove roadblocks related to these three factors.

Why Teams Fail

The cohesiveness of a group depends on the total field of forces that act on
that group. As with other aspects of rapid development, you have to do a
lot of things right to succeed, but you only have to do one thing wrong to
fail. Teams don't need to have all the characteristics described in the previ-
ous section, but they do need to have most of them.

Teams can fail for any of the reasons listed in Section 11.4, "Morale Killers."
Those morale killers can keep a team from jelling just as easily as they can
undercut individual morale.

Here are some other reasons that teams fail.

Lack of common vision. Teams rarely form without a common vision. Or-
ganizations sometimes prevent teams from forming by undercutting their
visions. A team might form around the vision of producing "the best word
processor in the world." That vision takes a beating if the organization later
decides that the word processor doesn't have to be world class, but it does

have to be completed within the next 3 months. When the vision takes a
beating, the team takes a beating too.

Lack of identity. Teams can fail because they don't establish a team identity.
The team members might be willing, but no one plays the role of Supporter,
and without anyone to look after the team, the team doesn't form. This risk
is particularly strong on rapid-development projects because of pressure not
to "waste time" on "nonproductive” activities such as developing a team logo
or shared sense of humor. Each team needs to have someone who will take
responsibility for maintaining the health of the team.

Teams can also lack identity because one or more members would rather
work alone than be part of a team. Some people aren't joiners, and some
people think the whole idea of teams is silly. Sometimes a group is composed
of 9-to-5ers who don't want to make the commitment to their jobs that team
membership entails. There are lots of appropriate places for people who
work like this, but their presence can be deadly to team formation.

289

Chapter 12: Teamwork

290

Lack of recognition. Sometimes project members have been part of a project
team that gave its heart and soul—only to find that its efforts weren't appre-
ciated. One young woman I know worked practically nonstop for 3 months
to meet a deadline. When her product shipped, the manager thanked her in
a fatherly way and gave her a stuffed animal. She thought the gesture was
patronizing, and she was livid. I wouldn't blame her for not signing up for
another all-out team project. If an organization wants to create a high-per-
formance team more than once, it should be sure to recognize the extraor-
dinary efforts of the first team appropriately. If group members' previous
experience has conditioned them to ask, "What's in it for me?" you'll have
an uphill battle in getting a high-performance team to form.

Productivity roadblocks. Sometimes teams fail because they feel that they
can't be productive. People can't survive if the environment doesn't contain
enough oxygen, and teams can't survive if they're prevented from getting
their work done. Some experts say that the primary function of a software-
project manager is to remove barriers to productivity so that the naturally self-
motivated developers can be productive (DeMarco and Lister 1987).

Ineffective communication. Teams won't form if they can't communicate
regularly. Common barriers to communication include lack of voicemail, lack
of email, insufficient number of conference rooms, and separation of the
team members into geographically dispersed sites. Bill Gates has pointed out
that doing all of Microsoft's new-product development on one site is a ma-
jor advantage because whenever interdependencies exist, you can talk about
them face to face (Cusumano and Selby 1995).

Lack of trust. Lack of trust can kill a team's morale as quickly as any other
factor. One reason that teams usually don't form within bureaucratic orga-
nizations is that the organizations (to varying extents) are based on lack of
trust. You've probably heard something similar to this: "We caught someone
buying an extra pack of 3-by-5 cards in August of 1952, so now all purchases
have to go through central purchasing." The lack of trust for employees is
often institutionalized.

Managers who pay more attention to how their teams go about administra-
tive details than to the results they achieve are demonstrating a lack of trust.
Managers who micromanage their team's activities, who don't allow them to
meet with their customers, or who give them phony deadlines are giving a
clear signal that they don't trust them.

Instead of micromanaging a project team, set up a high-level project char-
ter. Let the team run within that charter. Set it up so that management can't
overrule the team unless they've gone against their charter.

Y]

CLASSIC MISTAKE

MARD DATA

12.4 Why Teams Fail

Problem personnel. The software field is littered with stories of developers
who are uncooperative in legendary proportions. I worked with one bellig-
erent developer who said things like, "OK, Mr. Smarty Pants Programmer, if
you're so great, how come I just found a bug in your code?" Some program-
mers browbeat their co-workers into using their design approaches. Their
nonconfrontational co-workers would rather acquiesce to their design de-
mands than prolong their interactions with them. I know of one developer
who was so difficult to work with that the human resources department had
to be brought in to resolve module-design disputes.

If you tolerate even one developer whom the other developers think is a
problem, you'll hurt the morale of the good developers. You are implying
that not only do you expect your team members to give their all; you expect
them to do it when their co-workers are 'working against them.

In areview of 32 management teams, Larson and LaFasto found that the most
consistent and intense complaint from team members was that their team
leaders were unwilling to confront and resolve problems associated with
poor performance by individual team members (Larson and LaFasto 1989).
They report that, "[m]ore than any other single aspect of team leadership,
members are disturbed by leaders who are unwilling to deal directly and
effectively with self-serving or noncontributing team members." They go on
to say that this is a significant management blind spot because managers
nearly always think their teams are running more smoothly than their team
members do.

Problem personnel are easy to identify if you know what to look for:

* They cover up their ignorance rather than trying to learn from their
teammates. "I don't know how to explain my design; I just know that it
works" or "My code is too complicated to test." (These are both actual
quotes.)

* They have an excessive desire for privacy. "I don't need anyone to
review my code."

» They are territorial. "No one else can fix the bugs in my code. I'm too
busy to fix them now, but I'll get to them next week."

* They grumble about team decisions and continue to revisit old discus-
sions after the team has moved on. "I still think we ought to go back
and change the design we were talking about last month. The one we
picked isn't going to work."

e Other team members all make wisecracks or complain about the same
person. Software developers often won't complain directly, so you
have to ask if there's a problem when you hear many wisecracks.

391

Chapter 12: Teamwork

e They don't pitch in on team activities. On one project I worked on, 2
days before our first major deadline a developer asked for the next day
off. The reason? He wanted to spend the day at a men's-clothing sale
in a nearby city—a clear sign that he hadn't integrated with the team.

Coaching the problem person on how to work as part of a team sometimes
works, but it's usually better to leave the coaching to the team than to try
to do it as the team leader or manager. You might have to coach the team
on how to coach the problem team member.

If coaching doesn't produce results quickly, don't be afraid to fire a person
who doesn't have the best interests of the team at heart. Here are three solid
reasons:

* It's rare to see a major problem caused by lack of skill. It's nearly
always attitude, and attitudes are hard to change.

* The longer you keep a disruptive person around, the more legitimacy
that person will gain through casual contacts with other groups and
managers, a growing base of code that person has to maintain, and so
on.

* Some managers say that they have never regretted firing anyone.
They've only regretted not doing it sooner.

You might worry about losing ground if you replace a team member, but on
a project of almost any size, you'll more than make up for the lost ground
by eliminating a person who's working against the rest of the team. Cut your
losses, and improve the rest of your team's morale.

12.5 Long-Term Teambuilding

The team of Amish farmers is a good model of the perfect, jelled team. But
that team didn't form overnight. Those farmers had been together for years,
and their families had been together for years before that. You can't expect
performance as dramatic as raising a barn in a single day from a temporary
team. That kind of productivity comes only from permanent teams.

Here are some reasons to keep teams together permanently.

Higher productivity. With a permanent-team strategy, you keep a group
together if it jells into a team, and you disband it if it doesn't. Rather than
breaking up every team and rolling the dice on every new project to see
whether new teams jell or not, you roll the dice only after you've lost. You
stockpile your winnings by keeping the productive teams together. The net
effect is an "averaging up" of the level of performance in your organization.

i1

HARD DATA

HARD DATA

125 Long-Term Teambuilding

Lower startup costs. The startup costs for building a team are unavoidable,
so why not try to reuse the team and avoid additional startup costs? By keep-
ing the effective teams together, you preserve some of the vision, team iden-
tity, communication, trust, and reservoir of good will built up from comple-
ting an enjoyable project together. You're also likely to preserve specific
technical practices and knowledge of specific tools within a group.

Lower risk of personnel problems. Personnel issues arising from people who
work poorly together cost your projects time and money. You can avoid these
problems altogether by keeping teams together when they jell.

Less turnover. The current annual turnover rate is about 35 percent among
computer people' (Thomsett 1990). DeMarco and Lister estimate that 20
percent of the average company's total labor expense is turnover cost
(DeMarco and Lister 1987). An internal Australian Bureau of Statistics esti-
mate placed the average time lost by a project team member's resignation
at 6 weeks (Thomsett 1990). Studies by M. Cherlin and by the Butler Cox
Foundation estimate the cost of replacing an experienced computer person
at anywhere from $20,000 to $100,000 (Thomsett 1990).

Costs are not limited simply to the loss of the employee. Productivity suffers
generally. A study of 41 projects at Dupont found that projects with low
turnover had 65 percent higher productivity than projects with high turnover
(Martin 1991).

Not surprisingly, people who have formed into cohesive teams are less likely
to leave a company than people who have not (Lakhanpal 1993). Why should
they leave? They have found an environment they enjoy and can feel pro-
ductive in.

The idleness question. Organizations are sometimes leery of keeping teams
together because they might have to pay a team to sit idle until a project
comes along that's appropriate for them to work on. That's a valid objection,
but I think that in most organizations it isn't ultimately a strong objection.

Organizations that look exclusively at the cost of idle time overlook the costs
of rebuilding teams for each new project. The cost of building a new team
includes the cost of assembling the team and of training the team to work
together.

Organizations tend to overlook how much they lose by breaking up a high-
performance team. They take a chance that individuals who could be work-
ing as part of a high-performance team will instead become part of an
average team or a poor one.

Chapter 12: Teamwork

Some organizations worry that if they keep teams together, they won't be able
to get any teams to, work on certain projects. But others have found that if
you give people the chance to work with other people they like, they'll work
on just about any project (DeMarco and Lister 1987).

Finally, I have yet to see a software organization that has long idle periods.
To the contrary, every project that I've ever worked on has started late be-
cause personnel weren't available to staff it until their previous projects were
completed.

Peopleware issues tend to lose out in the bean-counter calculations because
in the past they have lacked the quantitative support that staff-days-spent-
idle has. But the situation has changed. Australian software consultant Rob
Thomsett has shown that there is a tremendous return on investment from
teambuilding—for example, it is an order of magnitude better than for CASE
tools (Constantine 1995a). We now know that among groups of people with
equivalent skills, the most productive teams are 2 to 3 times as productive
as the least productive teams. They're iVz to 2 times as productive as the av-
erage teams. If you have a team that you know is on the top end of that
range, you would be smart to allow them to sit idle for up to one-third or
even one-half of their work lives just to avoid the risk of breaking them up
and substituting a merely average team in their place.

12.6 Summary of Teamwork Guidelines

294

Larson and LaFasto distilled the results of their research into a set of practi-
cal guidelines for team leaders and team members. If your team wants to
adopt a set of rules, the guidelines in Table 12-1 on the facing page are a
good place to start.

Case Study 12-4. A Second High-PerformaneeTeam

TEOATE LT AR OIRII
Frank O'Grady captured the intense efficiency that a jelied team can have:

"I would sit in on design meetings, amazed gt what | was seeing. When they
were on g roll, it was as if they were all in some kind of high-energy trance
during which they could see in their mind's eye how the program would
undold through time. They spoke in mpid-fire shorthand, often accompanied
by vivid hand gestures when they wanted 1o emphasize a point. After 15
Minutes of so, a consensus was reached as to what had (o be dong, Every-
one knew which programs had 1o be changed and recompiled The meeting
adjourned.” (O'Grady 1990)

Further Reading

Table 12-1. Practical Guidelines for Team Members and Leaders

L 2 R R N R S N = B e e R e e s L)

Team Members

Team Leader

As a team leader, I will:

1. Avoid compromising the team's
objective with political issues.

2. Exhibit personal commitment to
the team's goal.

3. Not dilute the team's efforts
with too many priorities.

4. Be fair and impartial toward all
team members.

5. Be willing to confront and
resolve issues associated with
inadequate performance by
team members.

6. Be open to new ideas and
information from team
members.

As a team member, I will:

1.

2.

10.

11.

12.

Demonstrate a realistic understand-
ing of my role and accountabilities.

Demonstrate objective and fact-
based judgments.

. Collaborate effectively with other

team members.

Make the team goal a higher priority
than any personal objective.

. Demonstrate a willingness to devote

whatever effort is necessary to
achieve team success.

. Be willing to share information,

perceptions, and feedback
appropriately.

. Provide help to other team members

when needed and appropriate.

. Demonstrate high standards of

excellence.

. Stand behind and support team

decisions.

Demonstrate courage of conviction
by directly confronting important
issues.

Demonstrate leadership in ways that
contribute to the team's success.

Respond constructively to feedback
from others.

Source: Adapted from TeamWork (Larson and LaFasto 1989).

Further Reading

Here are three books and articles about teambuilding in software:

DeMarco, Tom, and Timothy Lister.

didn't.

Peopleware-. Productive Projects and
Teams. New York: Dorset House, 1987. Part IV of this book focuses on
growing productive software teams. It's entertaining reading, and it
provides memorable stories about teams that worked and teams that

295

Chapter 12: Teamwork

296

Weinberg, Gerald M. Quality Software Management, Volume 3: Congruent
Action. New York: Dorset House, 1994. Part IV of this book is on
managing software teams. Weinberg's treatment of the topic is a little
more systematic, a little more thorough, and just as entertaining as
Peopleware's. Parts I through III of his book lay the foundation for
managing yourself and people who work in teams.

Constantine, Larry L. Constantine on Peopleware. Englewood Cliffs, N.J.:
Yourdon Press, 1995. Constantine brings his expertise in software de-
velopment and family counseling to bear on topics related to effective
software teams.

Here are some sources of information on teambuilding in general:

Larson, Carl E., and Frank M. J. LaFasto. Teamwork: What Must Go Right,
What Can Go Wrong. Newbury Park, Calif: Sage, 1989. This remarkable
book describes what makes effective teams work. The authors con-
ducted a 3-year study of 75 effective teams and distilled the results into
eight principles, each of which is described in its own chapter. At 140
pages, this book is short, practical, easy to read, and informative.

Katzenbach, Jon, and Douglas Smith. Tlje Wisdom of Teams. Boston: Harvard
Business School Press, 1993. This is a full-scale treatment of teams in
general rather than just software teams. It's a good alternative to Larson
and LaFasto's book.

Dyer, William G. Teambuilding. Reading, Mass: Addison-Wesley, 1987. This
book describes more of the nuts and bolts of teambuilding than Larson
and LaFasto's book does. Whereas Larson and LaFasto's intended au-
dience seems to be the leader of the team, this book's intended audi-
ence seems to be the leader of a teambuilding workshop. It makes a
nice complement to either Larson and LaFasto's book or Katzenbach
and Smith's.

Witness. Paramount Pictures. Produced by Edward S. Feldman and directed
by Peter Weir, 1985. The Amish barn-raising scene is about 70 minutes
into this love-story/thriller, which received Oscars for best original
screenplay and best editing and was nominated for best picture, best

direction, best actor, best cinematography, best art direction, and best
original score.

13

HARD DATA

Team Structure

Contents

13.1 Team-Structure Considerations
132 Team Models
13-3 Managers and Technical Leads

Related Topics
Teamwork: Chapter 12

EVEN WHEN YOU HAVE SKILLED, MOTIVATED, hard-working people, the
wrong team structure can undercut their efforts instead of catapulting them
to success. A poor team structure can increase development time, reduce
quality, damage morale, increase turnover, and ultimately lead to project can-
cellation. Currently, about one-third of all team projects are organized in in-
effective ways (Jones 1994).

This chapter describes the primary considerations in organizing a rapid-
development team and lays out several models of team structure. It concludes
with a discussion of one of the most nettlesome team- structure issues: the
relationship between project managers and technical leads.

Case Study 13-1. Mismatch Between Project Objectives and Team Structure
TSR e A A IA TR I P LS TG AN T R SRR IS WA B RS T Sidah A P L TR L TR TATLT D

After several failed projects, Bill was determined 10 bring the Giga-Bill 4.0
project in on time and within budget, so he brought in Randy, 3 high-priced
consultant, o help him set up the project.

Randy talked to Bill about his project for a while and then recommended that
he set up the project as a skunkwaorks eam, “Software people are creative,
and they need lots of flexibility, You should set them up with an off-site of-
fice and give them lots of autonomy so they can create. If you do that, they'll
work day and night, and they can't help but complete the project on time.”

(continued')

287

Chapter 13: Team Structure

Case Study 13-1. Mismatch Between Project Objectives andTeam Stucture,continued

Bill was uncomfonable with the idea of setting up an off-site office, but the
project was important, and he decided to take Randy’s advice. He put the -
developer he considered 10 be his best lead, Card, in charge of the project.

“Carl, we need w0 get this project finished as fast as possible. The end-users
are clamoring for an upgrade to solve all of the problems with Giga-Bill 4.0.
We've got 1o hit a home run with this project. We've got to make the users
happy. The users are so eager to get a new product that they have already
drafted a set of requirements. 've looked at the requirements, and it looks
te me like thetr requirements tell us exactly what we need 1o build, We need
to get this next version out in as close to 6 months as we can.”

Bill continued. *Randy recommended that 1 noﬂnﬁcrfcrcwuhmmday-m-dty
activities, so you're in chasge. I'll give you whatever flexibility you want. \'ou
do whatever it takes to get this project done now!”

Carl was excited about the idea of working off-site, and he knew he would a
enjoy working with the other people on the team. He met with Judn snd |
Jennifer later that day. *T've got good news and beiter news,” he told them.
“'l'hcgcndncwslstlmmllhugoﬂenﬁlcwordmzuhcuscrsnmfcdupwlm

Giga-Bill 4.0, and we need 16 hit a home run with this project. He's willing 5
r.oaiveusauthcﬂcnbilityweneedwhnmeballmolmepatk.mcbd- .
tcmemhﬂmwe:egoﬁng:obesempwdzhmoﬁskeoﬂ‘umdmm
ference from Bill or anyone else. Goad-bye dress codel”

Juan and Jennifer were as excited about the project as Carl, andwhmlh:y -
stacted the project officially two weeks latér, Mmorﬂcwuaky-lﬁgh.cm
wenl 1o work early the fisst day thinking that he would get some work dme
before the others arrived, and Juan and Jennifer were already there. Tb¢y
smyedkm:evewdaymc&rstweek.mdhadwuoubacmylnglocusedoa]
the project. it felt great 1o have u chance 16 develop a truly great product,

Al the end of the first week, Card had a status meeting with Bill. Wc’vehld‘
some greal ideas that are going to make a truly great product. We've come
up with some ways 1o mect the users' requirements that will knock their socks ’
off.” Bill thought it was great to see Cal 50 charged about the project, and
hedec-«kdnmxomksqusﬂﬁnghhbloswmhmmrﬂcbyasﬁnghﬁnabm"
the schedule,]

Carl continued to report status semimonthly, and Bill continued to be -
pressed with the tcam’s extragrdinary momile. Casl reported that the team was ‘i
working at least 9 ar 10 hours a day and most Saturdays without being asked.
After the first meeting, Bill always asked whether the project was on sched-
ule and Carl alovays repored that they were making great prcmmumed

more details, b Mndylmdemphmudlhmmshmgmolmdwmdhnn
maordle. So he didn't push. '

Al the 5 Ve-month mark, Bill couldn’t wan any more and asked, ‘Howmyou
domng on the schedule?”

- rik ’-

;?J 4-- !-{ _

e il

(continued)

13.1 Team-Structure Considerations

Case Study 13-1. Mismatch Between Project Objectives and Team Stucture, continued

"We're doing great,” Carl answered. “We've been working night and day, sad
this program is really coming together.” |
"OK, but are you going to be able to deliver the software in 2 weeks?™ Bill
asked,

“Iwo weeks? No, we can't deliver in 2 weeks, This is a complicated progeam,
and it will probably be more like 8 weeks,” Carl said, “But It is really going
to blow you away.”

“Wait a nunutel” Bill said, "1 thought you 1old mie that you were on schedule,
The users are expecting to get this software in 2 weeks!"

“You said we needed 10 hit a home run. That's what we'se doing. We needed
more than exactly 6 months 1o do that, 1tshould take about 7 Vemonths, Don't
wormry. The users are going to love this software.”

“Holy cow!” Bill said. “This is 2 disaster! You guys need 1o get that software
done now! U've had users breathing down my neck for 6 montss while 1 walted
for you to get this done. They told us exactly what a home run would be 6
months ago. All you needed o do was tollow thedr instructions, | spent a jot
of personal chits 1o get approval 1o put the project off-site so that yoo could
get it done fast. They're going to pin my ears back.” |

"Gee, I'm sorry Bill. 1 didn't realize Gun thie schiedule was the main thing here.
I thought hiting a home run was. U'll ralk with everyone on the team and see
what we can do.”

Carl went back to the team and wld them about the change in direction. Wy
that time, they had already done all of the design and a lot of the implemen-
tation for the home-run project; so they decided thst the fastest way to fin

-ish would be to continue as planned. They had only 8 weeks to go. Changing
course now would introduce all kinds of unpredicrable side cﬂ'ec!s thiar would
probably just profong the schedule.

They continued to work as hard as possible, but their estimares had not beern
very good. At the 8-month mark, Bill decided that he had les this wam goof
off enough, and moved themn back on-site. The team's mogale plumimeted, and
they quit working voluntary nights and weekends. Bill responded by order
ing them 1o work 10-hour days and mandatory Sarurdays unll they were done,
The team rematned enthusiastic about their product, but they had lost their
enthusiasm for the project. They finally finished afier 9 mondhs. The users
loved the new software, but they said they wished they could have gotten i

4 months earlier.

131 Team-Structure Considerations

The first consideration in organizing a team is to determine the team's broad
objective. Here are the broad objectives according to Larson and LaFasto

(1989)
299

Chapter 13: Team Structure

300

e Problem resolution
e Creativity
e Tacticalexecution

Once you've established the broad objective, you choose a team structure
that matches it. Larson and LaFasto define three general team structures for
effective, high-performance teams. The structure that's most appropriate
depends on the team's objective.

The users in Case Study 13-1 had described exactly what they wanted, and
the team really just needed to create and execute a plan for implementing
it. Bill got some bad advice from Randy, who should have identified the
primary goal of the team as tactical execution. The users were more inter-
ested in getting a timely upgrade than they were in creative solutions. The
effect of the bad advice was predictable: organized for creativity, the team
came up with a highly creative solution but didn't execute their plan effi-
ciently. They weren't organized for that.

Kinds of Teams

Once you've identified the team's broadest objective—problem resolution,
creativity, or tactical execution—then you set up a team structure that em-
phasizes the characteristic that is most important for that kind of team. For
a problem-resolution team, you emphasize trust. For a creativity team, au-
tonomy. And for a tactical-execution team, clarity.

Problem-resolutionteam. The problem-resolution team focuses on solving
a complex, poorly defined problem. A group of epidemiologists working for
the Centers for Disease Control who are trying to diagnose the cause of a
cholera outbreak would be a problem-resolution team. A group of mainte-
nance programmers trying to diagnose a new showstopper defect is too. The
people on a problem-resolution team need to be trustworthy, intelligent, and
pragmatic. Problem-resolution teams are chiefly occupied with one or more
specific issues, and their team structure should support that focus.

Creativity team. The creativity team's charter is to explore possibilities and
alternatives. A group of McDonald's food scientists trying to invent a new
kind of McFood would be a creativity team. A group of programmers who
are breaking new ground in a multimedia application would be another kind
of creativity team. The creativity team's members need to be self-motivated,
independent, creative, and persistent. The team's structure needs to support
the team members' individual and collective autonomy.

Tactical-execution team. The tactical-execution team focuses on carrying out
a well-defined plan. A team of commandos conducting a raid, a surgical team,

131 Team-Structure Considerations

and a baseball team would all be tactical-execution teams. So would a soft-
ware team working on a well-defined product upgrade in which the purpose
of the upgrade is not to break new ground but to put well-understood func-
tionality into users' hands as quickly as possible. This kind of team is char-
acterized by having highly focused tasks and clearly defined roles. Success
criteria tend to be black-and-white, so it is often easy to tell whether the team
succeeds or fails. Tactical-execution team members need to have a sense of
urgency about their mission, be more interested in action than esoteric in-
tellectualizing, and be loyal to the team.

Table 13-1 summarizes the different team objectives and the team structures

that support those objectives.

Table 13-1. Team Objectives and Team Structures

WSRO NTLII00 MU A e D S AORE 00 Lt T DT SN T R E U CAAE S s LUk R ANT R R W Y e T
Broad Objective
Problem
Resolution Creativity Tactical Execution
Dominant feature Trust Autonomy Clarity
Typical software Corrective maintenance New product Product-upgrade
example on live systems development development

Process emphasis

Appropriate
lifecycle models

Team selection
criteria

Appropriate
software-team
models

Focus on issues

Code-and-fix, spiral

Intelligent, street
smart, people sensitive,
high integrity

Business team,
search-and-rescue
team, SWAT team

Explore possibilities
and alternatives

Evolutionary prototyping,
evolutionary delivery,
spiral, design-to-schedule,
design-to-tools

Cerebral, independent
thinkers, self-starters,
tenacious

Business team, chief-
programmer team,
skunkworks team,
feature team, theater
team

Highly focused tasks
with clear moles, often
marked by clear
success or failure

Waterfall, modified
waterfalls, staged
delivery, spiral,
design-to-schedule,
design-to-tools

Loyal, committed,
action-oriented, sense
of urgency, responsive

Business team, chief-
programmer team,
feature team, SWAT
team, professional
athletic team

Source: Adapted from Team Work (Larson and LaFasto 1989).

Additional Team-Design Features

Beyond the three basic kinds of teams, there are four team-structure features
that seem to characterize all kinds of effectively functioning teams:

301

Chapter 13: Team Structure

Clearroles andaccountabilities. On a high-performance team, every person
counts, and everyone knows what they are supposed to do. As Larson and
LaFasto say, "EVERYONE IS ACCOUNTABLE ALL THE TIME on successful
teams" [authors' emphasis] (Larson and LaFasto 1989).

Monitoring of individual performance and providing feedback. The flip side
of accountability is that team members need some way of knowing whether
they are living up to the team's expectations. The team needs to have mecha-
nisms in place to let team members know in what ways their performance
is acceptable and in what ways it needs improvement.

Effective communication. Effective communication depends on several
projectcharacteristics.

Information must be easily accessible. Meting out information on a "need to
know" basis i1s bad for morale on a rapid-development project. Put all rele-
vant information including documents, spreadsheets, and project-planning
materials into version control and make them available on-line.

Information must originate from credible sources. The team's confidence in
its decision making—the extent to which it's willing to make decisions ac-
tively or boldly—depends on how confident it is in the information on which
it bases its decisions.

There must be opportunities for team members to raise issues not on the
formal agenda. The word "formal" is key. Team members need informal
opportunities to raise issues in an environment where titles, positions, office
sizes, and power ties are not part of the equation. This is part of the under-
lying reason for the success of informal management approaches such as
Management By Walking Around.

The communication system must provide for documenting issues raised and
decisions made. Keeping accurate records prevents the team from retracing
its steps through old decisions.

Fact-based decision making. Subjective judgments can undercut team mo-
rale. High-performance team members need to understand the bases for all
decisions that affect them. If they find that decisions are made for arbitrary,
subjective, or self-serving reasons, their performance will suffer.

Which Kind of Team Is Best for Rapid Development?

CROSS-REFERENCE A key to organizing a team for rapid development is understanding that there
Formoreontheneedtotailor jg o single team structure that achieves the maximum development speed

the development approach to .
on cvery pI'O]CCt.

the project, see Section 2.4,
‘Which Dimension Matters the
Most?" and Section 6.1, "Does

One Size Fit AlI?"

302

13.1 Team-Structure Considerations

Suppose you're working on a brand new word-processing product and your
goal is to create the best word processor in the world. You don't know at
the beginning of the project exactly what the world's best word processor
looks like. Part of your job will be to discover the characteristics that make
up an exceptional product. For the most rapid development within that
context, you should choose a team structure that supports creativity.

Now suppose that you're working on version 2 of that same word-process-
ing product. You learned on version 1 what it would take to create a world-
class product, and you don't view version 2 as exploratory. You have a
detailed list of features that need to be implemented, and your goal is to
implement them as fast as possible so that you stay ahead of the competi-
tion. For the most rapid development within that context, you should choose
a team structure that supports tactical execution.

There's no such thing as a single best "rapid-development team structure" be-
cause the most effective structure depends on the context (See Figure 13-1.)

'We're the right team to “No, we're the right team
win this game." to win this game."

Figure 13-1. No single team structure is bestfur all projects.

303

Chapter 13: Team Structure

13.2

CROSS-REFERENCE

For more on the roles that

people play in effective

teams, see "Mix of Roles"

304

in Section 12.3.

Team Models

Team leads, project managers, writers, and researchers have come up with
many team models over the years, and this section catalogs a few of them.
Some of the models affect only how the team operates on the inside and thus
could be implemented by the technical lead or the team itself. Others affect
how the team looks to management and would ordinarily require manage-
ment approval.

The models in this section don't make up an orthogonal set. You will find
overlaps and contradictions among the models, and you could combine
elements from several different models to make up your own model. This
section is intended more to generate ideas about different ways to structure
a team than to be a systematic presentation of all possible team structures.

Business Team

The most common team structure is probably the peer group headed by a
technical lead. Aside from the technical lead, the team members all have
equal status, and they are differentiated by area of expertise: database, graph-
ics, user interface, and various programming languages. The technical lead
1s an active technical contributor and is thought of as the first among equals.
The lead is usually chosen on the basis of technical expertise rather than
management proficiency.

Most commonly, the lead is responsible for making final decisions on tough
technical issues. Sometimes the lead is a regular team member who merely
has the extra duty of being the team's link to management. In other cases,
the lead occupies a first-level management position. The specific amount of
management responsibility the technical lead has varies from one organiza-
tion to another, and I'll discuss that topic more later in the chapter.

From the outside, the business-team structure looks like a typical hierarchi-
cal structure. It streamlines communication with management by identifying,
one person as principally responsible for technical work on the project. It
allows each team member to work in his'or her area of expertise, and it
allows the team itself to sort out who should work on what. It works well
with small groups and with long-standing groups that can sort out their
relationships over time.

It is adaptable enough that it can work on all kinds of projects—problem
resolution, creativity, and tactical execution. But its generality is also its
weakness, and in many cases a different structure can work better.

CROSS-REFERENCE
Formore on variations

individud performance, see
"Peqple” in Section 2.2.

13.2 Team Models

Chief-Programmer Team

The idea of the chief-programmer team was originally developed at IBM
during the late 1960s and early 1970s (Baker 1972, Baker and Mills 1973). It
was popularized by Fred Brooks in the Mythical Man-Month (Brooks 1975,
1995), in which Brooks referred to it as a surgical team. The two terms are
interchangeable.

The chief-programmer team takes advantage of the phenomenon that some
developers are 10 times as productive as others. Ordinary team structures put
mediocre programmers and superstars on equal footing. You take advantage
of the high productivity of the superstars, but you're also penalized by the
lower productivity of other team members. In the surgical-team concept, a
programming superstar is identified as the surgeon, or chief programmer.
That person then drafts the entire specification, completes all of the design,
writes the vast majority of the production code, and is ultimately responsible
for virtually all of the decisions on a project.

With the surgeon handling the bulk of the design and code, other team mem-
bers are free to specialize. They are arrayed about the surgeon in support
roles, and the chief-programmer team takes advantage of the fact that spe-
cialists tend to outperform generalists (Jones 1991).

A "backup programmer" serves as the chief programmer's alter ego. The
backup programmer supports the surgeon as critic, research assistant, tech-
nical contact for outside groups, and backup surgeon.

The "administrator" handles administrative matters such as money, people,
space, and machines. Although the surgeon has ultimate say about these mat-
ters, the administrator frees the surgeon from having to deal with them on
a daily basis.

The "toolsmith" is responsible for creating custom tools requested by the
surgeon. In today's terminology, the toolsmith would be in charge of creat-
ing command scripts and make files, of crafting macros for use in the pro-
gramming editor, and of running the daily build.

The team is rounded out by a "language lawyer" who supports the surgeon
by answering esoteric questions about the programming language the sur-
geon is using.

Several of the support roles suggested in the original chief-programmer pro-
posal are now regularly performed by nonprogrammers—by documenta-
tion specialists, test specialists, and program managers. Other tasks such
as word processing and version control have been simplified so much by

modern software tools that they no longer need to be performed by sup-
port personnel.

305

Chapter 13: Team Structure

306

When it was first used more than 20 years ago, the chief-programmer team
achieved a level of productivity unheard of in its time (Baker and Mills 1973).
In the years since, many organizations have attempted to implement chief-
programmer teams, and most have not been able to repeat the initial stun-
ning success. It turns out that true superstars capable of serving as chief
programmers are rare. When individuals with such exceptional capabilities
are found, they want to work on state-of-the-art projects, which is not what
most organizations have to offer.

In spite of 20 years worth of changes and the rarity of superstar program-
mers, [think this structure can still be appropriate when used opportunisti-
cally. You can't start out by saying, "I need to get this project done fast, and
I want to use a chief-programmer team structure." But what if you do hap-
pen to have a superstar who's willing to work exceptionally hard, who has
few other interests, and who is willing to put in 16 hours a day? In that case,
I think the chief-programmer team can be the answer.

The chief-programmer team is appropriate for creative projects, in which
having one mind at the top will help to protect the system's conceptual in-
tegrity. It's also well suited to tactical-execution projects, in which the chief
programmer can serve as near dictator in plotting out the most expeditious
means of reaching project completion.

Skunkworks Team

The skunkworks team is an integral part of the lore of the engineering world.
A skunkworks project takes a group of talented, creative product developers,
puts them in a facility where they will be freed of the organization's normal
bureaucratic restrictions, and turns them loose to develop and innovate.

Skunkworks teams are typically treated as black-boxes by their management.
The management doesn't want to know the details of how they do their job;
they just want to know that they're doing it. The team is thus free to orga-
nize itself as it sees fit. A natural leader might emerge over time, or the team
might designate a leader from the outset.

Skunkworks projects have the advantage of creating a feeling of intense
ownership and extraordinary buy-in from the developers involved. The
motivational effect can be astounding. They have the disadvantage of not
providing much visibility into the team's progress. Some of this is probably
an inevitable effect of the unpredictability involved in any highly creative
work. Some of it is an explicit trade-off—trading a loss in visibility for an
increase in motivation.

Chapter 14: Feature-Set Control

CROSS-REFERENCE

For details on incremental

et

delivery strategies,
see Chapter7,
"Lifecycle Planning."

328

CLASSIC MISTAKE

Increased developer attachment to specific features. The increased owner-
ship that developers feel with a minimal-spec approach can be a double-
edged sword. You get extra motivation, but you can also encounter more
resistance when you want to change one of the developer's features. Keep
in mind that when product changes are suggested, they are no longer im-
plicitly critical of only the product; they are implicitly critical of the
developer's work.

Use of minimal specification for the wrong reason. Don't use a minimal
specification to reduce time on the requirements-specification activity itself.
If you use this practice as a lazy substitute for doing a good job of require-
ments specification, you'll end up with a lot of rework—designing and imple-
menting features twice, the second time at a point in the project when it's
expensive to change your mind. But if you use this practice to avoid doing
work that would be wasted, you follow through with clear goals, and you
give developers latitude in how they implement their features, then you can
develop more efficiently.

If you use this approach, both you and your customers have to be prepared
to accept a version of the product that doesn't match your vision of what the
product should look like. Sometimes people start out saying they want to use
this approach—and then, when the product departs from their mental im-
age, they try to bring it into line. Worse, some customers will try to use the
looseness of this specification approach to their advantage, shoehorning in
extra features late in the project and interpreting every feature in the most
elaborate way possible. If you allow much of that, you'll waste time by
making late, costly changes; you would have done better specifying your
intent up front and then designing and implementing the product efficiently
the first time.

Know yourself and your customers well enough to know whether you'll
accept the results of giving developers this much discretion. If you're uncom-
fortable with ceding such control, you'll be better off using a traditional
specification approach or an incremental-delivery strategy.

Keys to success in using minimal specifications
There are several keys to success in using minimal specifications.

Use a minimum specification only when requirements are flexible. The suc-
cess of this approach depends on the flexibility of the requirements. If you
think the requirements are really less flexible than they appear, take steps
to be sure that they are flexible before you commit to use a minimal speci-
fication. Flexible initial requirements have been identified by some people
as a key to success with any rapid-development approach (Millington and
Stapleton 1995).

CROSS-REFERENCE
Formore on flexible
development approaches,
see Chapter7, "Lifecycle
Planning," and Chapter 19,
"Designing for Change."

14.1 Early Project: Feature-Set Reduction

Keep the spec to a minimum. With any ofthese approaches, you'll need to
make it clear that one of the objectives is to specify only the minimum de-
tail necessary. For items that users might or might not care about, the default
option should be to leave further specification to the developers. When in
doubt, leave it out!

Capture the important requirements. Although you should try not to capture
requirements that the users don't care about, you must be careful to capture
all of the requirements that they do care about. Doing a good minimal spec
requires a special sensitivity to what users really care about.

Useflexibledevelopmentapproaches. Use development approaches that
allow mistakes to be corrected. With a minimal-spec approach, more mis-
takes will occur than with a traditional-spec approach. The use of flexible
development approaches is a means of hedging your bet that you can save
more time than you waste.

Involve key users. Find people who understand the business need or orga-
nizational need for the software, and involve them in product specification
and development. This helps to avoid the problem of omitted requirements.

Focus on graphically oriented documentation. Graphics in the form of dia-
grams, sample outputs, and live prototypes tend to be easier to create than
written specifications and more meaningful to users. For the graphically
oriented parts of your system, focus your documentation efforts on creating
graphically oriented materials.

Requirements Scrubbing

Entirely removing ("scrubbing") a feature from a product is one of the most
powerful ways to shorten a software schedule because you remove every
ounce of effort associated with that feature: specification, design, testing,
documentation—everything. The earlier in the project you remove a feature,
the more time you save. Requirements scrubbing is less risk) than minimal
specification. Because it reduces the size and complexity of the product, it
also reduces the overall risk level of the project. (See Figure 14-3 on the next

page.)

The idea behind requirements scrubbing is simple: After you create a prod-
uct specification, go over the specification with a fine-tooth comb and with
the following aims:

* Eliminate all requirements that are not absolutely necessary.

e Simplify all requirements that are more complicated than necessary.

 Substitute cheaper options for all requirements that have cheaper
options.

329

Chapter 14: Feature-Set Control

gROSS-REFERENCE
For more on versioned
development, see "Define
Families of Programs" in
Section 19.1; Chapter 20,
"Evolutionary Delivery";
and Chapter 36,

"Staged Delivery."

330

As with minimal specification, the ultimate success of this practice depends
on follow-through. If you begin with 100 requirements and the requirements-
scrubbing activity pares that number down to 70, you might well be able to
complete the project with 70 percent of the original effort. But if you pare
the list down to 70 only to reinstate the deleted requirements later, the project
will likely cost more than it would have if you had retained the entire 100
requirements the whole time.

Figure 14-3. Smallerprojects take less time to build.

Versioned Development

An alternative to eliminating requirements altogether is eliminating them from
the current version. You can plan out a set of requirements for a robust,
complete, ideal project but then implement the project in pieces. Put in any
hooks you'll need to support the later pieces, but don't implement the pieces
themselves. The development practices of evolutionary delivery and staged
deliver)” can help in this area.

The inevitable effect of using these practices is that by the time you finish
version 1 and begin work on version 2, you scrap some of the features you
had originally planned to have in the version 2 and add others. When that

14.2

CROSS-REFERENCE

For tips on resisting
pressure, including pressure
to add requirements, see
Section 9.2, "Beating
Schedule Pressure."

14.2 Mid-Project: Feature-Creep Control

happens, you become especially glad that you didn't put the scrapped fea-
tures into version 1.

Mid-Project: Feature-Creep Control

If you do a good job of specifying a lean product, you might think you have
your feature set under control. Most projects aren't that lucky. For many
years, the holy grail of requirements management has been to collect a set
of requirements—scrubbed, minimally specified, or otherwise—encase them
in permafrost, and then build a complete product design, implementation,
documentation, and quality assurance atop them. Unfortunately for devel-
opers and their ulcers, projects that have successfully frozen their require-
ments have proven to be almost as hard to find as the Holy Grail itself. A
typical project experiences about a 25-percent change in requirements dur-
ing development (Boehm 1981, Jones 1994).

Sources of Change

Mid-project changes arise from many sources. End-users want changes be-
cause they need additional functionality or different functionality or because
they gain a better understanding of the system as it's being built.

Marketers want changes because they see the market as feature-driven. Soft-
ware reviews contain long lists of features and check marks. If new prod-
ucts with new feaaires come out during a product's development, marketers
naturally want their products to stack up well against the competition, and
they want the new features added to their product.

Developers want changes because they have a great emotional and intellec-
tual investment in all of the system's details. If they're building the second
version of a system, they want to correct the first version's deficiencies,
whether such changes are required or not. Each developer has an area of
special interest. It doesn't matter whether a user interface that's 100 percent
compliant with user-interface standards is required, or whether lightning-fast
response time, perfectly commented code, or a fully normalized database are
specified: developers will do whatever work is needed to satisfy their spe-
cial interests.

All these groups—end-users, marketers, and developers—will try to put their
favorite features into the requirements spec even if they didn't make it dur-
ing the formal requirements-specification activity. Users sometimes try to end-
run the requirements process and coax specific developers into implementing
their favorite features. M arketers build a marketing case and insist later that
their favorite features be added. Developers implement unrequired features
on their own time or when the boss is looking the other way.

331

Chapter 14: Feature-Set Control

332

All in all, projects tend to experience about a 1-percent change in require-
ments per month. On average, the longer your project takes, the more your
product will change before it's complete (Jones 1994). A few factors can
make that figure considerably worse.

Killer-app syndrome

Shrink-wrap products are particularly susceptible to "killer-app syndrome."
The development group at Company A sets developing "the best application
in its class" as its design goal. The group designs an application that meets
that criteria and then begins to implement it. A few weeks before the soft-
ware is scheduled to ship, Company B's application enters the market. Their
application has some features that Company A never thought of and others
that are superior to Company A's. The development group at Company A
decides to slide its schedule a few months so that it can redesign its appli-
cation and truly clobber Company B. It works until a few weeks before its
revised ship date, and then Company C releases its software, which is again
superior in some areas. The cycle begins again.

Unclear or impossible goals

It's difficult to resist setting ambitious goals for a project: "We want to de-
velop a world-class product in the shortest possible time at the lowest pos-
sible cost." Because it isn't possible to meet that entire set of goals or because
the goals are unclear, the most likely result is meeting none of the goals. If
developers can't meet the project's goals, they will meet their own goals in-
stead, and you will lose much of your influence over the project's outcome.

To illustrate the way in which clear goals can have a significant effect on a
development schedule, consider the design and construction of a charting
program. There is a tiny part of the charting program that deals with
"polymarkers" — squares, circles, triangles, and stars that designate specific
points on a graph. Figure 14-4 shows an example. Suppose that the specifi-
cation is silent on the question of whether to provide the user with the ability
to control the polymarkers' sizes. In such a case, the developer who imple-
ments the polymarkers can provide such control in any of many ways:

1. Do not provide any control at all.

2. Set up the source code to be modified in one place for the whole set
of polymarkers (that is, sizes of all polymarkers are set by a single
named constant or preprocessor macro).

3. Set up the source code to be modified in one place, on a polymarker-
by-polymarker basis, for a fixed number of polymarkers (that is, size
of each polymarker — square, triangle, and so on — is set by its own
named constant or preprocessor macro).

142 Mid-Project: Feature-Creep Control

© Description of graph detail
A\ Descriprion of graph detail
[0 Descriptian of graph detail
" X- Description of graph detail

-
>

Figure 14-4. Examples of polymarkers. Tloere can be at least a 10-to-l difference
in size and implementation time of even seemingly trivial features.

4.

10.

Set up the source code to be modified in one place, on a poly marker-
by-polymarker basis, for a dynamic number of polymarkers (for
example, you might later want to add cross-hairs, diamonds, and
bull's-eyes to the original set of polymarkers).

. Allow for modification of an extemal file that the program reads at

startup, one setting for the whole set of polymarkers (tor example,
an ,ini file or other external file).

. Allow for modification of an exteral file that the program reads at

startup, different settings for each polymarker, for a fixed number of
polymarkers.

. Allow for modification of an external file that the program reads at

startup, different settings for each polymarker, for a dynamic number
of polymarkers.

. Allow for interactive, end-user modification of a single polymarker-

size specification.

. Allow for interactive, end-user modification of polymarker-size speci-

fications, with one setting per polymarker, for a fixed number of
polymarkers.

Allow for interactive, end-user modification of polymarker-size speci-
fications, with one setting per polymarker, for a dynamic number of
polymarkers.

These options represent huge differences in design and implementation
times. At the low end, a fixed number of polymarkers have their sizes hard-
coded into the program. This requires only that polymarkers be represented
in an array of fixed size. The amount of work required to implement that

333

Chapter 14: Feature-Set Control

HARD DATA

CROSS-REFERENCE
For more on goal setting, see
"Goal Setting" in Section 11.2.

334

beyond the base work required to implement polymarkers would be negli-
gible, probably on the order of a few minutes.

At the high end, a variable maximum number of polymarkers have their sizes
set at runtime, interactively, by the user. That calls for dynamically allocated
data, a flexible dialog box, persistent storage of the polymarker sizes set by
the user, extra source-code files put under version control, extra test cases,
and documentation of all the above in paper documents and online help. The
amount of work required to implement this would probably be measured
in weeks.

The amazing thing about this example is that it represents weeks of poten-
tial difference in schedule arising from a single, trivial characteristic of a
charting program—the size of the polymarkers. We haven't even gotten to
the possibility that polymarkers might also be allowed to have different
outline colors, outline thicknesses, fill colors, orderings, and so on. Even
worse, this seemingly trivial issue is likely to interact with other seemingly
trivial issues in combination, meaning that you multiply their difficulties
together rather than merely add them.

The point of this is that the devil really is in the details, and implementation
time can vary tremendously based on how developers interpret seemingly
trivial details. No specification can hope to cover every one of these trivial
details.

Without any guidelines to the contrary, developers will pursue flexible ap-
proaches that tend more toward option #10 than #1. Most conscientious
developers will intentionally try to design some flexibility into their code, and
as the example illustrates, the amount of flexibility that a good developer will
put into code can vary tremendously. As my friend and colleague Hank
Meuret says, the programmer ideal is to be able to change one compiler
switch and compile a program as a spreadsheet instead of a word proces-
sor. When you multiply the tendency to choose flexibility rather than devel-
opment speed across dozens of developers and hundreds of detailed
decisions on a project, it's easy to see why some programs are vastly larger
than expected and take vastly longer than expected to complete. Some stud-
ies have found up to 10-to-1 differences in the sizes of programs written to
the same specification (DeMarco and Lister 1989).

If you were to proceed through implementation with the assumption that
whenever you encountered an ambiguity in the specification you would tend
toward the #1 end of the set of options rather than toward the #10 end, you
could easily implement your whole program an order of magnitude faster
than someone who took the opposite approach. If you want to leverage your

14.3 Mid-Project Feature-Creep Control

product's feature set to achieve maximum development speed, you must
make it clear that you want your team to tend toward #1. You must make it
clear that development speed is the top design-and-implementation goal, and
you must not confuse that goal by piling many other goals on top of it.

Effects of Change

People are far too casual about the effects that late changes in a project have.
They underestimate the ripple effects that changes have on the project's
design, code, testing, documentation, customer support, training, configu-
ration management, personnel assignments, management and staff commu-
nications, planning and tracking, and ultimately on the schedule, budget, and
product quality (Boehm 1989). When all these factors are considered,
changes typically cost anywhere from 50 to 200 times less if you make them
at requirements time than if you wait until construction or maintenance
(Boehm and Papaccio 1988).

As I said at the beginning of the chapter, several studies have found that
feature creep is the most common source of cost and schedule overruns. A
study at ITT produced some interesting results in this area (Vosburgh et al.
1984). It found that projects that experienced enough change to need their
specifications to be rewritten were significantly less productive than projects
that didn't need to rewrite their specs. Figure 14-5 illustrates the difference.

Changes Require Specification
to Be Rewrluen
Percent of
Nominal
Productivity Yes No
+200 P -
Legpeswd
+100
Maxumum
75th pencentile
0 (average) . Mean
<5y percentile
Mintonan
=100

Figure 14-5. Findingsfor "Changes Require Specification to Be Rewritten"factor
(Vosburgh et at. 1984). Controlling changes can produce dramatic improvements
in productivity, but that control does not by itself guarantee success.

335

Chapter 14: Feature-Set Control

CROSS-REFERENCE

For details on this point, see

Section 3.2, "Effect of

Mistakes on a Development

336

Schedule.”

As you can see in Figure 14-5, both the average and maximum productivities
were higher when changes were controlled, and this study suggests that it
is hardly ever possible to achieve high productivity unless you control
changes. At the bottom ends of the ranges, some projects had the same low
productivity regardless of whether they did a good job of controlling changes.
As with other effective development practices, controlling changes is not by
itself sufficient to guarantee high productivity. Even when you do a good job
of controlling changes, there are other ways to torpedo a project.

Wisdom of Stopping Changes Altogether

Requirements that don't change are great. If you can develop software to an
unchanging set of requirements, you can plan with almost 100-percent ac-
curacy. You can design and code without wasting time to make late changes
inefficiently. You can use any of the unstable-requirements practices and any
of the stable-requirements practices too. The whole universe of speed-ori-
ented development practices is open to you. Such projects are a joy to work
on and a joy to manage. You can reach project completion faster and more
economically than you can in any other circumstances.

That's nice work if you can get it. When you do need some flexibility, how-
ever, pretending that no changes are allowable or desirable is just a way to
lose control of the change process. Here are some circumstances in which
it is unwise to try to stop changes altogether.

When your customers don't know what they want. Refusing to allow changes
assumes that your customers know what they want at requirements time. It
assumes that you can truly know requirements at the outset, before design
and coding begin. On most projects, that's not possible. Part of the software
developer's job is to help customers figure out what they want, and custom-
ers often can't figure out what they want until they have working software
in their hands. You can use the various incremental development practices
to respond to this need.

When you want to be responsive to your customer. Even when you think
your customers know what they want, you might want to keep the software
flexible to keep your options open. If you follow a frozen-requirements plan,
you might deliver the product on time, but you might seem unresponsive,
and that can be just as bad as late delivery. If you're a contract software
developer, you might need to stay flexible to stay competitive. If you're an
in-house developer, your company's well-being might depend on your pro-
viding that flexibility.

14.2 Mid-Project: Feature-Creep Control

In-house development organizations are especially susceptible to being
unresponsive to their users. They quit looking at their users as true customers
because they have an exclusive engagement. Friction results over time, and
then the developers use the requirements specification as a weapon to force
their users to behave. No one likes working in the face of a steady stream
of arbitrary changes, but there are more constructive ways to respond than
beating the users on the head with a requirements document. Developers
who do that are finding with increasing frequency that their engagements
aren't as exclusive as they had once thought (Yourdon 1992).

When the market is changing rapidly. In the 1960s, and earlier, when busi-
ness needs changed more slowly than they do today, it might have been wise
to plan a product in detail two years before you released it. Today, the most
successful products are often those that had the most change implemented
the latest in the development cycle. Rather than automatically trying to elimi-
nate requirements changes, the software developer's job today is to strike a
balance between chaos and rigidity—rejecting low-priority changes and
accepting changes that represent prudent responses to changing market
conditions.

When you want to give latitude to the developers. One big change associ-
ated with the PC revolution has been that project sponsors are more willing
to leave large parts of the specification to the developers' discretion (for the
reasons described in the "Minimal Specification" section early in this chap-
ter). If you want to leave part of the product concept to the developers, you
can't freeze the product concept as soon as requirements specification is
complete; you have to leave at least part of it open for the developers to
interpret.

Stable or notstable?

How stable your requirements are has a huge impact on how you go about
software development, and particularly on what you need to do to develop
rapidly. If your requirements are stable, you develop one way. If they are
unstable, you develop another way. From a rapid-development point of view,
one of the worst mistakes you can make is to think your requirements are
stable when they aren't.

If your project doesn't have stable requirements, it isn't sufficient any more
to throw up your hands and shout "Yikes! We don't have stable require-
ments!"—and proceed the same as you would have if you did have stable
requirements. You can take certain steps to compensate for unstable require-
ments, and you must take those steps if you want to develop rapidly.

337

Chapter 14: Feature-Set Control

CROSS-REFERENCE
Formore on customer-
oriented requirements

practices, see Chapter 10,

"Customer-Oriented

Development.™ For details on
throwaway prototypes, see
Chapter 38, Throwaway

338

Prototyping."

Methods of Change Control

Because stopping changes altogether is rarely in a project's best interest, the
question for most projects turns to how to manage change most effectively.
Any change-management plan should aim for several goals:

* Allow changes that help to produce the best possible product in the
time available. Disallow all other changes.

* Allow all parties that would be affected by a proposed change to
assess the schedule, resource, and product impacts of the change.

* Notify parties on the periphery of the project of each proposed
change, its assessed impact, and whether it was accepted or rejected.

* Provide an audit trail of decisions related to the product content.

The change process should be structured to perform these jobs as efficiently
as possible. Here are some options for accomplishing that objective.

Customer-orientedrequirements practices

One change-control strategy is to try to minimize the number of changes
needed. Customer-oriented requirements-gathering practices do a better job
of eliciting the real requirements than traditional practices. For example, one
study found that the combination of JAD and prototyping can drop creep-
ing requirements to below 5 percent (Jones 1994). Prototyping helps to
minimize changes because it strikes at what is often the root of the problem—
the fact that customers don't know what they want until they see it. Throw-
away prototypes are generally the most effective in this regard and provide
the most resistance to requirements creep (Jones 1994).

Change analysis

In most cases, it's not the developer's or technical lead's job to say "No" to
changes. But you can use the change-analysis process to screen out super-
fluous changes. Rather than saying "No" to each change, you provide cost
and schedule impacts. Explain that you have to adjust the schedule for the
time spent analyzing new feature requests. That explanation will screen out
most of the frivolous change requests.

You can also screen out changes by making it harder to submit a change
request. You can insist on a complete written specification of the change, a
business-case analysis, a sample of the inputs and outputs that will be af-
fected, and so on.

John Boddie tells the story of being called to the main office for an emer-
gency schedule meeting on a rush project. When he and his team arrived,
his boss asked "Is everything on schedule for delivery on the 18th?" Boddie
said it was. Then the boss asked, "So we'll have the product on the 18th?"

14.2 Mid-Project: Feature-Creep Control

Boddie said, "No, you'll have to wait until the 19th because this meeting has
taken a day from our schedule" (Boddie 1987).

In the last few weeks of a project, you might say that the minimum sched-
ule slide for any feature change is an entire day or more. You could even
say that the minimum slide for considering a feature change is an entire day
or more. This is appropriate since late-project changes tend to impact all
aspects of the project, often in ways that are hard to predict without careful
analysis.

You would probably want to make it a little easier to get defect-related
change requests accepted. But even minor defects can have far-reaching
consequences, so, depending on the kind of program and the stage of the
project, you might not.

Version 2

One great help in saying "No" to changing the current product is being able
to say "Yes" to putting those changes into some future product. Create a list
of future enhancements. People should understand that features won't neces-
sarily make it into version 2 just because they didn't make it into version 1,
but you don't need to emphasize that point. What you do need to empha-
size is that you're listening to people's concerns and plan to address them
at the appropriate time. On a rapid-development project, the appropriate time
is often "Next project."”

A useful adjunct to the version-2 strategy is to create a "multi-release tech-
nology plan," which maps out a multi-year strategy for your product. That
helps people to relax and see that the feature they want will be more ap-
propriate for some later release (McCarthy 1995a),

Shortreleasecycles

One of the keys to users and customers agreeing to the version-2 approach
is that they have some assurance that there will in fact be a version 2. If they
fear that the current version will be the last version ever built, they'll try
harder to put all their pet features into it. Short release cycles help to build
the user's confidence that their favorite feature will eventually make it into
the product. The incremental development approaches of evolutionary de-
livery, evolutionary prototyping, and staged delivery can help.

Changeboard

Formal change-control boards have proven effective against creeping require-

ments for large projects (Jones 1994). They can also be effective for small
projects.

Structure. The change board typically consists of representatives from
each party that, has a stake in the product's development. Concerned parties

339

Chapter 16: Project Recovery

378

options that are more subtle and often more effective than "you're fired!" are
available.

* Change the manager's boss. Sometimes a manager needs different
leadership.

 Move the manager into a participatory role. Sometimes a technically-
oriented manager can make a technical contribution that will help the
project succeed more than his or her leadership contribution can.

* Provide the manager with an assistant. Depending on what's needed,
the assistant either can focus on technical details, freeing up the
manager to concentrate on big-picture issues, or can handle adminis-
trative issues, freeing up the manager to focus on technical matters. In
the extreme case, sometimes, the "assistant" can take over nearly all of
the manager's responsibilities, leaving the manager in place to handle
administrative duties and reports to upper management.

These points focus on management changes, but they apply just as well to
changes in the project's technical leadership.

Add people carefully,ifatall. Remember Brooks's law that adding people to
a late project is like pouring gasoline on a fire (Brooks 1975). Don't add
people to a late project willy-nilly.

But remember the whole law. If you can partition your project's work in such
a way that an additional person can contribute without interacting with the
other people on the project, it's OK to add a person. Think about whether
it makes sense to add someone who will spend 8 hours doing what an ex-
isting developer could do in 1 hour. If your project is that desperate, go ahead
and add someone. But stick to the plan. Some people can't abide watching
another person spend 8 hours on a 1-hour job regardless of their original
intentions. Know what kind of person you are. If you think you might err,
err on the side of not adding anyone.

Focus people's time. When you're in project-recovery mode, you need to
make the best possible use of the people who are already familiar with the
project. Consider taking the money you would have spent adding people and
use it instead to focus the efforts of your existing people. You'll come out
ahead.

You can focus existing people in a variety of ways. Give them private offices.
Move them off-site. Be sure that they are not distracted by other projects
within your organization, so relieve them of tech-support duty, maintenance
of other systems, proposal work, and all of the other responsibilities that eat
into a developer's time. The point is not to hold their noses to the grindstone,
but to relieve them of all nonessential tasks.

CROSS-REFERENCE
Allowing different levels of
commitment is different at
the beginning of a project.

For details, see Chapter 34,

“Signing Up."

CROSS-REFERENCE

For more on seeing that
developers pace themselves,
see Section 43.1,"Using
Voluntary Overtime."

CROSS-REFERENCE
For a list of many more
classic mistakes, see Section
3.3, "Classic Mistakes
Enumerated."

162 Recovery Plan

If you must hire additional people, consider not hiring developers. Hire
administrative people -who can take care of clerical work and help your
developers minimize personal downtime (for example, laundry, shopping,
bill paying, yard work, and so on).

Allow team members to be different. Some people will rise to the challenge
of project recovery and become heroes. Others will be too burned out and
will refuse to give their all. That's fine. Some people want to be heroes, and
other people don't. In the late stages of a project, you have room for quiet,
steady contributors who don't rise to heroic heights but who know their way
around the product. What you don't have room for are loud naysayers who
chide their heroic teammates for being heroic. Morale during project recovery
is fragile, and you can't tolerate people who bring the rest of the team down.

See that developers pace themselves. Runners run at different speeds de-
pending on the distance to the finish line. Runners run faster toward a nearby
finish line than they do toward a finish line that's miles away. The best run-
ners learn to pace themselves.

Allow your team to break the vicious circle of schedule pressure leading to
stress leading to more defects leading to more work leading back to more
schedule pressure. Ease the schedule pressure, give the developers time to
focus on quality, and the schedule will follow.

Process

Although you'll find your greatest leverage in the area of people, you must
also clean up your process if you want to rescue a project that's in trouble.

Identify and fix classic mistakes. Survey your project to see whether you're
falling victim to any of the classic mistakes. Here are the most important
questions to ask:

* Is the product definition still changing?

* Is your project suffering from an inadequate design?

* Are there too few management controls in place to accurately track
the project's status?

* Have you shortchanged quality in the rush to meet your deadline?

* Do you have a realistic deadline? (If you've slipped your schedule
two or more times already, you probably don't.)

* Have people been working so hard that you risk losing them at the
end of the project or earlier? (If you've already lost people, they're
'working too hard.)

* Have you lost time by using new, unproved technology?

379

Chapter 16: Project Recovery

CROSS-REFERENCE

For details, see Chapter 27,

380

"Miniature Milestones,"

* [s a problem developer dragging the rest of the group down?
* Is team morale high enough to finish the project?

* Do you have accountability leaks? People or groups who might mean
well but who have not been accountable for the results of their work?

Fix the parts of your development processes that are obviously broken.
When a project is in trouble, everyone usually knows that a few parts of the
process are broken. This is where back-to-basics really comes into play—
the broken parts are often broken because the project has consciously or
unconsciously been ignoring the software fundamentals.

If the team is tripping over itself because you haven't set up version control,
set up version control. If you're losing track of the defects being reported,
set up a defect tracking system. If end-users or the customer have been
adding changes uncontrollably, set up a change-control board. Ifthe team
hasn't been able to concentrate because of a steady stream of interruptions,
move them off-site, have the facilities group physically wall-off their area,
or put up your own floor-to-ceiling boundary with empty computer boxes.
If people haven't been getting the timely decisions they need, set up a war
room: meet at 5:00 p.m. every day and promise that anybody who needs a
decision will get one.

Create detailed miniature milestones. In rescuing a drowning project, it is
absolutely essential that you set up a tracking mechanism that allows you to
monitor progress accurately. This is your key to controlling the rest of the
project. If the project is in trouble, you have all the justification you need to
set up miniature milestones.

Miniature milestones allow you to know on a day-by-day basis whether your
project is on schedule. The milestones should be miniature, binary, and
exhaustive. They're miniature because each of them can be completed in
one or two days, no longer. They're binary because either they're done or
they're not—they're not "90 percent done." They're exhaustive because when
you check off the last milestone, you're done with the project. If you have
tasks that aren't on the milestone schedule, add them to the schedule. No
work is done "off schedule."

Setting and meeting even trivial milestones provides a boost to morale. It
shows that you can make progress and that there's a possibility of regain-
ing control.

One of the biggest problems with setting up mini milestones at the begin-
ning of a project is that you don't know enough to identify all the work in
detail. In project-recovery mode, the situation is different. At that late stage
in the project, developers have learned enough about the product to be able
to say in detail what needs to be-done. Thus mini milestones are particularly

appropriate fo' use in project recovery;

16.2 Recovery Plan

Set up a schedule linked to milestone completion. Plan completion dates for
each mini milestone. Don't plan on massive overtime: that hasn't -worked so
far, and it won't work going forward. If you plan massive overtime into your
schedule, developers can't catch up by working more overtime when they
get behind. Set the schedule so that if developers get behind on their mini-
ature milestones, they can catch up by working overtime the same day. That
allows them to stay on schedule on a day-by-day basis. If you stay on sched-
ule day by day, you stay on schedule week by week and month by month,
and that's the only way it's possible to stay on schedule for a whole project.

Track schedule progress meticulously. If you don't track progress after you
set up the mini milestones, the schedule-creation process will have been just
an exercise in wasting time. Check with developers daily to assess their
progress against the mini milestones. Be sure that when a milestone is
marked "done" it is truly, 100 percent done. Ask the developer, "IfI take the
source code for this module that's 'done' and lock it in a vault for the rest
of the project, can we ship it? Do you still have some tweaking or polishing
to do, or is it 100 percent done?" If the developer says, "It's 99 percent done,"
then it's not done, and the milestone has not been met.

Do not allow developers to get off track on their mini-milestone schedules.
The easiest way to get off track is to miss one milestone and then to stop
keeping track. A 1-day slip turns into a 2-day slip, which turns into 3 clays,
and then into a week or more. Soon there is no correspondence between
the developer's work and the milestone schedule. Once a schedule has been
calibrated, do not take schedule slips lightly. If a single developer falls be-
hind on a single milestone, expect him or her to work overtime that day to
catch up. (If a developer meets a single milestone early, it's OK to allow him
or her to go home early that day.) Daily milestones must be met consistently
or the schedule must be recalibrated so that they can be met consistently.

Record the reasons for missed milestones. Having a record of the reasons
that each milestone was missed can help to detect the underlying causes. A
record might point to an individual developer's need for training or highlight
organizational dynamics that make it hard for any developers to make good
on their estimates. It can help to distinguish between estimate-related prob-
lems and other schedule-related problems.

Recalibrate after a short time—one or two weeks. If a developer consistently
misses milestones and falls more than /2 day behind, it's time to recalibrate
that developer's schedule. Recalibrate by increasing the current schedule by
the percentage of the slip so far. If the developer has needed 7 days to do
4 days' work, multiply the rest of the work by’A. Don't play games by think-
ing that you'll make up the lost time later. If you're in project-recovery mode,
that game has already been lost.

381

Chapter 16: Project Recovery

Never trade a bad

date for an equally

bad date. That's a

bad deal. You're just

hemorrhaging
credibility if you
do that.

Jim McCarthy

CROSS-REFERENCE

For details on change control,
see Section 14.2, "Mid-Project:

382

Feature-Creep Control. "

Don't commit to a new schedule until you can create a meaningful one. Do
not give a new schedule to upper management until after you have created
a mini-milestone schedule, worked to it for at least a week or two,
recalibrated, and worked a week or two more to check your recalibration.
Giving a new schedule to management any other way is tantamount to re-
placing one bad schedule with a different but equally bad schedule. If you
follow these steps first, you will have a more solid basis for your future sched-
ule commitments.

Manage risks painstakingly. Focus on risk management using the guidelines
spelled out in Chapter 5, "Risk Management." Create a top-10 risks list, and
hold daily risk-monitoring meetings. You can expand the 5:00 p.m. war-room
meetings to review risks and address new issues that have arisen as well as
to provide timely decisions.

Product

It's often not possible to recover a project until you rein in the product's
feature set.

Stabilize the requirements. Ifrequirements have been changing throughout
the project, you don't need to look any further for the source of your prob-
lems. You must stabilize requirements before you can bring your project to
a successful conclusion. A system with significantly changing requirements
cannot be developed quickly and often cannot be developed at all.

It is not uncommon to need to do a nearly complete requirements specifi-
cation at this stage. Some products change so much during their develop-
ment that, by the time the crisis hits, no one knows for sure what features
the product is supposed to contain. Developers and testers are working on
features that might or might not need to be in the product.

Some projects will resist the work involved with formalizing a statement of
requirements this late in the project, but keep in mind that the other approach
is the one that's causing all theproblems. You have to do something differ-
ent, and you have to know what your feature set is before you can finish the
product, before you can even be sure that the development team is work-
ing on the product you want.

If the project has been running for some time, formalizing requirements will
be a painful step because it will involve eliminating some people's pet fea-
tures. That's too bad, but it should have been done early on, and it has to
be done before you can complete the project. If you can't get the parties
involved to commit to a set of requirements when the project is hanging on
by its fingernails in recovery mode, then you might as well give up. You're
fighting a battle you can't win.

CROSS-REFERENCE
For more on trimming
requirements, see
"Requirements Scrubbing"
in Section 14.1.

CROSS-REFERENCE
Fordetails, see "Error-prone
modues" in Section 4.3.

16.2 Recovery Plan

After you do get a set of requirements, set the bar for accepting changes very
high. Require a full day even to consider a change. Require more than a day
as the minimum time needed to implement a change. (This is for feature
changes, not defect corrections.)

Trim the feature set. Recovery mode presents an opportunity to reduce the
requirements to the minimal acceptable set. Cut low-priority features ruth-
lessly. You don't need to fix everything, and you don't need to implement
every feature. Prioritize. Remember, the real problem at this stage is not
developing the product in the shortest possible time or creating the best
possible product: it's completing the product at all. Worry about low-priority
features on the next version.

People should be ready and willing to define a minimal feature set at this
point. If they aren't willing to sacrifice pet features when the project is in
recovery mode, they probably 'won't ever be willing to.

Assess your political position. If people aren't willing to freeze requirements
or fall back to minimal requirements, this is a good time to take a step back
and look at what's really happening on your project. Think about why the
other parties are still not focused on the product. What are they focused on?
What is more important to them than the product? Are they focused on a
power struggle? Are they focused on making you or your boss look bad? As
ugly as organizational politics can be, they do exist, and an unwillingness
to make crucial compromises when there's no other choice is a telltale sign.
If you're caught in the middle of a political skirmish rather than a product
development, the project-recovery plan in this chapter won't be of much
help, and you should choose your actions accordingly.

Take out the garbage. Find out if there are any parts of the product that
everyone knows are extremely low quality. When you've found a lot of
defects in a particular piece of code, it's tempting to think that you've found
the last one. But buggy modules tend to produce an amazing, continuing
stream of defects. Error-prone modules are responsible for a disproportionate
amount of the work on a project, and it is better to throw them out and start
over than to continue working with them.

Throw them out. Go through a design cycle. Review the design. Implement
the design. Review the implementation. This will seem like work that you
can't afford when you're in recovery mode, but what will really kill you
in recovery mode is getting nickeled-and-dimed to death by an uncontrol-
lable number of defects. Systematic redesign and implementation reduces
your risk.

Reduce the number of defects, and keep them reduced. Projects that are in
schedule trouble often start to focus on schedule and expedient shortcuts to

383

Chapter 16: Project Recovery

CROSS-REFERENCE
For details onwhy this graph

will reduce defects, see
Chapter 26, "Measurement."

CROSS-REFERENCE
For details, see Chapter 18,
"Daily Build and Smoke Test."

384

the exclusion of quality. Those compromises invariably return to haunt the
developers before the product is released. If you've been in 3-weeks-to-ship
mode for awhile, you've almost certainly been making quality compromises
and shortcuts during that time that will make your project take longer rather

than shorter.

Start using an "open-defects" graph, and update it daily. Figure /6-2 is an
example.

........
......
————
--'-

Defects |+ . 8 Opea

Time

Figure 16-2. Example ofan "open defects" graph. Publishing this graph empha-
sizes that reducing defects is a high priority and helps to gain control on projects
with quality problems. '

The goal of the open-defects graph is to emphasize how many open defects
there are and to highlight the priority of reducing them. Bring the number
of open defects down to a manageable level, and keep it there. Start using
design and code reviews to maintain a consistent level of low defects. De-
velopment time is wasted working and reworking low-quality software.
Focusing on quality is one way to reduce development time, and doing so
1s essential to project recovery.

Get to a known good state, and build on that. Plot out the shortest possible
course from wherever your product is now to a state at which you can build
and test some subset of it. When you get the product to that point, use daily
builds to keep the product in a buildable, testable state every day. Add code
to the build, and make sure that the code you add doesn't break the build.
Make maintaining the build a top priority. Some projects have developers
wear beepers and require them to fix the build day or night if they are re-
sponsible for breaking it.

16.2 Recovery Plan

Timing

Surprisingly, the best time to launch a project-recovery plan might not be the
first moment you notice your project is in trouble. You need to be sure that
your management and the development team are ready to hear the message

and ready to take the steps needed to truly recover the project. This is some-
thing that you need to do right the first time.

You have to walk a line between two considerations. If you launch your
recovery plan too early, people won't yet believe that there's a need for it.
It is not in your best interest to cry "Wolf!" before other people can see that
the wolf is there. If you launch it too late, it will likely follow on the heels
of a series of small corrections or mini-recovery attempts that didn't com-
pletely work, and you will have undermined your credibility in leading a
more effective, larger-scale recovery effort. You will have cried "Wolf!" too
many times.

I don't recommend letting your project run into the weeds merely so that you
can do a better job of rescuing it. However, if your project has already run
into the weeds, I do recommend that you time the presentation of your re-

covery plan so that everyone else on the project will be receptive enough
for it to succeed.

Case Study 16-2. A Successful Project Recovery

TR = oM PR P T 7 IS R TSl ITma A T PO RN TR Y & T YLl PR S

End-user reaction 1o canceling the new inventory-racking sysrem had been
ficree, and 3 few weeks afier Bill canceled the project, he reconsidered Fle
concluded that they should finish it after all. By that time, Keiko, the contrctor,
had moved on o a differeat project. Kip had been reassigned o a shaort-term
project but conld be braught back to the team. Jennifer and Joc waere just
returning from vacation, and Bill thought they might be ready to wry again, He
called Carl, who had becn team lead on the canceled project, into his office.
Carl saw & stranger in his boess's office.

*Card, I've decided 10 resuscitate 165 2.0, and I'm going 1o give you another
chance. Meet Charles. He's a projectrecovery expert, and I've hired him to
help you” bring this sucker in. He's already told me that you can't conie iup
with a new schedule right away. He said it mmght take w few weeks belore
we know exactly how long it will take to fix the project. | really got my bt
kicked for canceling this thing, sv now we've got to finish it no matter what
Let aie kaow as soon as vou have a new schedule.”

Carl was glad to get another chanoe at rescuing the profect. He had thought
of some things he could do beter, and he knew that Jennifer and Joe had been
depressed about the project being canceled. He and Chades left Bill's office
together.

(continued)

Chapter 16: Project Recovery

Case Study 16-2. A Successful Project Recovery, continued

‘o8

Charles siarted talking. “From what I've heard, llhmkthemamuskhmh(?
fust 1o finish the project. 'd ke 1o identify each group’s win conditions, and
then manage the rest of the project so that those aré met. Based on the end=
users I've talked to, gczmuarcplwcmcmfo:nmoldsysmbythcmdof
lhcymrmmldhsawmnlmuk%afwmmmm
ot 2 lst of the major problems, and | got the end-users to agree that the rest
comdmonuum:heydhkerhenmwlwembmdwymnym
want a4 guarantee that they'll get it eventually. 02

"Bill's win condition is the same. He wants wfollcwrmoughwnhdmum
group, What do you need to make this a win for you?” ¥y

7
Cag thought 2 migute. lmdxoshowthulcmmmu\hpmimmdm
wewhodyelwswincmdmau lWhndnrcs(,mdlcmwmkastmdast’"
need 10.” Luter that day, Carl talked to Jennifer, Joe, and Kip. Their win con=
dnnmwwllmm:ymmedtoﬂnuhthcfobdlcy'dmned.anddwywmmd'?l
1o lead normal lives ouside work while they were doing that. vl)4

“I can't sacrifice the rest of my life 1o this project anymore,” Jennifer said. “Even’
alter 3 weeks of vacation I'm oo bumed out 10 do that, It would be mce'mﬂ
fimsh this project, but d rather work on a different project and never nnhh-.J
this onve than get that burned out again” Klpsaidh!waswﬂmgwwo&lmrd;
bt Joe said he felt the same as Jennifer. o

Charles asked the team whal they thought ncededtobedmewmme“
project, and Jennifer and Joe wmmmmpmmmc'mmmm
a huery last time that mwokankmdlwqtmﬂwmw&%mqu
g0 back and clean up some of the product. We shouldn't add any new people
this time, either” Carl agreed. He didn't wanl 1o make thenmemhnketwm;}'

Charles stepped in. Wzldukeymmtodobwadunﬁedundm#
zukdmnmdﬂobcdouemrclca:cd!eproduct.and!mﬂywnevuyn?i
thing. Rewriting bad modules, fixing the build script, atnlngupaummﬁﬂ
vemsion control, documenting old code, duplicating diskettes, talking to end-
users on the phone, everything. And 1 want you to estiniate how long. =
task will mke. Hyouhaveanytasksﬂmukanmmzdzya.lmwbu’
1o break them up int smaller tasks that take Jess time. mmwe‘rcgomwl
s.ndmmdmmculmemoluwmo)eu . ,

‘L wank you (0 know tlmyomcsnmalea aren't commitments. They're iun sq
estunates, and nobody outside of this oom will know about them until we're
confident that they're right. | know I'm asking for « lot of detail, and @ will - l
take time 10 do all those estimates. | wouldn't be surprised if it takes you gt
least a day W come up with them, Buuhtspmjeansbmkmmduusbwbal
we need (o do o get it back on wack.” 5

Mdcnlépasspuutbcmn’davsconﬁnaupwﬁumuhblydcumw
lists, Joe was surprsed at some of his estimates. He took tasks that he had

t’

t’k

"1'

(A
;S.‘_“Z.A

-’

5';.‘1’ <

J\‘

{eontinued

162 Recovery Plan

Case Study 16-2. A Successful Project Recovery, continued

mmhﬂlyulhumdwaﬁdtake&dayx,bmkethemdownnno nmmdmﬂ,:_
and found that the sum of the parts for a few of them was more ke § or 6

_days. Charles said he wasn't surprised. The whole group put together a sched- -
mebuedmtbcddnﬂedu&klﬁs.anddudamldmﬂﬂmmwmldhnm
a revised completion date in about 15 days.

Cuﬂmddudmdwckcdﬁmumsmwmrydayfmdmmm %
Kip completed his tasks consistenty on time. Jennifer found that one day she
finished all of her work by mid afternoon, and one day she had to work until
9:00 in the evening, Shemgmunglhewkdane.hmbymemdofmeﬂ'
week she had logged almost 50 hours. She told Carl that that was (oo much.

Joe had had wrouble completing his tasks on time, nndbymeendolmeweekt
‘he had completed only haif of what he had planmed. ’

The team met o look over their progress, Charles insisted that they recalibraie

Joe's schedule by;mmtplylns all of his estimates Dy 2.0. Even though J‘enu!{

feer was meeting her deadlines, he reminded them that Jennifer's win condis

tion included leading @ normal life outside of work, and they recalibrated her

schedule by multiplying her estimates by 1,25, The recalibration made
| :evmmm‘athlesmeouwnevm aomeyréslnmgdmemkwthm
 everybody ‘on the team had sbout the same amount of work.

Carl was surprised at the result. If their estinates were right, they would fin-
ish the project in 10 weeks, which wasn't nearly as bad as he had feared.
smutdlgivcnﬂl tbegoodncm?'hcaakedcmﬂcs.

“No, we'ﬂworknnothetmktothummmwdsdwdnk.mdifwcmhlt-
ting the mini milestones consistently, then we'll tedl Bill, But we will let Bill
mmmm.mwmmm:mmmnw '

Thcnmw:ckwcntwrpdsh@ymﬂﬂv Cndmn&uedlocheckwitheach
devdopctmdnym.hgmuwembmmncmkmmmmd..
‘cach one Wi, Jennifer stayed ke one night, but she told Carl that was mainly
because she had goofed off pant of the day, not begause she had oo much
work (o do By the end of the week, everybody was on schedule. More im-

~ portant, everybody was happy. Jennifer had originally thought she would be
annoyedbydiemmlmﬂestmes’mlcmmngunem.bmuacmmyfchpod :
mbeablemdud:offnmkevaydayandx.or.dlmxeoncﬂmswwas-
nukﬁuprogxeas Momlchxdlmpmvcd - :

MMMWBNMMmeedmem9mm nmamum
wmmmmmmmmmmmnaduwpm
* Charles and Carl continued 1o check progress daily. Each person put in 2 few
late nights 1o keep 1o their mini-milestone schedules, but by the end of the 9
weeks they were really and uuly finished. They delivered the soltware (0 their
end-users and notified Bill, Everyone considered the project a win.

P—— - -

387

Chapter 16: Project Recovery

Further Reading

McCarthy, Jim. Dynamics of Software Development. Redmond, Wash.:

Microsoft Press, 1995. This is an entertaining set of lessons that
McCarthy learned from his experiences working on Microsoft's Visual
C++ and other products. McCarthy describes an enthusiastic but essen-
tially grim vision of software development at Microsoft. He presents
Microsoft projects as spending nearly all their time doing what this
chapter has called "projectrecovery." If you recognize that that is what
McCarthy is writing about and read his book on that level, he has some
valuable things to say.

Zachary, Pascal. Showstopper! The Breakneck Race to Create Windows NTand

the Next Generation at Microsoft, New York: Free Press, 1994. This is
adescription of the development of Microsoft Windows NT 3.0. Accord-
ing to the author's description, the NT project spent more time in re-
covery mode than in normal development. Like McCarthy's book, if you
read this book as a project-recovery fable, you can gather some valu-
able lessons. Once you've read the book, you'll be glad that you didn't
learn these particular lessons firsthand!

Boddie, John. Crunch Mode. New York: Yourdon Press, 1987. This book 1s

not specifically about project recovery, but it is about how to develop
software under tight schedules. You can apply a lot of Boddie's ap-
proach to a project in recovery mode.

\Veinberg, Gerald M. Quality Software Management, Volume 1: Systems

Thinking. New York: Dorset House, 1992. Pressure is a constant com-

panion during project recovery. Chapters 16 and 17 of this book dis-
cuss what Weinberg calls "pressure patterns." He describes what
happens to developers and leaders under stress as well as what to do
about it.

Thomsett, Rob. "Project Pathology: A Study of Project Failures," American

Programmer, July 1995, 8-16. Thomsett provides an insightful review
of the factors that get projects into trouble in the first place and of early
warning signs that they're in trouble.

T el A M T e

. FURTHER READING
For many details on
developer-level testing
practice, see Writing Solid
Code (Maguire1993).

18.1 Using the Daily Build and Smoke Test

On smaller projects you might not need to devote a whole person to the daily
build. In that case, put someone from quality assurance in charge of it.

Add code to the build only when It makes senseto do so... Although daily
builds require that you build the system daily, they do not require that de-
velopers add every new line of code they write to the system every day.
Individual developers usually don't write code fast enough to add meaningful
increments to the system every day. They work on a chunk of code and then
integrate it when they have a collection of code in a consistent state. Devel-
opers should maintain private versions of the source files they're working
on. Once they have created a complete set of modifications, they make a
private build of the system using their modifications, test it, and check it in.

...butdon'twaittoo longto add codeto thebuid. Although few developers
will check in code every day, beware of developers who check in code in-
frequently. It's possible for a developer to become so embroiled in a set of
revisions that every file in the system seems to be involved. That undermines
the value of the daily build. The rest of the team will continue to realize the
benefit of incremental integration but that particular developer will not. If
a developer goes more than a few days without checking in a set of changes,
consider that developer's work to be at risk.

Require developers to smoke test their code before adding it to the system.
Developers need to test their own code before they add it to the build. A
developer can do this by creating a private build of the system on a per-
sonal machine, which the developer then tests individually. Or the devel-
oper can release a private build to a "testing buddy," a tester who focuses
on that developer'socode. The goal in either case is to be sure that the new
code passes the smoke test before it's allowed to influence other parts of
the system.

Create a holding area for code that's to be added to the build. Part of the
success of the daily-build process depends on knowing which builds are
good and which are not. In testing their own code, developers need to be
able to rely on a known good system.

Most groups solve this problem by creating a holding area for code that
developers think is ready to be added to the build. New code goes into the
holding area, the new build is built, and if the build is acceptable, the new
code is migrated into the master sources.

On small- and medium-sized projects, a version-control system can serve this
function. Developers check new code into the version-control system. De-
velopers who want to use a known good build simply set a date flag in their
version-control—options file that tells the system to retrieve files based on the
date of the last-known good build,.

Chapter 18: Daily Build and Smoke Test

On large projects or projects that use unsophisticated version-control soft-
ware, the holding-area function has to be handled manually. The author of
a set of new code sends email to the build group to tell them where to find
the new files to be checked in. Or the group establishes a "check-in" area
on a file server where developers put new versions of their source files. The
build group then assumes responsibility for checking new code into version
control after they have verified that the new code doesn't break the build.

Create a penalty for breaking the build. Most groups that use daily builds
create a penalty for breaking the build. If the build is broken too often, it's
hard for developers to take the job of not breaking the build seriously. Break-
ing the build should be the exception, not the rule. Make it clear from the
beginning that keeping the build healthy is the project's top priority. Refuse
to take a broken build casually. Insist that developers who have broken the
build stop their other work until they've fixed the build.

A fun penalty can help to emphasize the priority of keeping the build healthy.
Some groups give out suckers to developers who break the build. The sucker
who broke the build has to tape a sucker to his office door until he fixes the
build. Other projects make the person who broke the build responsible for
running the build until someone else breaks it. On one project I worked on,
the person who broke the build had to wear a hat made out of an umbrella
until he fixed the build. Other groups have guilty developers wear goat horns
or contribute $5 to a morale fund.

Some projects establish a penalty with more bite. Microsoft developers on
high-profile projects such as NT, Windows 95, and Excel have taken to
wearing beepers in the late stages of their projects. If they break the build,,
they are called in to fix the build regardless of the time of day or night. The
success of this practice depends on the build group being able to determine
precisely who broke the build. If they aren't careful, a developer who's
mistakenly called to fix the build at 3:00 in the morning will quickly become
an enemy of the daily-build process.

Releasebuildsin themorning. Some groups have found that they prefer to
build overnight, smoke test in the early morning, and release new builds in
the morning rather than the afternoon. There are several advantages to
smoke testing and releasing builds in the morning.

First, if you release a build in the morning, testers can test with a fresh build
that day. If you generally release builds in the afternoon, testers feel com-
pelled to launch their automated tests before they leave for the day. When
the build is delayed, which it often is, the testers have to stay late to launch
their tests. Because it's not their fault that they have to stay late, the build
process becomes demoralizing.

CLASSIC MISTAKE

18.1 Using the Daily Build and Smoke Test

When you complete the build in the morning, you have more reliable ac-
cess to developers when there are problems with the build. During the day,
developers are down the hall. During the evening, developers can be any-
where. Even when developers are given beepers, they're not always easy
to locate.

It might be more macho to start smoke testing at the end of the day and call
people in the middle of the night when you find problems, but it's harder
on the team, it wastes time, and in the end you lose more than you gain.

Build and smoke even under pressure. W hen schedule pressure becomes in-
tense, the work required to maintain the daily build can seem like extrava-
gant overhead. "The opposite is true. Under pressure, developers lose some
of their discipline. They feel pressure to take design and implementation
shortcuts that they would not take under less stressful circumstances. They
review and unit test their own code less carefully than usual. The code tends
toward a state of entropy more quickly than it would during less stressful
times.

Against this backdrop, the daily-build-and-smoke-test process enforces dis-
cipline and keeps pressure-cooker projects on track. The code still tends
toward a state of entropy, but you bring that tendency to heel every day. If
you build daily and the build is broken, identifying the developer respon-
sible and insisting on an immediate code fix is a manageable task. Bringing
the code back from its state of entropy is a relatively small undertaking.

If you wait two days—until twice as many defects are inserted into the
code—then you have to deal both with twice as many defects and with
multiplicative interaction effects of those defects. It will take more than twice
as much effort to diagnose and correct them. The longer you wait between
builds, the harder it is to bring the build back into line.

What Kinds of Projects Can Use the
Daily-Build-and-Smoke-Test Process?

Virtually any kind of project can use daily builds—Ilarge projects, small
projects, operating systems, shrink-wrap software, and business systems.

Fred Brooks reports that software builders in some organizations are sur-
prised or even shocked by the daily-build process. They report that they
build every week, but not every day (Brooks 1995). The problem with
weekly builds is that you tend not to build every week. If the build is bro-
ken one week, you might go for several weeks before the next good build.
When that happens, you lose virtually all the benefit of frequent builds.

411

Chapter 18: Daily Build and Smoke Test

CROSS-REFERENCE
For more on project

recovery, see Chapter 16,

"Project Recovery."

18.2

CROSS-REFERENCE

The problems of premature

releases are related to the

problems of premature

convergence discussed in

"Premature convergence"

412

in Section 9.1.

Some developers protest that it is impractical to build every day because their
projects are too large. But the project that was perhaps the most complex
software-development effort in recent history used daily builds successfully.
By the time it was first released, Microsoft NT consisted of 5.6 million lines
of code spread across 40,000 source files. A complete build took as many
as 19 hours on several machines, but the NT development team still man-
aged to build every day (Zachary 1994). Far from being a nuisance, the NT
team attributed much of their success on that huge project to their daily
builds. Those of us who work on projects of less staggering proportions will
have a hard time explaining why we don't use daily builds.

For technical leads, daily builds are particularly useful because you can
implement them at a purely technical level. You don't have to have manage-
ment authority to insist that your team build successfully every day.

Daily builds are especially valuable in project-recovery mode. If you can't
get to a good-build state, you have no hope of ever shipping the product,
so you might as well work toward a good build as one of your first project-
recovery objectives. Once you get to a known good state, you make incre-
mental additions and stay in a known good state. It's a morale boost during
project recovery to have a working product at all times, and it makes for clear
progress indications.

Managing the Risks of the
Daily Build and Smoke Test

The daily-build process has few drawbacks. Here is the main one.

Tendency toward premature releases. When people outside the develop-
ment group see that the product is being built every day, pressure mounts
to create frequent releases for outside groups. Creating external releases can
look easy to a product manager, and it is easier than when you're not using
daily builds, but it still sucks up developers' time in subtle ways:

* Developers spend time preparing materials that are not needed for the
final product but that are needed to support the release. These materi-
als include documentation, interim versions of features still under
development, stubbing out hazardous areas of the product, hiding
debugging aids, and so on.

* Developers make quick fixes so that features will work for a particular
release rather than waiting until they can make more careful changes.
These quick fixes eventually break, and the developers then have to
make the more careful changes that they should have made in the first
place. The net effect is that the developers waste time fixing the same
code twice.

18.5 The Bottom Line on the Daily Buid and Smoke Test

* Developers spend more time responding to minor problems on an ad
hoc basis early in the development cycle, problems that could be taken
care of more efficiently as part of the developers' normal work cycle.

You wouldn't want to eliminate interim releases entirely. What you can do

is to plan for a specific number of interim releases and then try not to increase

that number.

18.3 Side Effects of the Daily Build and Smoke Test

Some developers who have used daily builds claim that it improves overall
product quality (Zachary 1994). Other than that general claim, the daily
build's effect is limited to its improvements in integration risk, quality risk,
and progress visibility.

184 The Daily Build and SmokeTest's

CROSS-REFERENCE
For more on incremental
development practices,
see Chapter 7,
"Lifecycle Planning."

18.5

CROSS-REFERENCE
Formore on the importance
of making progress

visibfe see Section 6.3,
"Perception and Reality."

Interactionswith OtherPractices

Daily builds combine nicely with the use of miniature milestones (Chapter
27). As Chris Peters says, "Scheduling rule #1 is constant vigilance" (Peters
1995). If you have defined a complete set of mini milestones and you know
that your daily build is not broken, then you will have exceptional visibil-
ity into your progress. You can check the build every single day to determine
whether your project is meeting its mini milestones. If it is meeting its mini
milestones, it will finish on time. If it is falling behind, you will detect that
immediately, and you can adjust your plans accordingly. The only kind of
scheduling error you can make is to leave tasks off the schedule.

Daily builds also provide support for incremental-development practices
(Chapter 7). Those practices depend on being able to release interim versions
of the software externally. The effort required to prepare a good build for
release is relatively small compared to the effort needed to convert an av-
erage, infrequently built program into a good build.

The Bottom Line on the
Daily Build and Smoke Test

The daily-build-and-smoke-test process is at heart a risk-management prac-
tice. Because the risks it addresses are schedule risks, it has a powerful ability
to make schedules more predictable and to eliminate some of the risks that
can cause extreme delays—integration problems, low quality, and lack of
progress-visibility.

413

Chapter 18: Daily Build and Smoke Test

414

18.6

I don't know of any quantitative data on the schedule efficacy of the daily-
build process, but the anecdotal reports on its value are impressive. Jim
McCarthy has said that if Microsoft could evangelize only one idea from its

development process, the daily-build-and-smoke-test process would be the
one (McCarthy 1995¢).

Keys to Success in Using the
Daily Buildand Smoke Test

Here are the keys to success in using daily builds:

* Build every day.
* Smoke test every day.

* Grow the smoke test with the product. Be sure that the test remains
meaningful as the product evolves.

* Make a healthy build the project's top priority.

* Take steps to ensure that broken builds are the exception rather than
the rule.

* Don't abandon the process under pressure.

Further Reading

Cusumano, Michael, and Richard Selby. Microsoft Secrets: How the World's.
Most Powerful Software Company Creates Technology, Shapes Markets,
andManages People. New York: Free Press, 1995. Chapter 5 describes
Microsoft's daily-build process in detail, including a detailed listing of
the steps that" an individual developer goes through on applications
products such as Microsoft Excel.

McCarthy, Jim. Dynamics of Software Development. Redmond, Wash-
Microsoft Press, 1995. McCarthy describes the daily-build process as a
practice he has found to be useful in developing software at Microsoft.
His viewpoint provides a complement to the one described in Microsoft

Secrets and in this chapter.

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press, 1993-
Chapter 27 of this book discusses integration approaches. It provides
additional background on the reasons that incre mental integration prac-
tices such as daily builds are effective.

19

Designing for Change

Designing for Change is a broad label that encompasses several change-oriented
design practices. These practices need to be employed early in the software
lifecycle to be effective. The success of Designing for Change depends on identi
fying likely changes, developing a change plan, and hiding design decisions so that
changes do not ripple through a program. Some of the change-oriented design
practices are more difficult than people think, but when they are done well they lay
the groundwork for long-lived programs and for flexibility that can help to minimize
the schedule impacts of late-breaking change requests.

Efficacy

Potential reduction from nominal schedule: Fair
Improvement in progress visibility: None

Effect on schedule risk: Decreased Risk
Chance of first-time success: Good

Chance of long-temn success: Excellent
Major Risks

e Overreliance on the use of programming languages to solve design problems
rather than on change-oriented design practices

Major Interactions and Trade-Offs
* Provides necessary support for incremental-development practices
* Design methods involved work hand-in-hand with software reuse

s LB o R e ! T UTWWE W wED g - AR T W e B T N L e y— —_—

415

Chapter 19: Designing for Change

19.1

Many developers recognize designing for change as a "good" software en-
gineering practice, but few recognize it as a valuable contributor to rapid
development.

Some of the most damaging influences on a development schedule are late,
unexpected changes to a product—changes that occur after initial design is
complete and after implementation is underway. Projects that deal poorly
with such changes are often perceived as slow even if they were on sched-
ule up to the point where the changes were introduced.

Current development practices place an increasing emphasis on responding
to changes—changes in market conditions, changes in customer understand-
ing of the problem, changes in underlying technology, and so on.

Against this backdrop, Designing for Change does not produce direct sched-
ule savings. The care needed to design for change might actually lengthen
the nominal development schedule. But the schedule equation is seldom so
simple as to contain the nominal schedule as its only variable. You must
factor in the likelihood of changes, including changes in future versions. Then
you must weigh the small, known increase in effort needed to design for
change against the large potential risk of not designing for change. On bal-
ance, it is possible to save time. If you use incremental-development prac-
tices such as Evolutionary Delivery and Evolutionary Prototyping, you build
a likelihood of change into the development process, so your design had
better account for it.

Using Designing for Change

"Designing for change" does not refer to any single design methodology, but
to a panoply of design practices that contribute to flexible software designs.
Here are some of the things you can do:

* [dentify areas likely to change.
¢ Use information hiding.

* Develop a change plan.

* Define families of programs.

e Use object-oriented design.

The rest of this section lays out each of these practices. Some of the prac-
tices overlap, but I think that each of them has distinctive heuristic value.

Identify Areas Likely to Change

The first key to success in Designing for Change is to identify the potential
changes. Begin design work by listing design decisions that are likely to

CROSS-REFERENCE

For more on information
hidng, see "FurtherReading"
at the end of the chapter.

i &

HARD DATA

19.1 Using Designingfor Change

change. Robert L. Glass has pointed out that one characteristic of great de-
signers is that they are able to anticipate more kinds of possible change than
average designers can (Glass 1994a). Here are some frequent sources
of change:

 Hardware dependencies

» File formats

e Inputs and outputs

* Nonstandard language features

 Difficult design and implementation areas

* (Global variables

e Implementations of specific data structures

* Implementations of abstract data types

* Business rules

* Sequences in which items will be processed

* Requirements that were barely excluded from the current version

e Requirements that were summarily excluded from the current version
» Features planned for the next version

Identifying changes needs to be done at design time or earlier. Identifying
possible requirements changes should be a part of identifying requirements.

Use Information Hiding

Once you have created your list of potential changes, isolate the design
decisions related to each of those changes inside its own module. By "mod-
ule" I am not necessarily referring to a single routine. A module in this con-
text could be a routine or a collection of routines and data. It could be a
"module" in Modula-2, a "class" in .C++, a "package" in Ada, a "unit" in Turbo,
Pascal, or Delphi, and so on.

The practice of hiding changeable design decisions inside their own mod-
ules is known as "information hiding," which is one of the few theoretical
techniques that has indisputably proven its usefulness in practice (Boehm
1987a). In the time since David Parnas first introduced the technique, large
programs that use information hiding have been found to be easier to
modify—Dby a factor of four—than programs that don't (Korson and Vaishnavi
1986). Moreover, information hiding is part of the foundation of both struc-
tured design and object-oriented design. In structured design, the notion of
black boxes comes from information hiding. In object-oriented design, in-
formation hiding gives rise to the notions of encapsulation and visibility.

417

Chapter 19: Designing for Change

rultl o

418

CLASSIC MISTAKE

In the 20th anniversary edition of The Mythical Man-Month, Fred Brooks
concludes that his criticism of information hiding was one of the few short-
comings of the first edition of his book. "Parnas "was right, and I was wrong
about information hiding," he proclaims (Brooks 1995).

To use information hiding, begin design by listing design decisions that are
likely to change (as described above) or especially difficult design decisions.
Then design each module to hide the effects of changes to one of those
design decisions. Design the interface to the module to be insensitive to
changes inside the module. That way, if the change occurs, it will affect only
one module. The goal should be to create black boxes—modules that have
well-defined, narrow interfaces and that keep their implementation details
to themselves.

Suppose you have a program in which each object is supposed to have a
unique ID stored in a member variable called ID. One design approach
would be to use integers for the IDs and to store the highest ID assigned so
far in a global variable called MaxID. Each place a new object is allocated,
perhaps in each object's constructor, you could simply use the statement
ID = ++MaxID. (This is a C-language statement that increments the value of
MaxIDby 1 and assigns the new value to ZD.) That would guarantee a unique
ID, and it would add the absolute minimum of code in each place an ob-
ject is created. What could go wrong with that?

A lot of things could go wrong. What if you want to reserve ranges of 1Ds
for special purposes? What if you want to be able to reuse the IDs of objects
that have been destroyed? What if you want to add an assertion that fires
when you allocate more IDs than the maximum number you've anticipated?
If you allocated IDs by spreading ID = ++MaxID statements throughout your
program, you would have to change the code associated with every one of
those statements.

The way that new IDs are created is a design decision that you should hide.
If you use the phrase ++MaxID throughout your program, you expose the
information that the way a new ID is created is simply by incrementing
MaxID. If, instead, you put the statement ID = NewlID() throughout your
program, you hide the information about how new IDs are created.

Inside the NeivID() function you might still have just one line of code,
return. (++MaxID) or its equivalent, but if you later decide to reserve certain
ranges of IDs for special purposes, to reuse old IDs, or to add assertions, you
couldmake those changes withinthe New ID() functionitself—withouttouch-
ing dozens or hundreds of ID = NeivID() statements. No matter how com-
plicated the revisions inside NewID() might'become, they wouldn't affect any
other part of the program.

FURTHER READING
For details on all these
practices,see Code
Complete (McConnell 1993).

19.1 Using Designing for Change

Now suppose that you further discover you need to change the type of the
ID from an integer to a string. If you've spread variable declarations like int
ID throughout your program, your use of theNewID()function ewon't help.

You'll still have to go through your program and make dozens or hundreds
of changes.

In this case, the design decision to hide is the ID's type. You could simply
declare your IDs to be ofiDTYPE—a user-defined type that resolves to int—
rather than directly declaring them to be of type int. Once again, hiding a
design decision makes a huge difference in the amount of code affected by
a change.

Developa ChangePlan

For the areas that are likely to change, develop change plans. Change plans
can prescribe the use of any of the following practices:

e Use abstract interfaces to modules rather than interfaces that expose
the implementation details.

e Use named constants for data-structure sizes rather than hard-coded
literals.

» Use late-binding strategies. ook up data-structure sizes in an external
file or registry in the Windows environment. Allocate data structures
dynamically based on those sizes.

e Use table-driven techniques in which the operation of the program
changes based on the data in the table. Decide whether to store the
data table inside the program (which will require recompilation to
change) or outside the program in a data file, initialization file, Win-
dows registry, or resource file.

e Use routines rather than duplicating lines of code—even if it's only
one or two lines.

e Use simple routines that perform single, small functions. If you keep
routines simple, they'll be easier to use in ways you didn't originally
anticipate.

» Keep unrelated operations separate. Don't combine unrelated opera-
tions into a single routine just because they seem too simple to put
into separate routines.

e Separate code for general functionality from code for specialized
functionality. Distinguish between code for use throughout your
organization, for use in a specific application, and for use in a specific
version of an application.

These practices are all good software-engineering practices, which, among
other things, help to support change.

419

111

Chapter 19: Designing for Change

Define Families of Programs

David Parnas pointed out as early as 1976 that the developer's job had
changed from designing individual programs to designing families of pro-
grams (Parnas 1976, 1979). In the 20 years since he wrote that, the
developer's job has shifted even more in that direction. Developers today use
the same code base to produce programs for different languages, different
platforms, and different customers. Figure 19-1 illustrates how this is done.

(

Base Product for | | Base Pmduu&x :
*Lite" Version Version 2 Nc'o\ Plalform y

Figure 19-1. Family of products. Since most products eventually turn into
a family of products, most design efforts should concentrate on designing
afamily ofprograms instead of just one.

In this environment, Parnas argues that a designer should try to anticipate
the needs of the family of programs in developing the base product. The
designer should anticipate lateral versions such as in-house releases, English,
European, and Far-Eastern versions, and the designer should also anticipate
follow-on versions. The designer should design the product so that the de-
cisions that are least likely to change among versions are placed closest to

the root of the tree. This holds true whether you're consciously designing a

CROSS-REFERENCE
For more on defining minimal
feature sets and on versioned
release practices, see

Chapter 20, "Evolutionary
Delivery"; Chapter 36, "Staged
Delivery";and "Versioned
Development" in Section 14.1.

CROSS-REFERENCE

For more comments on
object-oriented program-
ming, see "ldentifying Silver
Bullets" in Section 15.5.

192 Managingthe Risks of Designingfor Change

family of programs or just a single program that you'd like to prepare for
change.

A good practice is first to identify a minimal subset of functionality that might
be of use to the end-user and then to define minimal increments beyond that.
The minimal subset usually won't be large enough to make up a program
that anyone would want to use; it is useful for the purpose of preparing for
change, but it usually isn't worth building for its own sake. The increments
you define beyond that should also be so small as to seem trivial. The point
of keeping them small is to avoid creating components that perform more
than one function. The smaller and sharper you make the components, the
more adaptable to change the system will be. Designing minimal components
that add minimal incremental functionality also leads to systems in which you
can easily trim features when needed.

Use Object-Oriented Design

One of the outgrowths of information hiding and modularity has been object-
oriented design. In object-oriented design, you divide a system into objects.
Sometimes the objects model real-world entities; sometimes they model
computer-science structures or more abstract entities.

A study at NASA's Software Engineering Laboratory found that object-oriented
development practices increased reusability, reconfigurability, and produc-
tivity, and they reduced development schedules (Scholtz, et al. 1994).

Use object-oriented design, but don't expect it to be a cure-all. The success
of object-oriented, design in a high-change environment depends on the same
factors that information hiding does. You still need to identify the most likely
sources of change, and you still need to hide those changes behind narrow
interfaces that insulate the rest of the program from potential changes.

19.2 Managing the Risks of Designing for Change

CLASSIC MISTAKE

Using the best practice of Designing for Change poses no risks to the rest
of the project. The main risk associated with Designing for Change is sim-
ply the risk of failing to use the practice to its full benefit.

Overreliance on languages and pictures rather than on design. The mere act
of putting objects into classes does not create an object-oriented design, does
not provide information hiding, and does not protect a program from
changes. The mere act of drawing a module-hierarchy chart does not cre-
ate a change-tolerant design. Good designs come from good design work,
not from pictures of design.

421

Chapter 19: Designing for Change

CROSS-REFERENCE

For another broad view of
object-oriented technology,
see "ldertifying Silver
Bullets" in Section 15.5.

19.3

i &

HARD DATA

194

19.5

422

Doing object-oriented design effectively is harder than people have made it
out to be. As discussed in Section 15.5, it is an expert's technology. David
Parnas writes that object-oriented (O-O) programming has caught on slowly
for the following reason:

[O-0O] has been tied to a variety of complex languages. Instead of teach-
ing people that O-O is a type of design, and giving them design prin-
ciples, people have been taught that O-O is the use of a particular tool.
We can write good or bad programs with any tool. Unless we teach
people how to design, the languages matter very little. The result is that
people do bad designs with these languages and get very little value
from them. (Parnas in Brooks 1995)

To design for change, you must actually design. Focusing on areas that are
likely to change, information hiding, and families of programs make up the
strategic backbone of object-oriented design. If you don't follow those design
steps, you might as well be working in Fortran, plain old C, or assembler.

Side Effects of Designing for Change

Programs that are designed for change continue to yield benefits long after
their initial construction. Capers Jones reports that programs that are well-
structured and developed with high quality are nearly guaranteed to have
long and useful service lives. Programs that are poorly structured and devel-
oped with low quality are nearly always taken out of service or become
catastrophically expensive to maintain within 3 to 5 years (Jones 1994).

Designing for Change's
Interactions with Other Practices

The flexibility provided by Designing for Change is an important part of the
support needed for incremental-development practices such as Evolutionary
Delivery (Chapter 20) and Evolutionary Prototyping (Chapter 21). The
change-oriented design practices also provide moderate support for Reuse
(Chapter 33).

The Bottom Line on Designing for Change

The bottom line is that Designing for Change is a risk-reduction practice. If
the system is stable, it doesn't produce immediate schedule reductions, but
it helps to prevent the massive schedule slips that can occur when unantici-
pated changes cause widespread ripple effects through the design and code.

Further Reading

19.6 Keys to Success in Using Designing for Change

Here are the keys to success in designing for change:

 Identify the most likely changes.

* Use information hiding to insulate the system from the effects of the
most likely changes.

e Define families of programs rather than considering only one program
at a time.

e Don't count on the mere use of an object-oriented programming
language to do the design job automatically.

Further Reading

The three Parnas papers below are the seminal presentations of the ideas of
information hiding and designing for change. They are still some of the best
sources of information available on these ideas. They might be difficult to
find in their original sources, but the 1972 and 1979 papers have been
reproduced in Tutorial on Software Design Techniques (Freeman arid

Wasserman 1983), and the 1972 paper has also been reproduced in Writings
ofthe Revolution (Yourdon 1982).

Parnas, David L. "On the Criteria to Be Used in Decomposing Systems into
Modules," Communications ofthe ACM, v. 5, no. 12, December 1972,
1053-58 (also in Yourdon 1979, Freeman and Wasserman 1983).

Parnas, David L. "Designing Software for Ease of Extension and Contraction,"
IEEE Transactions on Software Engineering, v. SE-5, March 1979,
128-138 (also in Freeman and Wasserman 1983).

Parnas, David Lorge, Paul C. Clements, and David M. Weiss. "The Modular
Structure of Complex Systems," IEEE Transactions on Software Engi-
neering, March 1985, 259-266.

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press, 1993.
Section 6.1 of this book discusses information hiding, and Section 12.3
discusses the related topic of abstract data types. Chapter 30, "Software

Evolution," describes how to prepare for software changes at the imple-
mentation level.

423

20

> w2l

L 23|

2

P

Evolutionary Delivery

Evolutionary Delivery is a lifecycie model that strikes a balance between Staged
Delivery's control and Evolutionary Prototyping's flexibility. It provides its rapid-de-
velopment benefit by delivering selected portions of the software earlier than would
otherwise be possible, but it does not necessarily deliver the final software prod-
uct any faster. It provides some ability to change product direction mid-course in
response to customer requests. Evolutionary Delivery has been used successfully
on in-house business software and shrink-wrap software. Used thoughtfully, it can
lead to improved product quality, reduced code size, and more even distribution of
development and testing resources. As with other lifecycie models, Evolutionary
Delivery is a whole-project practice: if you want to use it, you need to start plan-

ning to use it early in the project. A4
Efficacy

Potential reduction from nominal schedule: Good

Improvement in progress visibility: Excellent

Effect on schedule risk: Decreased Risk

Chance of first-time success: Very Good

Chance of long-term success: Excellent

Major Risks

e Feature creep

e Diminished project control

¢ Unrealistic schedule and budget expectations

» |nefficient use of development time by developers

Major Interactions and Trade-Offs
e Draws from both Staged Delivery and Evolutionary Prototyping
e Success depends on use of designing for change

G T GRS MR WITE YIAENT IS SN TR e b RO AN S N w TN T et O BN L ST arw
-

425

Chapter 20: Evolutionary Delivery

CROSS-REFERENCE
For details on these kinds of

support for rapid develop-

ment, see the introductions
to Chapter 21, "Evolutionary
Prototyping," and Chapter 36,
"Staged Delivery."

Some people go to the grocery store carrying a complete list of the grocer-
ies they'll need for the week: "2 pounds of bananas, 3 pounds of apples, 1
bunch of carrots," and so on. Other people go to the store with no list at all
and buy whatever looks best when they get there: "These melons smell good.
I'll get a couple of those. These snow peas look fresh. I'll put them together
with some onions and water chestnuts and make a stir-fry. Oh, and these
porterhouse steaks look terrific. I haven't had a steak in a long time. I'll get
a couple of those for tomorrow." Most people are somewhere in between.
They take a list to the store, but they improvise to greater and lesser degrees
when they get there.

In the world of software lifecycle models, Staged Delivery is a lot like go-
ing to the store with a complete list. Evolutionary Prototyping is like going
to the store with no list at all. Evolutionary Delivery is like starting with a list
but improvising some as you go along.

The Staged Delivery lifecycle model provides highly visible signs of progress
to the customer and a high degree of control to management, but not much
flexibility. Evolutionary Prototyping is nearly the opposite: like Staged De-
livery, it provides highly visible signs of progress to the customer—but un-
like Staged Delivery, it provides a high degree of flexibility in responding
to customer feedback and little control to management. Sometimes you want
to combine the control of Staged Delivery with the flexibility of Evolution-
ary Prototyping. Evolutionary Delivery straddles the ground between those
two lifecycle models and draws its advantages and disadvantages from
whichever it leans toward the most.

Evolutionary Delivery supports rapid development in several ways:
It reduces the risk of delivering a product that the customer doesn't
want, avoiding time-consuming rework.

* For custom software, it makes progress visible by delivering software
early and often.

* For shrink-wrap software, it supports more frequent product releases.

e It reduces estimation error by allowing for recalibration and
reestimation after each evolutionary delivery.

It reduces the risk of integration problems by integrating early and
often—whenever a delivery occurs.

* It improves morale because the project is seen as a success from the
first time the product says, "Hello World" until the final version is
ultimately delivered.

As with other aspects of Evolutionary Delivery, the extent to which it sup-
ports rapid development in each of these ways depends on whether it leans
more toward Staged Delivery or Evolutionary Prototyping.

20.1

20.1 Using Evolutionary Delivery

Using Evolutionary Delivery

To use Evolutionary Delivery, you need to have a fundamental idea of the
kind of system you're building at the outset of the project. As Figure 20-1
suggests, in the evolutionary-delivery approach, you start with a preliminary
idea of what your customer wants, and you create a system architecture and
core based on that. That architecture and core serve as the basis for further
development.

Design of
Architecture
and System
Core

Repeat this cycle until you run
out of time, you run out of
money, you complete the
number of iterations planned,
or the customer is satisfied.

Figure 20-1. The Evolutionary Delivery lifecycle model drawsfrom Staged
Delivery's control and Evolutionary Prototyping's flexibility. You can tailor
it to provide as much control or flexibility asyou need.

The architecture should anticipate as many of the possible directions the
system could go as it can. The core should consist of lower-level system func-
tions that are unlikely to change as a result of customer feedback. It's fine
to be uncertain about the details of what you will ultimately build on top of
the core, but you should be confident in the core itself.

427

Chapter20: Evolutionary Delivery

CROSS-REFERENCE

For details on the value of

428

mappingout possible
changes to a system at
design time, see "Define
Families of Programs"
in Section 19.1.

Properly identifying the system core is one key to success in using Evolu-
tionary Delivery. Aside from that, the most critical choice you make in Evo-
lutionary Delivery is whether to lean more toward Evolutionary Prototyping
or Staged Delivery.

In Evolutionary Prototyping, you tend to iterate until you and the customer
agree that you have produced an acceptable product. How many iterations
will that take? You can't know for sure. Usually you can't afford for a project
to be that open-ended.

In Staged Delivery, on the other hand, you plan during architectural design
how many stages to have and exactly what you want to build during each
stage. What if you change your mind? Well, pure Staged Delivery doesn't
allow for that.

With Evolutionary Delivery, you can start from a base of Evolutionary
Prototyping and slant the project toward Staged Delivery to provide more
control. You can decide at the outset that you will deliver the product in four
evolutionary deliveries. You invite the customer to provide feedback at each
delivery, which you can then account for in the next delivery. But the pro-
cess will not continue indefinitely: it will stop after four deliveries. Decid-
ing on the number of iterations in advance and sticking to it is one of the
critical factors to success in this kind of rapid development (Burlton 1992).

With Evolutionary Delivery, another option is to start from a base of Staged
Delivery and slant the project toward Evolutionary Prototyping to provide
more flexibility. You can decide at the outset what you will deliver in stages
1,2, and 3, but you can be more tentative about stages 4 and 5, thus giving
your project a direction but not an exact road map.

Whether you slant more toward Evolutionary Prototyping or Staged Deliv-
ery should depend on the extent to which you need to accommodate cus-
tomer requests. If you need to accommodate most requests, set up
Evolutionary Delivery to be more like prototyping. Some experts recommend
delivering the software in increments as small as 1 to 5 percent (Gilb 1988).
If you need to accommodate few change requests, plan it to be more like
Staged Delivery, with just a handful of larger releases.

Release Order

You use Evolutionary Delivery when you're not exactly sure what you want
tobuild. Butunlike Evolutionary Prototyping, youdo have atleast someidea,
so you should map out a preliminary set of deliveries at the beginning of your
project, while you're developing the system architecture and system core.

26

e—
[l + 2]

Measurement

Measurement is a practice that has both short-term motivational benefits and long- E
term cost, quality, and schedule benefits. Measurement provides an antidote to the
common problems of poor estimates, poor scheduling, and poor pVogress visibil- &

ity. Companies that have active measurement programs tend to dominate their
industries. Virtually any organization or project can benefit from applying Measure- m
ment at some level. For greatest effect, Measurement should have high-level man- m
agement commitment and be enacted through a permanent measurement group.
Measurement can also be implemented to a lesser degree on individual projects m

by the project team or individual team members. m
Efficacy
Potential reduction from nominal schedule: Very Good

Improvement in progress visibility: Good

Effect on schedule risk Decreased Risk

Chance of first-time success: Good

Chance of longterm success: Excellent

Major Risks

e Overoptimization of single-factor measurements
e Misuse of measurements for employee evaluations
¢ Misleading information from lines-of-code measurements

Major Interactions and Trade-Off s

¢ Provides the foundation for improvements in estimation, scheduling,
productivity-tool evaluation, and programming-practice evaluation

L R S e R R S R S B i WA E R Tt & - Sy . = vy

467

Chapter 26: Measurement

Software products and projects can be measured in dozens of ways: size in
lines of code or function points; defects per thousand lines of code or func-
tion point; hours spent designing, coding, and debugging; developer
satisfaction—these are just the tip of the iceberg.

Measurement programs support rapid development in several ways.

Measurementprovides status visibility. Theonly thingworsethanbeinglate
i1s not knowing that you're late. Measuring your progress can help you know
exactly what your status is.

CROSS-REFERENCE Measurement focuses people's activities. As I've mentioned elsewhere,
For more on the importance - 06pe respond to the objectives you set for them. When you measure a char-
of objectives, see "Goal
Setting" . acteristic of your development process and feed it back to the people in-
etting" in Section 11.2. . A R . .
volved, you're implicitly telling them that they should work to improve their
performance against that characteristic. If you measure the program's bug
count and feed that back, they'll reduce the bug count. If you measure the
percentage of modules marked as done, they'll increase the percentage of
modules marked as done.

What gets measured gets optimized. If you measure developmerit-speed
related characteristics of the project, those will get optimized.

Measurement improves morale. Properly implemented, a measurement pro-
gram can improve developer morale by bringing attention to chronic prob-
lems such as excessive schedule pressure, inadequate office space, and
inadequate computing resources.

CROSS-REFERENCE Measurement can help to set realistic expectations. You'll be in a much

For more on sefting expecta- gtronger position to make and defend schedule estimates if you have mea-'
tions, see Section 10.3,

\ . surements to support you. When your customer asks you to work to an

Managng Customer . R -] . . .

Expectatons 1MPossible deadline, you can say something like this: "I will work hard to

deliver the system by the time you want it, but historically, based on the

figures I have just described to you, it will take longer than your imposed

deadline. We might set a new record on this project, but I recommend that

you modify your plans in light of our history" (Rifkin and Cox 1991).

Measurement lays the groundwork for longterm process improvement. The
most significant benefit of Measurement can't be realized in the short-term
on a single project, but it will pay off over two or three years. By measuring
your projects on a consistent basis, you lay a groundwork for comparing
projects and analyzing which practices work and which don't. A measure-
ment program helps you avoid wasting time on practices that aren't paying
off. It helps you identify silver-bullet technologies that aren't living up to their
claims. It helps you to accumulate a base of experience that will support
more accurate projectestimation and more meaningful planning. Measure-
ment is the cornerstone of any long-term process-improvement program.

468

26.1

26.1 Using Measurement

Using Measurement

There are several keys to using Measurement effectively.

Goals, Questions, Metrics

Some organizations waste both time and money by measuring more things
than they need to. A good way to avoid that problem is to be sure that you're

collecting data for areason. The Goals, Questions, Metrics practice can help
(Basil! and Weiss 1984):

» Setgoals. Determine how you want to improve your projects and
products. Your goal, for example, might be to reduce the number of
defects put into the software in the first place so that you don't spend
so much time debugging and correcting the software downstream.

* Ask questions. Determine what questions you need to ask in order to

meet your goals. A question might be, "What kinds of defects are
costing us the most to fix?"

» Establish metrics. Set up metrics (measurements) that will answer your
questions. You might start collecting data on defect types, creation
times, detection times, cost to detect, and cost to correct.

A review of data collection at NASA's Software Engineering Laboratory con-
cluded that the most important lesson leamed in 15 years was that you need
to define measurement goals before you measure (Valett and McGarry 1989).

Measurement Group

Some organizations set tip a separate measurement group, and that is usu-
ally a good idea because effective measurement requires a specialized set
of skills. The group can consist of typical developers, but the ideal measure-
ment group would have knowledge of the following areas (Jones 1991):

Statistics and multivariate analysis

Literature of software engineering

Literature of software project management

Software planning and estimating methods

Software planning and estimating tools

Design of data-collection forms

Survey design

Quality-control methods, including reviews
Walk-throughs, inspections, and all standard forms of testing

469

Chapter 26: Measurement

470

* Pros and cons of specific software metrics

* Accounting principles

This is the skill-set that experienced measurement groups at AT&T, DuPont,
Hewlett-Packard, IBM, and ITT have.

You don't necessarily need to have an organization-level, full-time measure-
ment group to measure aspects of specific projects. A team leader or an
individual team member can introduce specific measures at the project level
to take advantage of Measurement's short-term motivational benefits.

What to Measure

Each organization needs to decide what to measure based on its own pri-
orities—its own goals and questions. But, at a minimum, most organizations
will want to keep historical data on project sizes, schedules” resource require-
ments, and quality characteristics. Table 26-1 lists some of the data elements
that different organizations collect.

Table 26-1. Examples of Kinds of Measurement Data
A @SN EER I AN RN N AL LT A LA U PEIOYYL LA TR ISR TTTE T IR

Cost and resource data

Effort by activity, phase, and type of personnel (see also Table 26-2)
Computer resources

Calendartime

Change and defect data

Defects by classification (severity, subsystem, time of insertion, source of error,
resolution)

Problem-report status

Defect detection method (review, inspection, test, etc.)

Effort to detect and correct each defect

Process data

Process definition (design method, programming language, review method, etc.)
Process conformance (is code reviewed when it's supposed to be, etc.)
Estimated time to complete

Milestone progress -

Code growth over time

Code changes over: time

Requirements changes overtime

Product data
Development dates

Total effort

Ccomtinued)

CLASSIC MISTAKE

26.1 Using Measurement

Table 26-1. Examples of Kinds of Measurement Data, continued-

Product data, continued

Kind of project (business, shrink-wrap, systems, etc.)
Functions or objects included in project

Size in lines of code and function points

Size of documents produced

Programming language

Once you've started collecting even a few data elements, you can gain in-
sight from the raw data, and you can also combine data elements to gain
other insights. Here are some examples of combined data elements you can
create:

 Number of open defects vs. total defects reported (to help predict
project release dates)

* Number of defects found by inspection vs. by execution testing (to
help plan quality-assurance activities)

* History of estimated vs.. actual days remaining in a project, as a per-
centage (to help track and improve estimation accuracy)

* Average lines of code per staff month, broken down by programming
language (to help estimate and plan programming activity)

* Average function points per staff month, broken down by program-
ming language (to help estimate and plan programming activity)

* Percentage of total defects removed before product release (to help
assess product quality)

* Average time to fix a defect, by severity, by subsystem, and by time
of defect insertion (to help plan defect-correction activity)

» Average hours per page of documentation (to help plan documen-
tation activity on a project)

Most projects don't collect the raw data that would allow them to create this
information, but as you can see, this information requires the collection of
only a few measurements.

Granularity

One of the problems with the data that most organizations collect is that it's
collected at too large a granularity to be useful. For example, an organiza-
tion might accumulate data "on the total number of hours spent on project
FooBar but not distinguish between how much time was spent on specifi-
cation, prototyping, architecture, design, implementation, and so on. Such
large-grain data might be useful to accountants, but it's not useful to some-
one who wants to analyze planning and estimation data or data that will be
. used to improve the software-development process.

471

Chapter 26: Measurement

Table 26-2 lists a set of categories and activities for time accounting that will
provide as much granularity, as most projects need to start with.

Table 26-2. Example of Time-Accounting Activities
PRI VI PRVARRS TSN TEEY TR TIN DTIERY W A O THFLEEETALT LOPT S T TR Y SRS e e

Category Activity
FURTHERREADING
For a different list of activies =~ Management Plan
thatyou can use as abasis Manage customer or end-user relations

fortime accourting, see

Table 1.1 in Applied Software Manage developers

Measurement (Jones 1991). Manage quality assurance
Manage change
Administration Downtime
Development lab setup
Process development Create development process

Review or inspect development process
Rework/fix development process

Educate customer or team members about
development process

Requirements specification Create specification

Review or inspect specification

Rework/fix specification

Report defects detected during specification
Prototyping Create prototype

Review or inspect prototype

Rework/fix prototype

Report defects detected during prototyping
Architecture Create architecture

Review or inspect architecture

Rework/fix architecture

Report defects detected during architecture
Design Create design

Review or inspect design

Rework/fix design

Report defects detected during design
Implementation Create implementation

Review or inspect implementation

Rework/fix implementation

Report defects detected during implementation

Component acquisition Investigate or acquire components, either
commercial or in-house

Manage component acquisition

(continued)

472

CROSS-REFERENCE
For details on how average
projects spend their time,
see Section 6,5, "Where
the Time Goes."

CLASSIC MISTAKE

26.1 Using Measurement

Table26-2. Example of Time-Accounting Activities, continued
FPIMTE R ESTEATEERYEC £ AR T SR TN W S W IR Y SR T RS I I TN

Category Activity

Component acquisition, Test acquired components
continued Maintainacquired components
Report defects in acquired components

Integration Create and maintain build
Test build
Distribute build

System testing Plan system testing

Create manual for system testing
Create automated system test
Run manual system test
Run automated system test
Report defects detected during system test
Product release Prepare and support intermediate release
Prepare and support alpha release
Prepare and support beta release
Prepare and support final release
Metrics Collectmeasurement data
Analyze measurement data

Using the Data You Collect

Collecting the data doesn't do much good if you don't use it. The following
sections explain what to do with the data you collect.

Pareto analysis

If you're concerned about development speed, one of the most powerful
things you can do with the data you collect is to perform a Pareto analysis—
look for the 20 percent of activities that consume 80 percent of the time.
Optimizing a software project for speed is similar to optimizing a software
program for speed. Measure where you spend your time, and then look for
ways to make the most time-consuming areas more efficient.

Analysis vs. measurement

On the opposite end of the scale from organizations that collect data that's
too coarse are organizations that are so excited about software measurement
that they collect data about everything. Collecting too much data is actually
not much better than collecting too little. It's easy to bury yourself in data
that's so unreliable you can't know what any of it means. To be meanihg-

473

Chapter 26: Measurement

HARD DATA

i 1|

HARD DATA

1| §

HARD DATA

ful, metrics need to be defined and standardized so that you can compare
them across projects.

NASA's Software Engineering Laboratory (SEL) has had an active measure-
ment program for almost 20 years. One of the lessons SEL has learned is to
spend more effort on analysis and less on data collection. In the early years
of the program, SEL spent about twice as much on data collection as on
analysis. Since then, data collection effort has dropped by half, and SEL now
spends about three times as much on analysis and packaging as on collec-
tion (NASA 1994).

After the data is analyzed, SEL has found that packaging the lessons learned
is key to making the data collection and analysis useful. You might package
data and analysis in any of the following forms:

e Equations, such as the amount of effort or computing resources
typically needed to develop a program of a particular size

* Pie charts, such as distributions of errors by severity

* Graphs defining ranges of normal, such as growth in lines of code
checked into version control over time

» Tables, such as expected time-to-ship for various numbers of open
defects

* Defined processes, such as code-inspection or code-reading process

* Rules of thumb, such as, "Code-reading finds more interface defects
than execution testing"

e Software tools that embody any or all of the above

If you're just beginning a measurement program, use a simple set of mea-
surements, such as number of defects, effort, dollars, and lines of code. (The
time-accounting data described in Table 26-2 would make up a single
"effort” measurement.) Standardize the measurements across your projects,
and then refine them and add to them as you gain experience (Pietrasanta
1990, Rifkin and Cox 1991).

Organizations that are just starting to collect software data tend on average
to collect about a dozen different measurements. Even organizations that
have a great deal of experience with measurement programs still tend to
collect only about two-dozen measurements (Brodman and Johnson 1995).

Feedback

Once you set up a measurement program, it's important to update developers
and managers on the results of the measurements. Providing feedback to
developers can be an organizational blind spot; organizations tend to feed
the data back to managers but overlook developers. In one survey, 37 per-
cent of managers thought that feedback was given on measurement data, but
only 11 percent of developers thought so (Hall and Fenton 1994).

Where is the
wisdom we have lost
in knowledge?
Where is the knowl-
edge we have lost

in information?

T.S. Eliot

26.1 Using Measurement

Developers tend to be leery of how measurement data will be used. Both
managers and developers think that managers manipulate measurement data
at least one-third of the time (Hall and Fenton 1994), When developers can't
see what's being done with the data, they lose confidence in the measure-
ment program. A poorly implemented metrics program can actually damage
developer morale.

When an organization does provide feedback on measurement data, devel-
opers are enthusiastic about the measurement program. With feedback, they
say that the measurement program is "quite useful” or "very useful" about
90 percent of the time. When an organization doesn't provide feedback, they
say the measurement program is "quite useful" or "very useful" only about
60 percent of the time (Hall and Fenton 1994).

Another way to increase developer enthusiasm is to ask developers to par-
ticipate in the design of the data-collection forms. If you do, the data you
collect will be better, and your invitation "will improve the likelihood of their
buy-in (Basili and M cGarry 1995).

Baseline report

One specialized kind of feedback that measurement organizations provide
i1s an annual software-baseline report. The baseline report is similar to an
annual financial report, but it describes the state of the organization's soft-
ware-development capability. It includes summaries of the projects con-
ducted that year; strengths and weaknesses in the areas of people, process,
product, and technology; staffing levels; schedules; productivity levels; and
quality levels. It describes non-software personnel's perceptions of the soft-
ware-development organization and the development organization's percep-
tions of itself. It also includes a description of the organization's existing
softwareinventory.

The baseline is built on the basis of historical data, surveys, roundtable dis-
cussions, and interviews. It isn't evaluative; it doesn't tell you whether your
software-development capability is good or bad. It's purely descriptive. As
such, it provides a critical foundation for comparing your status year-to-year
and for future improvements.

Limitations
Measurement is useful, but itis not a panacea. Keep these limitations in mind.

Overreliance on statistics. One of the mistakes that NASA's Software Engi-
neering Laboratory (SEL) made initially was that it assumed it would gain the
most insight through statistical analysis of the data it collected. As SEL's
measurement program matured, SEL discovered that it did get some insight
from statistics but that it got more from talking about the statistics with the
people involved (Basili and M cGarry 1995).

475

Chapter 26: Measurement

measurement is accurate. Measurements of the software process can contain
a lot of error. Sources of errors include unpaid and unrecorded overtime,
MARDDATA charging time to the wrong project, unrecorded user effort, unrecorded
management effort, unrecorded specialist effort on projects, unreported
defects, unrecorded effort spent prior to activating the project-tracking sys-
tem, and inclusion of non-project tasks. Capers Jones reports that most cor-
porate tracking systems tend to omit 30 to 70 percent of the real effort on a
software project (Jones 1991). Keep these sources of error in mind as you
design your measurement program.

ﬂl Data accuracy. The fact that you measure something doesn't mean the

26.2 Managing the Risks of Measurement

In general, Measurement is an effective risk-reduction practice. The more you
measure, the fewer places there are for risks to hide. Measurement, however,
has risks of its own. Here are a few specific problems to watch for.

Over-optimization of single-factor measurements. What you measure gets
optimized, and that means you need to be careful when you define what to
measure. If you measure only lines of code produced, some developers will
alter their coding style to be more verbose. Some will completely forget about
code quality and focus only on quantity. If you measure only defects, you
might find that development speed drops through the floor.

It's risky to try to use too many measurements when you're setting up a new
measurement program, but it's also risky not to measure enough of the
project's key characteristics. Be sure to set up enough different measurements
that the team doesn't overoptimize for just one.

Measurements misused for employee evaluations. Measurement can be a
loaded subject. Many people have had bad experiences with measurement
in SAT scores, school grades, work performance evaluations, and so on. A
tempting mistake to make with a software-measurement program is to use
it to evaluate specific people. A successful measurement program depends
CLASSICMISTAKE on the buy-in of the people whose work is being measured, and it's impor-
tant that a measurement program track projects, not specific people.

Perry, Staudenmayer, and Votta set up a software research project that illus-
trated exemplary use of measurement data. They entered all data under an
ID code known only to them. They gave each person being measured a "bill
of rights," including the right to temporarily discontinue being measured at
any time, to withdraw from the measurement program entirely, to examine
the measurement data, and to ask the measurement group not to record
something. They reported that not one of their research subjects exercised
these rights, but it made their subjects more comfortable knowing they were
there (Perry, Staudenmayer; and Votta 1994).

476

FURTHER READING

For an excellent discussion
of problems with lines-of-
code measurements, see
Programming Productivity
(Jones 1986a).

26.3

26.4

26.4 Measurement's Interactions with Other Practices

Misleading information from lines-of-code measurements. Most measure-
ment programs will measure code size in lines of code, and there are some
anomalies with that measurement. Here are some of them:

e Productivity measurements based on lines of code can make high-level
languages look less productive than they are. High-level languages
implement more functionality per line of code than low-level lan-
guages. A developer might write fewer lines of code per month in a
high-level language and still accomplish far more than would be
possible with more lines of code in a Iow4evel language.

* Quality measurements based on lines of code can make high-level
languages look as if they promote lower quality than they do. Suppose
you have two equivalent applications with the same number of de-
fects, one written in a high-level language and one in a low-level
language. To the end-user, the applications will appear to have exactly
the same quality levels. But the one written in the low-level language
will have fewer defects per line of code simply because the lower-level
language requires more code to implement the same functionality. The
fact that one application has fewer defects per line of code creates a
misleading impression about the applications' quality levels.

To avoid such problems, beware of anomalies in comparing metrics across
different programming languages. Smarter, quicker ways of doing things may
result in less code. Also consider using function points for some measure-
ments. They provide a universal language that is better suited for some kinds
of productivity and quality measurements.

Side Effects of Measurement

The main side effect of a measurement program is that what you measure
gets optimized. Depending on what you measure, you might end up opti-
mizing defect rates, usability, execution efficiency, schedule, or some other
factor.

Measurement's Interactions with Other Practices

A measurement program provides the foundation for improvement in areas
including estimation (Chapter 8), scheduling (Chapter 9), and productivity-
tool evaluation (Chapter 15). Although it is possible to design a measurement
program so that it undercuts a rapid-development project, there is no rea-
son that a well-designed measurement program should interact negatively
with any other practice.

477

Chapter 26: Measurement

26.5 The Bottom Line on Measurement

11

HARD DATA

26.6

Measurement programs naturally have some of the best data available to
support their efficacy. Metrics guru Capers Jones reports that organizations
that have established full software-measurement programs have often im-
proved quality by about 40 percent per year and productivity by about 15
percent per year for 4 to 5 years consecutively (Jones 1991, 1994). He points
out that only a handful of U.S. organizations currently have accurate mea-
sures of software defect rates and defect removal and that those organiza-
tions tend to dominate their industries (Jones 1991). The cost for this level
of improvement is typically from 4 to 5 percent of the total software budget.

Keys to Success in Using Measurement

Here are the keys to success in using Measurement:

e Set up a measurement group. Put it in charge of identifying useful
measurements and helping projects to measure themselves.

e Track time-accounting data at a fine level of granularity.

e Start with a small set of measurements. Select what you want to
measure by using the Goals, Questions, Metrics approach.

* Don't just collect the data. Analyze it and provide feedback about
it to the people whose work it describes.

Further Reading

Software Measurement Guidebook. Document number SEI -94-002. Greenbelt,
Md.: Goddard Space Flight Center, NASA, 1994. This is an excellent
introductory book that describes the basics of how and why to estab-
lish a measurement program. Among other highlights, it includes a
chapter of experience-based guidelines, lots of sample data from NASA
projects, and an extensive set of sample data-collection forms. You can
obtain a single copy for free by writing to Software Engineering Branch,
Code 552, Goddard Space Flight Center, Greenbelt, Maryland 20771.

Grady, Robert B., and Deborah L. Caswell. Software Metrics: Establishing a
Company-Wide Program. Englewood Cliffs, N.J.: Prentice Hall, 1987.
Grady and Caswell describe their experiences in establishing a software-
metrics program at Hewlett-Packard and how to establish one in your
organization.

Further Reading

Grady, Robert B. Practical Software Metrics for Project Management and
Process Improvement. Englewood Cliffs, N.J.: PTR Prentice Hall, 1992.
This book is the follow-on to Grady and CaswelTs earlier book and
extends the discussion of lessons learned at Hewlett-Packard, It con-
tains a particularly nice presentation of a set of software business-
management graphs, each of which is annotated with the goals and
questions that the graph was developed in response to.

Jones, Capers. Applied Software Measurement: Assuring Productivity and
Quality. New York: McGraw-Hill, 1991. This book contains Jones's
recommendations for setting up an organization-wide measurement
program. It is a good source of information on functional metrics (the
alternative to lines-of-code metrics). It describes problems of measur-
ing software, various approaches to measurement, and the mechanics
of building a measurement baseline. It also contains excellent general
discussions of the factors that contribute to quality and productivity.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics
andModels. Menlo Park, Calif.: Benjamin/Cummings, 1986. This book
catalogs software-measurement knowledge, including commonly used
measurements, experimental techniques, and criteria for evaluating
experimental results. It is a useful, complementary reference to either
of Grady's books or to Jones's book.

IEEE Software, July 1994. This issue focuses on measurement-based process
improvement. The issue contains articles that discuss the various pro-
cess-rating scales and industrial experience reports in measurement-
based process improvement.

479

27

Miniature Milestones

The Miniature Milestones practice is a fine-grain approach to project tracking and

control that provides exceptional visibility into a project's status. It produces its

rapid-development benefit by virtually eliminating the risk of uncontrolled, undetec-

ted schedule slippage. It can be used on business, shrink-wrap, and systems soft-

ware projects, and it can be used throughout the development cycle. Keys to m

success include overcoming resistance of the people whose work will be managed
A

1 1]

with the practice and staying true to the practice's "miniature” nature.

LEH Efficacy
Potential reduction from nominal schedule: Far
Improvement in progress visibility: Very Good
Effect on schedule risk: Decreased Risk
Chance of first-time success: Good
Chance of long-term success: Excellent

w24l Major Risks
None

&1 Major Interactions and Trade-Offs
» Especially well-suited to project recovery

e Espedally effective when combined with the Daily Build and Smoke Test
practice

* Works well with Evolutionary Prototyping, User-Interface Prototyping,
Requirements Specification, and other hard-to-manage project activities

» Trades increase in project-tracking effort for much greater status visibility
and control

VRANAT e e e s bl AT Tl T IARRA P TV N TR AR Y - = “lywe:s T ns e = = a - b teis D

481

Chapter 27: Miniature Milestones

' CLASSIC MISTAKE

Imagine that you're a pioneer heading from the east coast to the west. Your
journey is much too long to be completed in a single day, so you define a
set of points that will mark the significant milestones on your journey. It's a
2500 mile journey, so you mark five milestones, each about 500 miles apart.

Major milestones 500 miles apart are great for setting long-term direction, but
they are lousy for figuring out where to go each day—especially when you're
traveling only, say, 25 miles per day. For that, you need finer-grain control.
If you know that your big milestone is 500 miles away, north-by-northwest,
you can take a compass reading, find a closer landmark that's roughly north-
by-northwest, and then strike out toward that. Once you reach that closer
landmark, you take another compass reading, find another landmark, and
strike out again.

The close landmarks that you pick—the tree, rock formation, river, or hill-
top—serve as your miniature milestones. Reaching the miniature milestones
provides you with a steady sense of accomplishment. Since you pick only
milestones that are between you and your next big milestone, reaching the
miniature milestone also gives you confidence that you will eventually reach
your larger objective.

Miniature Milestones' support for rapid development boils down to four
factors: improved status visibility, fine-grain control, improved motivation,
and reduced schedule risk.

Improved status visibility. One of the most common problems on software-
development projects is that neither developers, project leaders, managers,
nor customers are able to assess the project's status accurately. Say nothing
about whether they can predict when the project will be done, they don't
even know how much they've already completed!

Jim McCarthy cautions against letting a developer "go dark" (McCarthy
1995a). You believe that everything's going along OK. Why? Because every
day you ask your developers, "How's it going?" They say, "Fine." And then
one day you ask, "How's it going?" And they say, "Urn, we're going to be
about 6 months late." Wow! They slipped 6 months in 1 day! How did that
happen? It happened because they were "working in the dark"—
neither you nor they had enough light on their work to know that they had
been slipping all along.

With Miniature Milestones, you define a set of targets that you have to meet
on a near-daily basis. If you start missing milestones, your schedule isn't

How does a project
gettobe ayearlate?
Oneday at atime.

Frederick P. Brooks, Jr.

CROSS-REFERENCE

For more on developer
motivations, see Chapter 11,
“Motivation."

CROSS-REFERENCE

For more on detailed
estimation, see "Estimate at
alow level of detail"

in Section 8.3.

realistic. Since your milestones are fine-grained, you will find out early that
you have a problem. That gives you an early opportunity to recalibrate your
schedule, adjust your plan, and move on. .

Fine-grain control. In Roger's Version, John Updike describes a diet plan in
which a woman weighs herself every Monday morning. She is a small
woman, and she wants to weigh less than 100 pounds. If on Monday morning
she finds that she weighs more than 100 pounds, she eats only carrots and
celery until she again weighs less than 100 pounds. She reasons that she can't
gain more than 1 or 2 pounds in a week, and if she doesn't gain more than
I or 2 pounds, she certainly won't gain 10 or 20. With her approach, her
weight will always stay close to where she wants it to be.

The Miniature Milestone practice applies this same idea to software devel-
opment, and it's based on the idea that if your project never gets behind
schedule by more than a day or so, it is logically impossible for it to get
behind schedule by a week or a month or more.

Milestones also help to keep people on track. Without short-term milestones,
it is too easy to lose sight of the big picture. People spend time on detours
that seem interesting or productive in some vague sense but that fail to move
the project forward. With larger-grain tracking, developers get off schedule
by a few days or a week, and they stop paying attention to it.

With Miniature Milestones, everyone has to meet their targets every day or
two. If you meet most of your milestones just by working a full day—and meet
the rest by working an extra full day—you will meet the overall, big milestones
as well as the little ones. There's no opportunity for error to creep in.

Improved motivation. Achievement is the strongest motivator for software
developers, and anything that supports achievement or makes progress more
palpable will improve motivation. Miniature Milestones make progress ex-
ceptionally tangible.

Reduced schedule risk. One of the best ways to reduce schedule risk is to
break large, poorly defined tasks into smaller ones. When creating an esti-
mate, developers and managers tend to concentrate on the tasks they under-
stand best and to shrug off the tasks they understand least. The frequent
result is that a 1-week "DBMS interface" job can turn out to take an unex-
pected 6 weeks because no one ever looked at the job carefully. Miniature
Milestones address the risk by eliminating large schedule blobs entirely.

483

Chapter 27: Miniature Milestones

27.1 Using Miniature Milestones

CROSS-REFERENCE

For more on initiating

new measures in response
to a crisis, see "Timing"

in Section 162.

You can apply the Miniature Milestones practice throughout the life of a
project. You can apply it to early activities such as Requirements Specifica-
tion and Evolutionary Prototyping; in fact, it is particularly useful in focus-
ing those hard-to-direct activities.

For maximum benefit, the Miniature Milestones practice will be implemented
at the project level by the technical lead or manager, whichever is appropri-
ate. But individual contributors can implement it on a personal level even
if their leaders don't.

The amount of detail required when implementing Miniature Milestones will
give pause to whoever has responsibility for tracking those details, especially
on large projects. But large projects are the projects that most commonly spin,
out of control, and it is on those projects that this kind of detailed tracking
is especially needed.

Initiate Miniature Milestones early or in response to a crisis. Miniature Mile-
stones provide a high degree of project control. Set them up early in the
project or in response to an acknowledged crisis. If you set them up at other
times, you am the risk of seeming Draconian. As with other aspects of project
control, it's easier to overcontrol in the beginning and relax control as the
project progresses than it is the other way around. As Barry Bbehm and Rony
Ross say, "Hard-soft works better than soft-hard" (Boehm and Ross 1989).

CLASSIC MISTAKE

CROSS-REFERENCE
Foranotherexample of
this, see "Track schedule
progress meticulously"

in Section 16.2.

27.1 Using Miniature Milestones

Have developers create their own mini milestones. Some developers will
view Miniature Milestones as micro-management, and, actually, they'll be
right. It is micro-management. More specifically, it's micro project-tracking.
However, not all micro-management is bad. The micro-management that
developers resist is micro-management of the details of how they do their
jobs.

If you let people define their own miniature milestones, you allow them to
control the details of their jobs. All you're asking is that they tell you what
the details are, which improves buy-in and avoids seeming like micro-man-
agement. Some people don't understand the details of their jobs, and those
people will feel threatened by this practice. If you handle their objections
diplomatically, learning to work to a miniature-milestone schedule will serve
as an educational experience for them.

Keep milestones miniature. Make mini milestones that are achievable in 1
or 2 days. There's nothing magical about this size limit, but it's important that
anyone who misses a milestone can catch up quickly. If people have done
generally good jobs of estimating their work, they should be able to catch
up on any particular missed milestone by working overtime for 1 or 2 days.

Another reason to keep milestones small is to reduce the number of places
that unforeseen work can hide. Developers tend to view a week or week-
end as an infinite amount of time—they can accomplish anything. They don't
think about exactly what's involved in creating the "data conversion mod-
ule," and that's .why the job takes 2 weeks instead of the estimated one
weekend. But most developers won't commit to tackling a problem in 1 or
2 days unless they understand what it involves.

To be sure you're basing your schedule on meaningful estimates, insist on
further decomposing tasks that are above the "infinite amount of time" thresh-
old for your environment.

Make milestones binary. Define milestones so that they are either done or
not. The only two statuses are "done" and "not done." Percentages are not
used. As soon as people are allowed to report that they are "90 percent
done," the milestones lose their ability to contribute to a clear view of project
progress.

Some people can't resist the temptation to fudge their status reporting with
Miniature Milestones. "Are you done?" you ask. "Sure!" they say. "Are you
100 percent done?" you ask. "Well, uh, I'm 99 percent done!" they say. "What
do you mean, '99 percent done?" you ask. And they say, "Uh, I mean that I
still need to compile and test and debug the module, but I've got it written!"

Be fanatic about interpreting milestones strictly.

485

Chapter 28: Outsourcing

* Do at least as good a job of specifying requirements as you would do
for an in-house project (unless requirements specification is one of the
vendor's strengths).

* Be sure that Outsourcing of the rapid-development project is in your
organization's long-term best interest.

Further Reading

Marciniak, JohnlJ., and DonaldJ. Reifer. SoftwareAcquisition Management.

New York: John Wiley & Sons, 1990. Marciniak and Reifer fully explore
the considerations on both the buying and selling sides of outsourced
software relationships. The book has a strong engineering bent, and
it discusses how to put work out for bid, write contracts, and manage
outsourced projects from start to completion.

Humphrey, W. S., and W. L. Sweet. A Method for Assessing the Software En-

gineering Capabilityof Contractors.SEI TechnicalReport CMU/SEI-87-
TR-23, Pittsburgh: Software Engineering Institute, 1987. This report
contains more than 100 detailed questions that you can use to assess
a vendor's software-development capability. The questions are divided
into categories of organizational structure; resources, personnel, and
training; technology management; documented standards and proce-
dures; process metrics; data management and analysis; process control;
and tools and technology. Vendor evaluation has been a major empha-
sis of work at the Software Engineering Institute, and this report also
describes an overarching framework that you can use to evaluate the
vendor's general development capabilities.

Humphrey, Watts S. Managing the Software Process. Reading, Mass.: Addison-

Wesley, 1989- Chapter 19 is devoted to contracting for software. It
contains insightful guidelines for establishing a relationship with a
vendor, developing a set of requirements, tracking progress, monitor-
ing quality, and managing vendors at different competency levels.

Dedene, Guido, and Jean-Pierre De Vreese. "Realities of Off-Shore Reengineer-

ing," IEEE Software, January 1995, 35-45. This is an interesting case
study in outsourcing two software projects overseas.

29

Principled Negotiation

ENEEFENSE S IEESTSSIUE P TIRS

Principled Negatiation is a negatiating strategy that relies on improving communi- m
cations and the creation of win-win options rather than on negotiating tricks. It can

be used during requirements analysis, schedule creation, feature-change discus- :
sions, and at other times throughout a project. It produces its rapid-development

benefit by clarifying expectations and identifying exactly what is needed to set the mﬂ
project up for success. Effective use of Principled Negotiation depends on sepa- m
rating people from the problem; focusing on interests, not positions; inventing op- |

tions for mutual gain; and insisting on the use of objective criteria. It can be used]

ki f project. .
on any kind of project 5:5 |
Efficacy i:q'\":f g8
Potential reduction from nominal schedule: None
Improvement in progress visibility: Very Good
Effect on schedule risk: Decreased Risk
Chance offirst-time success: Very Good
Chance of long-term success: Excellent
Major Risks
None

Major Interactions and Trade-Offs
None

For more on principled negotiation, see Section 9.2, 'Beating Schedule
Pressure.”

503

30

Productivity
Environments

B JFEUNSHCII I et vetudia

Software development is a highly intellectual activity that requires long periods of gm
uninterrupted concentration. Productivity Environments provide developers with the
freedom from noise and interruptions they need in order to work effectively. The use L‘m
of Productivity Environments can benefit any kind of project—business, shrink-
wrap, or systems. In addition to productivity improvements, some organizations m
have experienced improvements in developer morale and retention rates after E:m

establishing Productivity Environments. ,
4 .iﬁm
o

Efficacy Wf ! H

Potential reduction from nominal schedue: Good

T332
Improvement in progress visibility: None i"ﬁ{iﬁ
Effect on schedule risk: No Effect

Chance of first-time success: Good

Chance of long-term success: Very Good

Major Risks

e Lost productivity from status-oriented office improvements
e Transition downtime
* Political repercussions of preferential treatment for software professionals

Major interactions and Trade-Off s
* Trades small increase in cost for large increase in productivity

505

Chapter30: Productivity Environments

CLASSIC MISTAKE

CROSS-REFERENCE
For more on hygiene needs,
see "Hygiene Factors'

in Section 11.4.

If you were in the oil business, before you could make a single dollar you
would need to locate a source of oil, drill a hole in the ground, pump the
oil out of the ground, refine the oil, pump it into ships or trucks or barrels,
and sell it. Part of the profitability of your business would be determined by
how efficiently you could pump the oil out of the ground. If your pumping
technique left 50 percent of the oil underground, you would be leaving 50
percent of your potential revenues underground, too.

You can't pump software out of a hole in the ground. Our nation's software
reserves are located predominately inside the brains of our nation's software
developers, and extracting that software from those brains requires every bit
as much finesse as extracting oil from an oil well.

Paradoxically, the majority of developers today work under conditions that
almost seem designed to prevent the extraction of working software from
their brains. More than 70 percent of all software organizations have crowded
office conditions, and the average time between interruptions under those
conditions is only about 11 minutes (Jones 1994).

Unlike most management tasks, which are interrupt based and which sur-
vive and thrive on frequent interruptions, software development tasks require
long periods of uninterrupted concentration. Because managers generally do
not need long uninterrupted periods to do their work, developers' requests
for peace and quiet can seem like requests for preferential treatment. But
developers are usually highly self-motivated, and what they're really asking
for is to be provided with conditions that will allow them to work efficiently.

Flow time. During the analysis and design stages, software development is
an ephemeral, conceptual activity. Like any conceptual activity, the quality
of the 'work is dependent on the worker's ability to sustain a "flow state"—
a relaxed state of total immersion in a problem that facilitates understand-
ing of it and the generation of solutions for it (DeMarco and Lister 1987).
Converting brain waves to computer software is a delicate process, and de-
velopers work best during the hours they spend in this state of effortless con-
centration. Developers require 15 minutes'or more to enter a state of flow,
which can then last many hours, until fatigue or interruption terminates it.
If developers are interrupted every 11 minutes, they will likely never enter
a flow state and will therefore be unlikely to ever reach their highest levels
of productivity.

Hygiene needs. In addition to the enhanced ability to enter a flow state, the
Productivity Environments practice addresses amajormotivational factorfor
software developers. Office space appropriate for development work is a

"hygiene" motivational factor: that is, adequate office space does not increase
motivation or productivity, but below a certain threshold inadequate office
space can seriously erode motivation and productivity.

For developers, the need for productivity environments is obvious and ba-
sic. Productivity environments are in the same motivational category as ade-
quate lighting, reliable power, and accessible bathroom facilities. An
organization that doesn't provide an environment in which developers can
work effectively is not providing the basics that developers need to be pro-
ductive, and developers tend to view such organizations as irrationally work-
ing against their own interests. Good developers tend to gravitate toward
organizations that provide work environments in which they can be produc

tive. Developers who stay in less productive environments tend to lose their
motivation and morale, and productivity suffers. (See Figure 30-1.)

Tl

e '

(st 13 voum Ai

li;glmm-«m, ;
’ =x

(
2 i\t%_ |

oC3

_ - - =
 emoms o) | Fos e el e s || ?‘}
ARes LT 00 g naTSE T3 TAEYERTEILY || 2oeseize cvcmr vewre f (o bes
(T8 RTINS r .. STEP STEP — 4

\ je=— S |

‘ 2 2 'g,_a & (BN O

.IL Y 1 J 3 ::1'_ _7:14 h;?k_ '.f;‘r.l\L I

Figure 30-1. DJLBERT reprinted by permission of United Feature Syndicate. Inc.

Developers, team leads, and lower-level managers don't usually have the
latitude to move a team to more productive offices. Bui if your project is
under schedule pressure and your management is serious about productiv-
ity improvements, you might try negotiating for quieter, more private office
space in return for promises of higher productivity.

507

Chapter 31: Rapid-Development Languages (RDLS)

31.3 Side Effects of RDLs

31.4

Specific RDLs can have influences on quality, usability, functionality, and
other product characteristics, and you should consider those factors when
you evaluate specific RDL products.

RDLs' Interactions with Other Practices

Nearly all of the general guidelines for using productivity tools (Chapter 15}
apply to RDLs.

RDLs provide schedule-reduction leverage because of their ability to reduce
construction time. Because they reduce construction time so much, they also
make new kinds of lifecycle models possible. If switching from a 3GL to an
RDL cuts detailed design and coding effort by 75 percent (which is a good
rule of thumb), that will significantly reduce the amount of time between
iterations in an iterative lifecycle model. An iteration that takes 2 months in
C might be cut to as little as 2 weeks in Visual Basic. The difference in those
two time periods is the difference between customers or end-users seeing
you as responsive and unresponsive. To derive maximum benefit from an
RDL, employ it within an incremental, iterative lifecycle model (Chapter 7).

If you're working on shrink-wrap, real-time, or other software that is not well-
suited to implementation in an RDL, you can still use RDLs for User-Inter-
face Prototyping (Chapter 42) and Throwaway Prototyping (Chapter 38). One
of the goals of prototyping is to use the minimum effort possible, and RDLs

can contribute to that goal.

31.5 The Bottom Lineon RDLs

i |

HABD DATA

As suggested by Tables 31-1 and 31-2, the bottom line on RDLs is that the
specific savings you can expect depends both on the specific language you're
using now and on the specific RDL you switch to. It also depends on whether
the kind of program you need to build is the kind the RDL is good at build-
ing. If you're currently using a 3GL, you can probably expect to cut construc-
tion effort by about 75 percent when you switch to an RDL. That amount will
continue to improve as new and improved languages become available—
but it probably won't improve as quickly as tool vendors will want you to
believe! :

31,6 Keys to Success in Using RDLs

If you can't switch completely to an RDL, you might still be able to imple-
ment some of your projectin an RDL. The 75 percent rule of thumb applies:
you can expect to cut your design and construction effort by about 75 per-
cent for the part of the code you implement in the RDL (Klepper and Bock
1995).

As project size increases, the savings you realize from switching to an RDL
decreases. RDLs yield their savings by shortening the construction part of a
project. On small projects, construction activities can make up as much as
FURTHER READING 8() percent of the project's total effort. On larger projects, however, detailed

For more on the effects of desi di d deb . hrink ¢ thine like 25 t of th
oroject size on project esign, coding, and debugging s o something like 25 percent of the
activities, see Chapter21, total effort, and the savings from streamlining those activities will shrink ac-

"Project Size,"in Code cordingly (McCohnell 1993).
Complete (McDonnell 1993).

31.6 Keys to Success in Using RDLs

Here are the keys to success in using RDLs:

e All other things being equal, for maximum development speed use the
language with the highest language level in Table 31-2 (keeping in
mind the limitations of that table's data).

e Select specific RDLs using the selection criteria listed in Section 15.3,
"Productivity-Tool Acquisition."

* Put specific RDLs into use using the guidelines described in Section
15.4, "Productivity-Tool Use."

* Estimate the savings you expect to realize from RDL usage conserva-
tively. Consider your project's size and the part of the lifecycle you
expect to compress by using the RDL. On all but the smallest and
simplest projects, schedule in time for working around the limitations
of the RDL.

* Be careful about using RDLs on large projects. Bear in mind that as
project size increases, the limitations of RDLs become more severe
and the savings potential decreases.

* Err on the side of overdesign and overly careful coding standards
when using an RDL.

®* When you switch to an RDL, look for opportunities to use new
lifecycle models that allow you to be increasingly responsive to
your customers.

523

Chapter 31: Rapid-Development Languages (RDLs)

Further Reading

Jones, Capers. "Software Productivity Research Programming Languages
Table," 7th Edition, March 1995, Burlington, Mass.: Software Produc-
tivity Research, 1995. This table provides language levels and statements
per function point for several hundred languages. You can access the
full table on the Internet at http://www.spr.com/library/langtbl.htm.

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press, 1993.
Much of the book describes how to work around programming-
language limitations, advice which applies to RDLs as well as any other
language. Chapter 21 describes the effect that program size has on
project activities and therefore on the potential that an RDL has to re-
duce overall development time.

32

Requirements
Scrubbing

Requirements Scrubbing is a practice in which a product specification is carefully §
examined for unnecessary or overly complex requirements, which are then re- -
moved. Since product size is the largest contributor to a project's cost and dura-
tion, reducing the size of the product produces a commensurately less expensive
projectand shorter schedule. Requirements Scrubbing can be used on virtually any

project.

Efficacy

Potential reduction from nominal schedule: Very Good
Improvementin progress visibility: None

Effect on schedule risk: Decreased Risk
Chance of first-time success: Very Good
Chance of long-term success: Excellent
Major Risks

e Elimination of requirements that are later reinstated

Major Interactions and Trade-Offs
None

For more on requirements scrubbing, see "Requirements Scrubbing" in
Section 14.1.

33

Reuse

Reuse is a long-term strategy in which an organization builds a library of frequently F=¥5
used components, allowing new programs to be assembled quickly from existing * .
components. When backed by long-term management commitment, Reuse can
produce greater schedule and effort savings than any other rapid-development
practice. What's more, it can be used by virtually any kind of organization for any
kind of software. Reuse can also be implemented opportunistically, as a short-term |
practice, by salvaging code for a new program from existing programs. The short-
term approach can also produce significant schedule and effort savings, but the
savings potential is far less dramatic than with Planned Reuse.

Efficacy

Potential reduction from nominal schedule: Excellent
Improvementin progress visibility: None

Effect on schedule risk: Decreased Risk
Chance of first-time success: Poor

Chance of long-term success: Very Good
Major Risks

» Wasted effort if the components that are prepared for reuse are not selected
carefully

Major Interactions and Trade-Offs
* Reuse needs to be coordinated with productivity-tool use.

e Planned Reuse must be built on a foundation of software-development
fundamentals.

Chapter34: Signing Up

34.1

CROSS-REFERENCE

For details on motivation and
teamwork, see Chapter 11,
"Motivation," and Chapter 12,
"Teamwork." For details on
creating visions, see "Goa
Setting" in Section 11.2 and
"Shared, Elevating Vision or
Goal" in Section 12.3.

With the Signing Up practice, a manager or team leader asks potential team
members to make an unconditional commitment to seeing that a project
succeeds. The team is then allowed to complete the project in its own way.
Signing Up derives its rapid-development benefit from its tremendous mo-
tivational ability. Developers who sign up make a voluntary, personal com-
mitment to the project, and they often go to extraordinary lengths to make
the project succeed. Teams that have signed up work at such a hectic pace
that they are bound to make some mistakes, but the sheer amount of effort
they put in can swamp the effects of those mistakes.

Using Signing Up

Kerr and Hunter point out that the Antarctic explorer Shackleton found his
crew by advertising for men to perform hard work under dangerous condi-
tions for low pay, with the possibility of tremendous glory if successful (Ken
and Hunter 1994). That, in a nutshell, is how you use signing up. You offer
developers little reward except those intrinsic in the work itself: the chance
to work on something important, to stretch their capabilities, to surmount
a seemingly impossible goal, and to achieve something that no one in the
organization has achieved before.

In The Soul ofa New Machine, Tracy Kidder describes a signed-up team in
which the main benefit of signing up is something called "pinball" (Kidder
1981). In pinball, the only benefit of winning the game is that you get to play
again. If you sign up for a development project and succeed, you get to sign
up again, on the next exciting project. That's the reward, and that's all the
reward that many developers need.

Some people don't like playing pinball, and some people don't like signing
up. To them, it seems like an exercise in illogic and masochism. To some,
it seems like management manipulation. But to others, it represents a long-
awaited opportunity. IBM found that it had no problem getting people to sign
up. They found that people wanted to commit to producing extraordinary
results at work; all that was missing was the opportunity (Scherr 1989).

Frame a challenge and a vision. The keys to success with Signing Up are
similar to the keys to success in motivation in general and in building high-
performance teams. At the top of all the lists is providing a clear vision of
what the project is supposed to accomplish. To get people to sign up, the
vision needs to be of an extraordinary accomplishment. Merely complet-
ing a project is not good enough. Here are some examples of extraordinary
ViS10ns:

* Be the first group of explorers to reach the south pole

34.1 Using Signing Up

® Be the first country to put an astronaut on the moon

® Design and build a totally new computer without the company's
support

* Design the best computer operating system in the world

* Be the first team in the organization to develop a complete shrink-
wrap software product in less than a year

* Create a DBMS package that places number one in its first InfoWorld
comparative test and beats all its competitors by at least 0,5 points

* Decisively leapfrog the competition in the same software category

Give peopleachoice about signing up. The Signing Up practice doesn't work
if people don't have a choice about whether they sign up. You have to ac-
cept the possibility that some of the people you'd like to have on your team
won't make the extraordinary commitment that Signing Up requires. The fact
that some qualified people don't make the team works partly in your favor.
The team members who do sign up can see that some people don't have what
it takes lo be on it, and that helps to foster their sense of team identity.

If you've already put the team together, you can't use Signing Up unless
you're prepared to kick people off the team who won't sign up midway
through the project. Signing Up needs to be implemented at the beginning
of the project or in response to a crisis. It's not a practice you can initiate
midstream.

Once developers have made their choice, however, the commitment must
be unequivocal. They must commit to make the project succeed no matter
what.

Sign up at the team level. The Signing Up practice seems to work best on
teams that are small enough to have a team identity. It's hard for someone
to sign up with a large organization. Some companies have used this prac-
tice successfully on large projects by creating small teams within the large
projects and having people sign up for those.

People need to identify with a group that's small enough so that they know
their contribution matters. When people are signed up. each and every one
of them will feel personally responsible for completing the product. When
the product is done, each person will feel that he or she was the key per-
son that the project could not have survived without. And each of those
people will be right. .

Because Signing Up is bestdone at the team level, it doesn't have to be ini-
tiated by management. It can be initiated by the team lead oreven by a de
facto leader—someone who happens to be exceptionally self-motivated and
wants to Dull the rest of the team along.

Chapter 34: Signing Up

Followthroughbyempoweringtheteam. Signing Up won't work unless you
let the team run with the ball. Point the direction, but don't specify how to
get to the end.

Don't use Signing Up on a project with shaky requirements. Your highly
motivated team needs to be able to charge full-steam ahead, not full-steam
right, then full-steam left, then full-steam backwards. The only exception to
this rule is when the team itself is responsible for defining requirements. Then
sometimes they can tolerate numerous changes in direction without losing
motivation.

Signing Up in Different Environments

You can use Signing Up on virtually any kind of project—business, shrink-
wrap, systems, and so on. Signing Up always requires an "extraordinary
commitment," but the exact nature of that extraordinary commitment means
different things in different environments.

In the world of RAD, James Kerr wrote about a dedicated RAD team that
signed up, which meant that they were willing to sweep aside their normal
mix of responsibilities and work a hard, focused 8 hours a day on one project
(Kerr and Hunter 1994). Kerr reports that this team sometimes had to work
at home in the evenings or for a few hours on the weekend. The high point
of this project for Kerr was the night that the team of four people stayed late
to implement a set of help screens. Kerr talks at length about what a gruel-
ing day it was. The team worked a full day, took a half-hour break for pizza
and beer, and kept going almost until midnight. Kerr describes this as a
"breakneck schedule."

In contrast, on the Microsoft Windows NT project, signing up meant fore-
going everything to be able to work on the project: evenings, weekends,
holidays, normal sleeping hours, you name it (Zachary 1994). When they
weren't sleeping, they were working. Developers sacrificed hobbies, health,
and families to work on the project. One team member answered email from
the hospital while his wife was in labor. The NT development team wore e
beepers so that they could be called at 3:00 in the morning if their code had
broken the build. People kept cots in their offices, and many would go sev-
eral days without going home. Tracy Kidder describes a similar level of com-
mitment in TheSoul of a New Machine (Kidder 1981).

Some organizations, like Microsoft, don't mind if the signing-up commitment
results in a lot of overtime.' Other organizations, like IBM, have found that
part of the commitment can be not to work any overtime (Scherr 1989/-
They've found that placing a set of severe, seemingly impossible constraints
.on a project forces the team to consider and implement radically productive
solutions that' they would normally not even consider.

34.2

| think of that statistic
that the best program-
mers are 25 times as
productiveas the
sworst programmers,
and it seems that | am
both of those guys.

Al Corwin

CLASSIC MISTAKE

CROSS-REFERENCE

All the problems discussed
here are characteristic of this
kind of scheduling. For detalls,
see "Commitment-Based
Scheduing” in Section B.5.

34.2 Managing the Risks of Signing Up

The level of commitment will vary with the degree of the challenge. The
Windows NT team was faced with the challenge of developing the best
operating system in the world, Kerr's RAD team was faced with the relatively
mundane challenge of developing a business system for in-house use. Not
surprisingly, one team was willing to sacrifice much more than the other.

Managing the Risks of Signing Up

The Signing Up practice is a double-edged sword. It offers tremendous
motivational potential, but it also offers as many hazards as any other prac-
tice described in this book.

Increased inefficiency. Teams that are signed up have a tendency to work
hard rather than to work smart. Although it's theoretically possible to work
hard and work smart, most people seem to be able to do one or the other,
but not both. A focus on working hard almost guarantees that they'll make
mistakes that they'll live to regret, mistakes that will take more project time
rather than less. Some experts have even argued that people who work more
than 40 hours per week don't get any more done than people who work
about 40 hours (Metzger 1981, Mills in Metzger 1981, DeMarco and Lister
1987, Brady and DeMarco 1994, Maguire 1994).

If you're working on a project in which people are signed up, watch for an
increase in the number of time-consuming mistakes and other signs that
people are not working as smart as they should.

Decreased status visibility. People who sign up make a personal commit-
ment to deliver a product in the shortest possible time. In some cases, that
can-do mentality makes it hard to assess the real status of the project.

Monday: "Will you be done by Friday?" -'You bet!"

Wednesday: "Will you be done by Friday?" "You bet!"

Friday: "Are you done?" "Um, no, but I will be really soon, I'll be
done by Monday."

Monday: "Are you done?" "Um. no. I should be done in afew hours."

Friday: "Are you done?" "/'in getting really close. J'Il be done any
time now."

Monday: "Are you done?" "No. I ran into some setbacks, butI'm on

lop ofthem, 1 should he done by Friday."

Multiply this phenomenon across an entire project and you have a project
whose status is virtually impossible to determine. Some organizations are
willing to trade this kind of loss of management visibility for higher morale,
and some aren't. Be aware of the trade-off your project is making.

543

Chapter 34: Signing Up

CLASSICMISTAKE

P
-epl

CLASSIC MISTAKE

34.3

‘\.
.

34.4

Loss of control. The signed-up team takes on a life of its own, and the life
it takes on is sometimes not the life that the company wants it to have. The
team (and the product) might be headed in a different direction than man-
agement wants them to go. Forcing the team to change direction can give
the team the impression that they aren't as empowered as they thought they
were, and that can be fatal to morale.

Addressing this risk requires that you make a judgment about the trade-off
between morale and efficiency as well as between morale and control. Are
you getting enough of a morale boost from having a signed-up team to jus-
tify letting them go their own direction?

Smaller available talent pool for the project. Enthusiasm can work wonders,
but it has its limits too. Some older, more-experienced developers who have
signed up before simply won't sign up for Windows NT-like projects. The
result can be an averaging down of the experience level on a project in which
Signing Up is used. Such projects can be characterized more by their excep-
tional energy levels than by their exceptional results.

Burnout. Even when developers work overtime voluntarily, long hours can
take a heavy toll. The anecdotal reports of developers who sign up for
projects and work lots of overtime also include lengthy lists of developers
who leave their companies at the ends of their projects (Kidder 1981; Zach-
ary 1994).

Side Effects of Signing Up

Signing Up does not have any consistent, predictable effect on a product's
characteristics. Side effects arise from the fact that the development team will
have more control over the character of the product than it might otherwise,
and that can mean that the product's quality, usability, functionality, or other
attributes turn out better, worse, or simply different than you expect.

Signing Up's Interactions wit Other Practices

Signing Up has a close relationship with teamwork (Chapter 12). People sign
up for a .team, and it's hard to have a team in which half the people are
signed up and half are not. Usually, if the Signing Up practice is going to
work, everyone on the team needs to be signed up.

You can expect teams that are signed up to work, some Voluntary Overtime
(Chapter 43). In exchange, the team will expect the organization to support

34.5

34.6

Further Reading

their efforts, at least in the form of providing them with a productive work
environment (Chapter 30). The team might also resist more active, hands-on
management practices such as Miniature Milestones (Chapter 27). You'll
probably have to use commitment-based scheduling ("Commitment-Based
Scheduling" in Section 8.5) and accept all of the trade-offs it involves.

The Bottom Line on Signing Up

The bottom line with Signing Up is that the degree of commitment you elicit
will vary depending on the excitement that you're able to generate about the
project. When you have an extraordinary project, you can see extraordinary
commitment, extraordinary morale, and extraordinary productivity. On more
mundane projects, you can expect less.

Keys to Success in Using Signing Up

Here are the keys to success in using Signing Up:

* Create a compelling vision for the project so that team members will
have something that's worth signing up for.

* Make Signing Up voluntary.

* Empower the team so that it can succeed at the challenge it has been
motivated to respond to.

* Be prepared to address or accept the inefficiencies that result from
people working hard rather than smart.

Further Reading

Kidder, Tracy. The Soul ofa New Machine. Boston: Atlantic Monthly-'Little
Brown, 1981. This book describes how computer hardware develop-
ers signed up to work on Data General's Eagle computer. It lays out
ithe signing-up process in detail and illustrates the motivational benefit
of the process—Eagle's developers worked practically 24 hours a day
throughout the project. Itis also an objectlesson in the risks associated
with signing.up: much of the development learn quit the company
when the project was finished.

545

Chapter 36: Staged Delivery

CROSS-REFERENCE

For more on refining estimates
based on experience, see
"Recalibration” in Section 8.7.

CROSS-REFERENCE

For more on frequent
integration, see Chapter 18,
"Daily Build and Smoke Test."

36.1

version 2¢ and defer release to version 2d. But if you don't use Staged De-
livery, you won't have the option.

Reduces estimation error. Staged Delivery sidesteps the problem of bad
estimates by delivering early and often. Instead of making one large estimate
for the whole project, you can make several smaller estimates for several
smaller releases. With each release, you can learn from the mistakes in your
estimates, recalibrate your approach, and improve the accuracy of future
estimates.

Integration problemsminimized. A common risk to software projects is dif-
ficulty in integrating components that were developed separately. The like-
lihood of serious integration problems is related to the time between
successive integration attempts. If the time between attempts is long, the
chance of problems is large. When you deliver software early and often, as
you do with Staged Delivery, you must also perform integration early and
often. That minimizes potential integration problems.

Using Staged Delivery

In Staged Delivery, you start with a clear idea of the product you will ulti-
mately deliver. Staged Delivery is a late-in-the-project development practice.
If you're following a traditional waterfall lifecycle model, you don't need to
start planning for it until after you've completed requirements analysis and
architectural design.

Once you've completed architectural design, to use Staged Delivery you plan,
a series of deliveries. As Figure 36-1 on page 550 suggests, within each stage
you do a complete detailed design, construction, and test cycle, and at the
end of each stage you deliver a working product. For example, if you were
developing a word processing program, you might create the following de-
livery plan:

Table 36-1. Example of a Staged-Delivery Schedule for a Word Processor

Stage 1 Text editor is available, including editing, saving, and printing.
Stage 2 Character and basic paragraph formatting is available.

Stage 3 Advanced formatting is available, including WYSWYG page layout
and on-screen formatting tools.

Stage 4 Utilities are available, including spell checking, thesaurus, grammar
checking, hyphenation, and mail merge.

Stage 5 Full integration with other products is complete.

36.1 Using Staged Delivery

The first delivery should be the germ of the product you will ultimately
deliver. Subsequent releases add more capabilities in a carefully planned way.
You deliver the final product in the last stage.

Planning for the first release is unique in that it needs to include some glo-
bal architectural thinking, which raises questions such as: "Is the software ar-
chitecture open enough to support modifications, including many that we
haven't fully anticipated?" It's also a good idea to plot a general direction for
the software at the beginning of the project—although, depending on
whether you intend to use a pure Staged Delivery approach or an Evolution-
ary Delivery approach, that general direction might just be a best guess that
you'll override later.

You don't have to deliver each release to a customer to use the Staged De-
livery practice, and you can implement it on a technical-lead level. In the case
of the word processor, you might not even release a version to your customer
until delivery 3 or 4 or even 5, But you could use Staged Delivery as an aid
to track progress, coordinate drops to quality assurance, or reduce the risk
of integration problems.

For the approach to work well, each stage should include size, performance,
and quality targets in addition to functionality targets. Too much hidden work
accumulates as you go along if you don't deliver a truly releasable product
at the end of each stage.

As a general goal, try to deliver the software's capabilities from most impor-
tant to least important. Defining the deliveries in this way forces people to
prioritize and helps to eliminate gold-plating. If you do a good job of this,
by the time you've delivered 80 percent of the product your customer will
be wondering what could possibly be left in that last 20 percent.

Technical Dependencies

In a single large release, the order of component delivery doesn't matter
much. Multiple small releases of a product require more planning than a
single large release does, and you have to be sure (hat you haven't over-
looked any technical dependencies in your planning. If you plan to imple-
ment autosave in delivery 3, you'd better be sure ihat manual save isn't
planned for delivery 4. Be sure that the development team reviews the de-
livery plan with an eye toward technical dependencies beiore you promise
specific features at specific times to your customers.

Developer Focus

Staged Delivery requires that each developer meet ihe deadline for each
stage. If one developer misses a deadline, the whole release ran slide, some

553

Chapter 36: Staged Delivery

CROSS-REFERENCE

For details of another kind of
theme, see "Shared,
Elevating Vision or Goal'

in Section 12.3.

CROSS-REFERENCE

You can use the Miniature
Milestones practice to track
progress during each stage.
For details, see Chapter 27,
"Miniature Milestones."

developers are used to working solo, performing their assignments in what-
ever order they choose. Some developers might resent the restrictions that
a Staged Delivery plan imposes. If you allow developers the amount of free-
dom they are used to, you'll miss your delivery dates and lose much of the
value of staged deliveries.

With Staged Delivery, developers can't follow their noses as much as they're
used to doing. You need to be sure that the developers have bought into the
delivery plan and agreed to work to it. The best way to ensure developer
buy-in is to involve developers intimately in the creation of the plan. If the
delivery plan is their delivery plan—and if there was no heavy hand influ-
encing their work—you won't have to worry about getting their buy-in.

Theme Releases

A good way to define the stages is to use themes for each incremental re-
lease (Whitaker 1994). Defining releases can give rise to feature-by-feature
negotiations that can take, up a lot of time. The use of themes raises those
negotiations to a higher level.

In the delivery schedule mapped out in Table 36-1 on page 552, the themes
are text editing, basic formatting, advanced formatting, utilities, and integra-
tion. These themes make it easier to decide into which release to put a par-
ticular capability. Even if the feature straddles a gray area—you could classify
automatic list numbering as either advanced formatting or a utility, for ex-
ample—your job will be easier because you only have to decide which of
the two themes is most appropriate. You don't have to consider every feature
for every release.

When you use themes, you probably won't be able to deliver features in
exact priority order. Instead, plan to prioritize the themes in order of impor-
tance, and then deliver the themes in priority order.

The use of themes, shouldn't be taken as an invitation to abbreviate release
planning. Map out exactly which features you plan to have in each release.
If you don't, you won't know exactly what to expect at each delivery stage,
and you'll lose much of the project-tracking benefit of this lifecycle model.

Kinds Of Projects

Staged Delivery works best for well-understood systems. If you're not sure
what features your product -should have, then the Staged Delivery practice
isn't a good choice. You have to understand the product well enough to plan
the stages by the time you're done with architectural design.

Staged Delivery works especially well when your customers are eager to
begin using a relatively small portion of the product's functionality. You can

36.2

CROSS-REFERENCE
Fora variation of Staged
Delivery that works better
when requirements aren't
stable, see Chapter 20,
"Evolutionary Delivery."

36.2 Managing the Risks of Staged Delivery

provide a valuable sen-ice to your customers if you can provide the 20 per-
cent-of the product they most need in a fraction of the development time
needed for the complete product.

Staged Delivery is also an appropriate practice for very large projects. Plan-
ning a series of four 9-month projects is considerably less risky than plan-
ning a single 3-year project. You would probably have stages within stages
for a project of that size; even a 9-month project is too large to provide good
progress visibility- to your customer, and you should break it up into several
incremental releases.

Staged Delivery works well only for systems in which you can develop useful
subsets of the product independently. Most end-user products can be defined
in such a way that you can make meaningful intermediate deliveries before
you deliver the final product. But operating systems, some kinds of embed-
ded systems, and some other kinds of products might not be usable with-
out complete or nearly complete functionality-; for those kinds of systems.
Staged Delivery is not appropriate. So if you can't figure out how to break
the delivery of your product up into stages, Staged Delivery is not the right
approach for you.

Managing the Risks of Staged Delivery

The preceding discussion might give you the idea that Staged Delivery works
almost every time, but keep this limitation in mind.

Feature creep. The main risk associated with Staged Delivery is the risk of
feature creep. When customers begin to use the first release of your prod-
uct, they are likely to want to change what has been planned for the other
releases.

The best way to manage this risk is not to use Staged Delivery if you're
uncertain what features need to be developed. Pure Staged Delivery does
not provide much flexibility to respond to customer requests. Staged Deliv-
ery works best when you have a broad and deep consensus about what
should be in the product.

If you decide to use Staged Delivery, you can still build time into y our sched-
ule to accommodate unknown features. You might define the last stage as
the stage for making late-breaking changes. By allocating that time, you make
it clear to your customers that you intend to be flexible, but you also make

it clear that you expect to limit the number of unknown features that you
implement. Of course, when you get to the last stage you can renegotiate
the schedule if your customers want more features than you have tune for.
By then your customers will have working software in their hands, and they

555

Chapter 36: Staged Delivery

36.3

might well find that their initial schedule goal is no longer as important as
it once seemed.

In addition to these practices specific to Staged Delivery, you can use any
of the general means of managing feature creep. Those are described in
Chapter 14, "Feature-Set Control."

Side Effects of Staged Delivery

In addition to its positive effect on project scheduling, Staged Delivery can
benefit several other project characteristics.

More even distribution of development and testing resources. Projects using
Staged Delivery consist of several minicycles of planning, requirements analy-
sis, design, code, and test. Design isn't bunched up at the beginning, pro-
gramming isn't bunched up in the middle, and testing isn't bunched up at
the end. You can distribute analysis, programming, and testing resources
more uniformly than you can with approaches that are closer to the pure
waterfall model.

Improved code quality. In traditional approaches, you know that "someone"
will have to read your code and maintain it. That provides an abstract
motivation to write good code. With Staged Delivery, you know that you
will need to read and modify the code many times. That provides a concrete
motivation to write good code, which is a more compelling incentive (Basili
and Turner 1975).

More likely project completion. A staged-delivery project won't be aban-
doned as easily as a waterfall-model project. If the project runs into fund-
ing trouble, it's less likely to be canceled if the system is 50 percent complete,
50 percent operational, and in the users' hands than if it's 90 percent com-
plete, doesn't work at all, and has never been touched by anyone outside
the development team.

Support for build-to-budget. The premise of Staged Delivery is that you
deliver something useful as early as possible. The project will be partially
complete even if your customers run out of money. At the end of each stage
you and your customers can examine the budget and determine whether
they can .afford the next stage. Thus, even if the well runs dry, the product
still might be largely usable. In many cases, the last 1.0 or 20 percent of the
product consists of optional capabilities that aren't part of the product's core.
Even if a few frills are missing, the customers will get most of the necessary
capabilities. If funding runs out at the 90-percent mark, imagine how much
happier your customers will be with a mostly functioning product than if you

36.4

36.4 Staged Delivery's Interactions with Other Practices

had used a pure waterfall lifecycle model—and "90 percent complete" meant
"0 percent operational."

Staged Delivery's Interactions
with Other Practices

Although there are a few similarities, Staged Delivery is not a form of
prototyping. Prototyping is exploratory, and Staged Delivery is not. Its goal
1s to make progress visible or to put useful software into the customers' hands
more quickly. Unlike prototyping, you know the end result when you be-
gin the process.

If the Staged Delivery practice provides less flexibility than you need, you
can probably use Evolutionary Delivery (Chapter 20) or Evolutionary
Prototyping (Chapter 21) instead. If your customers get the stage 1 release
and tell you that what you're planning to deliver for stage 2 won't suit them,
you'd have to be pigheaded not to change course. If you know the general
nature of the system you're building but still have doubts about significant
aspects of it, don't use Staged Delivery.

Staged Delivery combines well with Miniature Milestones (Chapter 27), By
the time you get to each stage, you should know enough about what you're
building to map out the milestones in detail.

Success at developing a set of staged deliveries depends on designing a
family of programs ("Define Families of Programs" in Section 19.1). The more
you follow that design practice, the better able you'll be to avoid disaster if
the requirements turn out to be less stable than you thought.

*‘Why |s Staged Delivery Sa Rigid? /-

stuged Delivery doesn't always have to be as rigid as iv's descelbed in this
chapier, Sometimes it's desirable 10 mup out an entire product and deliver it
in stages, as described here. Sometimes you'll want more Hexibihly—sigidly
defining the early stages and allowing for more Aexibality in Luer stages. Some-
times vou'll want to evolve the produa throughout its development, s you
do with Evolutionary Prototyping (Chapter 21)

This chapter descnbes the most rigid version of Staged Delivery in order to
provide a clear contrast between it (at one end of the scale) and Evoiution-
ary Prototyping (at the other). For your own use, you can adapt St :;:u.l Lrg-
livery (or Evolutionary Delivery or Evolutionary Prototypmg) to the specific
needs of your project and call it anything you like

Chapter 38:Throwaway Prototyping

CROSS-REFERENCE
For more on using

prototyping time effectively,

see "Inefficient use
of prototyping time" in
Section 20.2.

CROSS-REFERENCE

For more on creating realistic

schedule and budget

expectations, see "Unrealistic

schedule and budget

expectations” in Section 20.2.

57i

38.3

As for the objection that throwing away the prototype costs too much, done
right, the reason you create a throwaway prototype is that it is cheaper to
develop a throwaway prototype, learn lessons the cheap way, and then
implement the real code with fewer mistakes than it is not to create the
throwaway prototype in the first place. If you can think of some other
method that will be more cost effective in a specific situation, use that in-
stead. Otherwise, far from creating extra costs, Throwaway Prototyping is the
most cost-effective practice available.

Inefficient use of prototyping time. As with Evolutionary Prototyping, projects
often waste time during Throwaway Prototyping and unnecessarily lengthen
the development schedule. Although prototyping is by nature an exploratory
process, that does not mean that it has to be an open-ended process.

Monitor prototyping activities carefully. Treat each throwaway prototype as
an experiment. Develop a hypothesis such as, "A disk-based merge-sort will
sort 10,000 records in less than 30 seconds." Then be sure that the proto-
typing activity stays focused on proving or disproving the hypothesis. Don't
let it stray off into related areas, and make sure that the prototyping stops
as soon as the hypothesis has been proved or disproved.

Unrealistic schedule and budget expectations. As with other kinds of
prototyping, when users, managers, or marketers see rapid progress on a
prototype, they sometimes make unrealistic assumptions about how quickly
the final product can be developed. The time required to move from a throw-
away-prototype implementation to implementation in the target language is
sometimes grossly underestimated.

The best way to combat this risk is to estimate the development of the pro-
totype and the development of the final product as separate projects.

Side Effects ofThrowawayPrototyping

In addition to its rapid-development benefits, Throwaway Prototyping pro-
duces many side effects, most of.which are beneficial. Prototyping tends to:

* Reduce project risk (since you explore risky implementation areas
early)

* Improve maintainability

* Provide resistance to creeping requirements

* Provide a good opportunity to train inexperienced programmers
since the code they write will be thrown away any way

Further Reading

384 Throwaway Prototyping's

38.5

38.6

Interactions with Other Practices

You can use prototyping in one form or another on most kinds of projects
regardless of what other practices are used. Even in projects in which you
can't use full-scale Evolutionary Prototyping (Chapter 21), you can still of-
ten use Throwaway Prototyping to explore key risk areas.

The Bottom Line on Throwaway Prototyping

The greatest schedule benefit of Throwaway Prototyping arises from its risk-
reduction potency. It might not shorten a schedule at all, but by exploring
high-risk areas early, it reduces schedule volatility. Any direct schedule ben-
efits from Throwaway Prototyping depend on what specific area of a prod-
uct is prototyped.

Steven J. Andriole has run his own requirements-modeling and prototyping
business since 1980 and is the author of Rapid Application Prototyping
(Andriole 1992). He says that the main lesson he's learned in his business
is that the Throwaway Prototyping practice, when used to clarify require-
ments, "is always cost effective and always improves specifications” (his
emphasis) (Andriole 1994).

Keys to Success
in Using Throwaway Prototyping

Here are the keys to using the Throwaway Prototyping practice successfully:
* Choose your prototyping language or environment based on how
quickly it will allow you to create rhrowaway code.

* Be sure that both management and technical staffs are committed
to throwing away the ihrowaway prototype.

* Focus prototyping efforts on areas that are poorly understood.

* Treat prototyping activities as scientific experiments, and monitor
and control them carefully.

Furher Reading

Fbr further reading on prototyping, see Chapter Jl. ''Evolutionary Protot\

573

39

—~ e T

~ \ .
/ N g
& .
\
-~

<]
_ /Lﬁ 8\\~
Timebox Development ‘a\=

Al 15
‘f(\k ;/"-Y

-

\

\
\
\

1
/

TWELITECAED

Timebox Development is a construction-time practice that helps to infuse a devel- m
opmentteam with a sense of urgency and helps to keep the project's focus on the

most important features. The Timebox Development practice produces its sched- § % S 888
ule savings through redefining the product to fit the schedule rather than redefin- g

ing the schedule to fit the project. It is most applicable to in-house business m
software, but it can be adapted for use on specific parts of custom and shrink-wrap m
projects. The success of timeboxing depends on using it only on appropriate kinds _

of projects and on management's and end-users' willingness to cut features rather m

than stretch the schedule. Ei%xé
Efficacy A
Potential reduction from nominal schedule: Excellent

Improvement in progress visibility: None

Effect on schedule risk: Decreased Risk

Chance of first-time success: Good

Chance of long-term success: Excellent

Major Risks

» Attempting to timebox unsuitable work products
e Sacrificing quality instead of features

Major interactions and Trade-Offs
* Depends on the use of Evolutionary Prototyping
* Trades feature-set control for development-time control

e Often combined with JAD, CASE tools, and Evolutionary Prototyping on
RAD projects

* Can be combined with Evolutionary Delivery when timing of deliveries
matters more than contents

TH

Chapter 39:Timebox Development

CROSS-REFERENCE
For more on trading off resources

and product attributes for

schedule gains, see Section 6.6,
*Development-Speed Trade-Offs."

¥
&
il
iz
Prel;

CLASSIC MISTAKE

It's amazing how much you can get done the day before you leave for a
vacation. You can pick up the dry cleaning, pay the bills, stop the mail and
the newspaper, buy new travel clothes, pack, buy film, and drop off a key
with the neighbors. Just as amazing are all the things that you don't do the
day before you leave. You don't seem to need to spend quite as long in the
shower that morning or as long reading the newspaper that night. You might
have many other things that you would like to do that day, but suddenly
some of those day-to-day priorities slip down a notch.

Timebox Development is a means of harnessing the same sense of urgency
that accompanies preparing for a vacation except that it usually accompa-
nies preparing to work hard instead! When you follow the Timebox Devel-
opment practice, you specify a maximum amount of time that you will spend
constructing a software system. You can develop as much as you want or
whatever kind of system you want, but you have to constrain that develop-
ment to a fixed amount of time. This sense of urgency produces several
results that support rapid development.

Itemphasizes the priority of the schedule. By making the schedule absolutely
fixed, you stress that the schedule is of utmost importance. The time limit,
or "timebox," 1s so important that it overrides all other considerations. If the
project scope conflicts with the time limit, you reduce the scope to fit the
time limit. The time limit itself is not allowed to change.

Itavoids the 90-90 problem. Many projects get to the point where they are
90 percent complete and then stay at that point for months or even years.
Many projects spend an undue amount of time in sinkholes that don't move
the project forward but that consume huge amounts of resources. You build
a small version first, and you build it quickly so that you can get on to ver-
sion 2. Rather than building a feature-rich first version, it's often more effi-
cient to get a basic version working, learn from the experience, and build a
second version after that.

It clarifies feature priorities. Projects can expend a disproportionate amount
of time quibbling about features that make little difference in a product s
utility. "Should we spend an extra 4 weeks implementing full-color print-
preview, or is black-and-white good enough?. Should the 3D sculpting on our
buttons be one pixel wide or two? Should our code editor reopen text files
in the exact location they were last used or at the top of the file?" Rather than
spending time arguing about whether to include features of "very low' pri-
ority or only "moderately low priority," tight time constraints focus attention
on the top end of the priority list.

CROSS-REFERENCE
Fordetailsonthe waythat
gold-plating can occur
unintentionally, see "Unclear
or Impossible Goals"

in Section 14.2.

HARD DATA,

CROSS-REFERENCE
For more on motivation, see
Chapter 11, "Motivation."

39.1

CROSS-REFERENCE

For details on this kind ot
prototyping, see Chapter 21,
"Evolutionary Prototyping."

39.1 Using Timebox Development

It limits developer gold-plating. Within the bounds of what was specified,
you can often implement a particular feature in several ways. There is often
a 2-day. 2-week, and 2-month version of the same feature. In the absence
of the clarifying presence of a development timebox. developers are left to
choose an implementation based on their own goals for quality, usability,
or level of interest in the feature's design and implementation. Timeboxing
makes it clear that if there is a 2-day version of a feature, thatis what you want.

It controls feature creep. Feature creep is generally a function of time and
averages about 1 percent per month on most projects (Jones 1994). Timebox
Development helps to control feature creep in two ways. First, if you shorten
the development cycle, you reduce the amount of time people have to lobby
for new features. Second, some feature creep on long projects arises from
changing market conditions or changes in the operational environment in
which the computer system will be deployed. By cutting development time,
you reduce the amount that the market or the operational environment can
change and thus the need for corresponding changes in your software.

It helps to motivate developers and end-users. People like to feel that the
work they're doing is important, and a sense of urgency can contribute to
that feeling of importance. A sense of urgency can be a strong motivator.

Using Timebox Development

Timebox Development is a construction-phase practice. Developers imple-
ment the most-essential features first and the less-essential features as rime
permits. The system grows like an onion with the essential features at the
core and the other features in the outer layers. Figure 39-1 on the next page
illustrates the timebox process.

Construction in Timebox Development consists of developing a prototype and
evolving itinto the final working system. Timeboxing usually includes signifi-
cant end-user involvement and ongoing reviews of the developing system.

Timeboxes usually last from 60 to 120 days. Shorter periods are usually not
sufficient to develop significant systems. Longer periods do not create the
sense of urgency that creates the tirnebox's clear focus. Projects that are too
big for development in a 120-day timebox can sometimes be divided into
multiple timebox projects, each of which can be developed vviihin w to
120 davs.

577

Chapter 39: Timebox Development

¥

System
Delinition |
E—

(Timchux Development »)
F
Prototype. System
/ -\
’ [Build and End User)
| Evolve Review and l.'
\ Prototype) Feedback J;
| ~ 3 ~
{ .
| \.\\——‘// ;
Request for Change
| =
Sysfem l
Rejected N\
Evaluate ‘
Nead for Large- ,
Scale System
Enhancement !
Systom Accepted

Deploy System

Figure 39-1. Timebox Development cycle. Timebox Development consists of
constructing and evolving an Evolutionary Prototype with frequent end-user
interaction,

After the construction phase, the system is evaluated and you choose from
three options:

e Accept the system and put it into production.

* Reject the system because of a construction failure. It might have
insufficient quality, or the development team might not have been
able to implement the minimum amount of functionality needed for
the core system. If that happens, the organization can launch a new
Timebox Development effort.

e Reject the system because it does not meet the needs of the organiza-
tion that built it. A perfectly legitimate outcome of a timebox develop-
ment is for the team to develop the core system that was identified
before Timebox Development began, but for end-users to conclude
that the system is not what they wanted. In that case, work begins
anew at the system-definition stage, as-shown in Figure 39-1.

576

CROSS-REFERENCE

For more on motivation and
setting realistic goals, see
"Goal Setting" in Section
112and: Section 43.1,
"Using Voluntary Overtime."

CROSS-REFERENCE
For more on languages that
suppottrapid code
generation, see Chapter 31,
"Rapid-Development
Languages (RDLs)."

39.1 Using Timebox Development

The people who evaluate the system include the executive sponsor, one or
more key users, and a QA or maintenance representative. Technical support
and auditing personnel can also be involved in the evaluation.

Regardless of the outcome, it is critical to the long-term success of timeboxing
that the timebox not be extended. The end-date for the limebox is not a due
date. It's a deadline. It needs to be clear to the timebox team that whatever
they have completed at the end of the timebox is what will be either put into
operation or rejected. If the organization has a history of extending its
timebox deadlines, developers won't take the deadline seriously and the
practice will lose much of its value.

Entrance Criteria for Timebox Development

Timeboxing is not suited for all kinds of development. Here are some guide-
lines you can use to be sure it is suitable for your project.

Prioritized list of features. Before timebox construction can begin, the func-
tions and design framework of the system need to be defined. The end-
users or customers need to have prioritized the system s features so that
developers know which are essential and which are optional. They should
have defined a minimal core feature set that you are sure you can implement
within the timebox time frame. If this prioritization cannot be done, the
system is not well-suited to timebox development.

Realistic schedule estimate created by the timebox team. An estimate for the
timebox construction should be created by the development team. The con-
struction team needs to estimate both how much time they need (usually 60
to 120 days) and how much functionality they think they can implement
within that period. From a motivation point of view, it is essential that the
team create its own estimate. Timeboxing is an ambitious practice, and it
won't succeed if developers are simply presented with an impossible com-
bination of schedule and functionality goals.

Right kind of project. Timeboxing is best suited for in-house business soft-
ware (IS software). Timeboxing is an evolutionary prototyping practice and
should be built with rapid-development languages, CASE tools, or other tools
that support extremely rapid code generation. Highly custom applications
that require hand-coding are usually not appropriate projects for timebox
development. Before beginning a timebox project, verify that you can build
the project with the available tool set and staff.

Sufficient end-user involvement. As with other prototyping-based activities,
the success of Timebox Development depends on good feedback from end-
users. If you can't getadequate end-user involvement, don r use a limebox,

579

Chapter 39:Timebox Development

CROSS-REFERENCE

For more on effective team-
work, see Chapter 12,
Teamwork.'

TheTimeboxTeam

A timebox-development team can consist of from one to five people. The
full "timebox team" also includes end-users who have been designated to
assist the construction team. These end-users are often dedicated full-time
to their role of supporting the construction team.

The timebox team needs to be skilled in developing systems with the rapid-
development software that will be used. There is no time to learn new soft-
ware on a timebox project.

The timebox team needs to be highly motivated. The urgency created by the
timebox development practice itself will provide some of the motivation. The
ability to achieve a level of productivity rare within the organization should
provide the rest.

Although my understanding of developer motivation makes me wary of his
advice, James Martin recommends that motivation on a timebox project also
include the following (Martin 1991):

e Tell developers that they will be judged by whether they create a
system that is in fact accepted. Point out that most timebox efforts
succeed and that they shouldn't distinguish themselves by being one
of the rare failures.

e Tell developers that success will be rewarded and that their efforts are
visible to upper management. Follow through on the rewards.

e Tell developers that if they succeed, you'll' hold a major victory cele-
bration. Follow through on the celebration.

Don't use Martin's advice verbatim without first thinking through how the
issues discussed in Chapter 11, "Motivation,”" apply within your environment.

Variations on Timebox Development

Timeboxing is usually applied to the design and construction phase of entire
business systems. It is generally not well-suited to the development of shrink-
wrap software products because of the long development times needed. But
timeboxing can be quite useful as a strategy for developing parts of software
systems—Iive user-interface prototypes or throwaway prototypes on a shrink-
wrap software project. Timeboxes for prototypes are much shorter than the
time recommended for information systems, perhaps on the order of 6 to 12
days rather than 60 to 120. The development team will have to define a
timebox that makes sense for the specific prototype they're building.

You can use timeboxing on a variety of implementation activities—software
construction, help-screen generation, user-documentation, throwaway pro-
totypes, training-course development, and so on.

39.3 Side Effects of Timebox Development

39.2 Managing the Risks of Timebox Development

HARD DATA

FURTHERHEADING

For a different point of view
on timeboxing upstream
activities, see "Timeboxing"
(ZahniseM995).

CROSS-REFERENCE

For more on the effects of
conflicting goals, see "Goal
Setting" in Section 11.2. For
more on the effects of low
quality, see Section 4.3,
"Quality-Assurance
Fundamentals."

39.3

Here are some of the problems with timeboxing.

Attemptingtotimebox unsuitable workproducts. I don'trecommend using
timeboxes for upstream activities (or beginning-of-the-food-chain activities)
such as project planning, requirements analysis, or design—because work
on those activities has large downstream implications. A $100 mistake in re-
quirements analysis can cost as much as $20,000 to correct later (Boehm and
Papaccio 1988). The software-project graveyard is filled with the bones of
project managers who tried to shorten upstream activities and wound up de-
livering software late because small upstream defects produced large down-
stream costs. Time "saved" early in the project is usually a false economy.

Timeboxing is effective on activities at the end of the development food-
chain because the penalty for poor-quality work is limited to throwing away
the timebox work and doing it over. Other work isn't affected.

Sacrificing quality instead of features. If your customer isn't committed to
the timebox practice of cutting features instead of quality, don't use a
timebox. Developers have a hard time meeting conflicting goals, and if the
customer insists on a tight schedule, high quality, and lots of features, de-
velopers won't be able to meet all three objectives at once. Quality will suffer.

Once quality begins to suffer, the schedule will suffer too. The team will pro-
duce feature-complete software by the timebox deadline, but the quality will
be so poor that it will take several more weeks to bring the product up to
an acceptable level of quality.

With true timeboxing, the software is either accepted or thrown away at the
timebox deadline. That makes it clear that the quality level must be accept-
able at all times. The success of timeboxing depends on being able to meet
tight schedules by limiting the product's scope, not its quality.

Side Effects of Timebox Development

Timebox Development's influence is limited to .shortening development
schedules. It does not typically have any influence—positive ornegative—
on productquality, usability, functionality, or other product attributes.

581

Chapter 39: Timebox Development

39.4

FURTHER READING

The milestone process that
Microsoftuses couldbe
consideredto be amodified
timebox approach. For
details, see Microsoft
Secrets (Cusumano

and Seiby 1995).

39.5

i 3

HARD DATA,

Timebox Development's
InteractionswithOtherPractices

Timebox Development is a specific kind of design-to-schedule practice (Sec-
tion 7.7). It is an essential part of RAD, which means that it is often combined
with JAD (Chapter 24), CASE tools, and Evolutionary Prototyping (Chapter
21). Because Timebox Development calls for an unusual degree of commit-
ment on the part of the development team, it is also important that each team
member be Signed Up (Chapter 34) for the project.

Timeboxes can also be combined with Evolutionary Delivery (Chapter 20)
if you need to define each delivery cycle more by the time you complete it
than by the exact functionality you deliver. Similarly, shrink-wrap and other
kinds of projects can use timeboxes as part of a staged, internal-delivery
approach. Delivering the software at well-defined intervals helps to track the
progress and quality of the evolving product. Most projects that use
timeboxes in this way won't be willing to throw away work that isn't com-
pleted by the deadline, so they -won't be using pure timeboxes. But they can
still realize some of timebox development's motivational, prioritization, and
feature-creep benefits.

The Bottom Line on Timebox Development

Timebox Development has been found to produce extraordinary productivity
at DuPont, where it was initially developed. DuPont averages about 80 func-
tion points per person month with timeboxing, compared to 15 to 25 with
other methodologies (Martin 1991). Moreover, timebox development entails
little risk. System evaluation and possible rejection is an explicit part of the
practice, but after its first few years of use, DuPont had not rejected a single
system developed with timeboxing. Scott Shultz, who created the method-
ology at DuPont, says that "[a]ll applications were completed in less time than
it would have taken just to write the specifications for [an application in]
Cobol or Fortran" (Shultz in Martin 1991).

39.6

Further Reading

Keys to Success in Using Timebox Development

Here are the keys to success in using timeboxing:

¢ Use timeboxing only with projects that you can complete within the
timebox time frame (usually from 60 to 120 days).

* Be sure that end-users and management have agreed to a core feature
set that the timebox construction team believes it can implement
within the timebox time frame. Be sure that features have been priori-

tized, and that you can drop some of them from the product if needed
to meet the schedule.

e Be sure that the timebox team is signed up for the ambitious timebox
project. Provide any motivational support needed.

e Keep the quality of the software high throughout the timebox.

e If you need to, cut features to make the timebox deadline. Don't
extend a timebox deadline.

Further Reading

Martin, James. Rapid Application Development. New Y ork: Macmillan Pub-
lishing Company, 1991. Chapter 11 discusses timebox development
specifically. The rest of the book explains the RAD context within
which Martin suggests using timeboxes.

583

40

Tools Group

The Tools Group practice sets up a group that's responsible for gathering intelli-
gence about, evaluating, coordinating the use of, and disseminating new tools
within an organization. A Tools Group allows for a reduced amount of trial and error
and minimizes the number of development groups that will be handicapped by the
use of inadequate software tools. Virtually any organization that has more than one
software project running at a time can set up a Tools Group, though in some cases
the "group" might consist of a single person working only part time.

\ |
] |
0
-
-4
- "
Y

Efficacy

Potential reduction from nominal schedule; Good
Improvement in progress visibility: None

Effect on schedule risk: Decreased Risk
Chance of first-time success: Good

Chance of long-term success: Very Good
Major Risks

* Bureaucratic overcontrol of information about and deployment of new tools.

MajorInteractionsandTrade-Offs

* The same basic structure can be used by software-reuse and software-
engineering process groups.

For more on tools groups, see "Tools Group" in Section 15-3-

585

41

Top-10 Risks List

The Top-10 Risks List is a simple tool that helps to monitor a software project's m
risks. The list consists of the 10 most serious risks to a project ranked from 1 to

10, each risk's status, and the plan for addressing each risk. The act of updating
and reviewing the Top-10 Risks List each week raises awareness of risks and
contributes to timely resolution of them.

Efficacy

Potential reduction from nominal schedule: None
Improvement in progress visibility: Very Good
Effect on schedule risk: Decreased Risk
Chance of first-time success: Excellent
Chance of long-term success: Excellent
Major Risks

None

Major Interactions andTrade-Offs
e Can be used in combination with virtually any other practice.

For more on top-10 risks lists, see "Top-10 Risks List" in Section 5.5.

587

Bibliography

Pressman, Roger S. 1988. Making Software Engineering Happen: A Guidefor
Instituting the Technology. Englewood Cliffs, N.J.: Prentice Hall.

Pressman, Roger S.' 1992. Software Engineering: A Practitioner's Approach,
3d ed. New York: McGraw-Hill.

Pressman, Roger S. 1993. A Manager's Guide to Software Engineering. New
York:McGraw-Hill.

Putnam, Lawrence H. 1994. "The Economic Value of Moving Up the SEI
Scale." Managing System Development, July: 1-6.

Putnam, Lawrence H., and Ware Myers. 1992. Measures for Excellence: Reli-
able Software On Time, Within Budget. Englewood Cliffs, N.J.: Yourdon
Press.

Raytheon Electronic Systems. 1995. Advertisement, IEEE Software, Septem-
ber: back cover.

Rich, Charles, and Richard C. Waters. 1988. "Automatic Programming: Myths
and Prospects." IEEE Computer, August.

Rifkin, Stan, and Charles Cox. 1991. "Measurement in Practice." Report CMU/
SEI-91-TR-16, Pittsburgh: Software Engineering Institute.

Rothfeder, Jeffrey. 1988. "It's Late, Costly, Incompetent—But Try Firing a
Computer System." Business Week, November 7: 164-165.

Rush, Gary. 19835. "The Fast Way to Define System Requirements." Computer-
world, October 7.

Russell, Glen W. 1991. "Experience with Inspection in Ultralarge-Scale
Developments." IEEE Software, vol. 8, no. 1 (January): 25-31.

Sackman, H., W. J. Erikson, and E. E. Grant. 1968. "Exploratory Experimen-
tal Studies Comparing Online and Offline Programming Performance."
Communications ofthe ACM, vol. 11, no. 1 (January): 3—I11.

Saiedian, Hossein, and Scott Hamilton. 1995. "Case Studies of Hughes and
Raytheon's CMM Efforts." IEEE Computer, January: 20-21.

Scherr, Allen. 1989. "Managing for Breakthroughs in Productivity." Human
Resources Management, vol. 28, no. 3 (Fall): 403-424.

Scholtz, et al. 1994. "Object-Oriented Programming: the Promise and the
Reality." Software Practitioner, January: 1, 4-7.

Sherman, Roger. 1995a. "Balancing Product-Unit Autonomy and Corporate
Uniformity." IEEE Software, January: .110-111.

Sims, James. 1995. "A Blend of Technical and Mediation'Skills Sparks
Creative Problem-Solving." IEEE Software, September: 92-95.

Bibliography

Smith, P.O., and D.G. Reinertsen. 1991. Developing Products in Half the Time.
New York: Van Nostrand Reinhold.

Sommerville, Ian. 1996. Software Engineering, 6th ed. Reading, Mass.:
Addison-Wesley.

Standish Group, The. 1994. "Charting the Seas of Information Technology."
Dennis, Mass.: The Standish Group.

Symons, Charles. 1991. Software Sizing and Estimating: Mk IIFPA (Function
Point Analysis). Chichester: John Wiley & Sons.

Tesch, Deborah B., Gary Klein, and Marion G. Sobol. 1995. "Information
System Professionals' Attitudes. "Journal of Systems and Software, Janu-
ary:39-47.

Thayer, Richard H., ed. 1990. Tutorial: Software Engineering Project Man-
agement. Los Alamitos, Calif.: IEEE Computer Society Press.

Thomsett, Rob. 1990. "Effective Project Teams: A Dilemma, A Model, A Solu-
tion." Amencan Programmer, July-August: 25-35.

Thomsett, Rob. 1993. Third Wave Project Management. Englewood Cliffs.
NJ.: Yourdon Press.

Thomsett, Rob. 1994. "When the Rubber Hits the Road: A Guide to Implement-
ing Self-Managing Teams." American Programmer, December: 37-45.

Thomsett, Rob. 1995. "Project Pathology: A Study of Project Failures." Ameri-
can Programmer, July: 8-16.

Townsend, Robert. 1970, Up the Organization. New York: Alfred A. Knopf,

Tracz, Will. 1995. Confessions of a Used Program Salesman. Reading, Mass.:
Addison-Wesley.

Udell, John. 1994. "Component Software." Byte magazine, May.- 45-55.

Valett, J., and F. E. McGarry. 1989. "A Summary of Software Measurement
Experiences in the Software Engineering Laboratory." Journal of Sys-
tems and Software, 9 (2): 137-148.

van Genuchten, Michiel. 191. "Why is Software Late? An Hmpirical Study of
Reasons for Delay in Software Development." IEEE Transactions on
Software Engineering, vol. 17, no. 6 (June): 582-590.

Vosburgh, J. B., et al. 1984. "Productivity Factors and Programming Environ-
ments." Proceedings of/be 7th International Conference on Software
Engineering. Los Alamitos, Calif.- [IEEE Computer Society:' 143-152.

Weinberg, Gerald M. 1971. tfje. Psychology'of Computer Programming. New
York: Van-NostrandReinhold.

Bibliography

Weinberg, Gerald. 1982. Becoming a Technical Leader. New York: Dorset
House.

Weinberg, Gerald M. 1992. Quality Software Management, Volume 1: Systems
Thinking. New York: Dorset House.

Weinberg, Gerald M. 1993. Quality Software Management, Volume 2: First-
OrderMeasurement. New York: Dorset House.

Weinberg, Gerald M. 1994. Quality Software Management, Volume 3: Congru-
entAction. New York: Dorset House.

Weinberg, Gerald M., and Edward L. Schulman. 1974. "Goals and Perfor-
mance in Computer Programming." Human Factors, vol. 16, no. 1 (Feb-
ruary): 70-77.

Whitaker, Ken. 1994. Managing Software Maniacs. New York: John Wiley &
Sons.

Wiener, Lauren Ruth. 1993. Digital Woes: Why We Should Not Depend on
Software. Reading, Mass.: Addison-Wesley.

Wirth, Niklaus. 1995. "A Plea for Lean Software." IEEE Computer, February:
64-68.

Witness. 1985. Paramount Pictures. Produced by Edward S. Feldman and
directed by Peter Weir.

Wood, Jane, and Denise Silver. 1995.Joint Application Development, 2nd ed.
New York: John Wiley & Sons.

Yourdon, Edward. 1982, ed. Writings ofthe Revolution: Selected Readings on
Software Engineering. New York: Yourdon Press.

Yourdon, Edward. 1989a. Modem Structured Analysis. New York: Yourdon
Press.

Yourdon, Edward. 1989b. Structured Walk-Throughs, 4th ed. New York:
Yourdon Press.

Yourdon, Edward. 1992. Decline & Fall of the American Programmer.
Englewood Cliffs, N.J.: Yourdon Press.

Yourdon, Edward, and Constantine, Larry L. 1979. Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems Design.
Englewood Cliffs, N.J.: Yourdon Press.

Yourdon, Edward, ed. 1979. Classics in Software Engineering. Englewood
Cliffs, N.J.: Yourdon Press.

Bibliography

Zachary, Pascal. 1994. Showstopper! The Breakneck Race to Create Windows
NT and the Next Generation at Microsoft. New York: Free Press.

Zahniser, Rick. 1995. "Controlling Software Projects with Timeboxing." Soft-
ware Development, March.

Zawacki, Robert A. 1993. "Key Issues in Human Resources Management."
Information Systems Management, Winter: 72-75.

Zelkowitz, et al. 1984. "Software Engineering Practice in the US and Japan."
IEEE Computer, June: S7-66.

S23

Index

morale budget at Microsoft (case study), 270
More Programming Pearls (Bentley), 68
motivation(s), 14
achievement as, 255-57
case studies
disheartening lunch with the boss, 250-51
highly motivational environment, 270-71
commitment-based approach and, 23
defined, 254
of developers, 251-54
further reading on, 271-72
heavy-handed campaigns to improve, as morale
killer, 269
miniature milestones and, 483
minimal-specification approach and, 325-26
morale killers, 265-69
excessive schedule pressure, 267
heavy-handed motivation campaigns, 269
hygiene factors, 265-66
inappropriate involvement of technically
inept management, 268
lack of appreciation for developers, 267
low quality, 269
management manipulation, 266-67
not involving developers, 268—69
productivity barriers, 269
overly optimistic scheduling and, 216
performance reviews and, 265
personal life as, 260-61
pilot projects and, 263-65
possibility for growth as, 257-58
rewards and incentives and, 262-63
technical-supervision opportunity as, 261
timebox development and, 581
undermined, as classic mistake, 40
work itself as, 258-60
motivation (motivation factors), 249—72
mutual trust, teamwork and, 285
Myers, Glenford, 73, 74, 76
Myers, Ware, 14, 182, 192, 518
Myers-Briggs Type Indicator (MBTI) test, 253
Mpythical Man-Month, 71&e (Brooks), 305, 317,
369, 418

636

N
Naisbitt, John, 258, 508
NASA, 478
Software Engineering Laboratory, 74, 277, 352,
421, 469, 474, 475, 530, 533
negotiation (negotiating skills)
estimates and, 221
principled (see principled negotiation method)
push-me, pull-me, 47
separating the people from the problem, 222-23
noisy, crowded offices, 41
nominal schedules, 194—96
"No Silver Bullets-Essence and Accidents of
Software Engineering" (Brooks), 348

O
Object Oriented Analysis and Design (Booch), 67
object-oriented design
designing for change and, 421
information hiding, 417-19
planned reuse and, 534
Object-Oriented Design (Goad and Yourdon), 67
object-oriented programming, 367
Object-Oriented Rapid Prototyping (Connell and
Shafer), 443
O'Brien, Larry, 358, 370
office space. See productivity environments
offshore outsourcing, 496
off-the-shelf software, 153-54
strengths and weaknesses of, 157
O'Grady, Frank, 294
Oldham, Greg R., 258, 272
Olsen, Neil, 18
"One More Time: How Do You Motivate Employ-
ees?" (Herzberg), 272
"On the Criteria to Be Used in Decomposing
Systems into Modules" (Parnas), 423
opportunistic efficiency, minimal-specification
approach and, 326
optimistic schedules, overly, as classic mistake, 44
optimistic scheduling. See scheduling (schedules),
overly optimistic

organization of teams, 13
organization risks, 87-88
outsourcing, 491-502
bottom line on, 501
feature creep and, 492
further reading on, 502
interactions with other practices, 501
managing the risks of, 499-500
planning and, 493
requirements specification and, 492
reusable components and, 492
side effects of, 501
staffing flexibility and, 492
summary of, 491
time savings with, 492
using, 493-99
communication with the vendor, 493
contract considerations, 498-99
contract management, 493
double standards for outsourced work, 495
keys to success in, 501-2
kinds of arrangements, 495-96
legacy-systems reengineering, 494
management plan including risk
management, 493
offshore outsourcing, 496-97
technical resources, 493-94
unstable requirements, 494
vendor evaluation, 497-98
overrun, project, 94
overtime
desire for free, as rapid-development look-
alike, 115
voluntary (.see voluntary overtime)
ownership, achievement motivation and, 255

P
padding of estimates, 184
Page-Jones, Meilir, 67 >
Papaccio, 45, 62,71, 212, 335, 585
Pareto analysis, 473
Parnas, David L, 417, 419, 420, 422, 423
Peat Mai-wick, 82

1

Index

penalty for breaking the build, 410
people (peopleware issues) See also personnel
(employees; staff)
classic mistakes related to, 40
as dimension of development speed, 11, 12-14
recovery of projects and, 376-79
Peopleware (DeMarco and Lister), 28, 231, 271,
513, 608
perception of development speed, 119-21
overcoming the perception of slow
development, 121
performance
product, evolutionary prototyping and, 437
team structure and monitoring of, 302
performance reviews, motivation and, 265
per-person-efficiency trade-offs. 127
Perry, Dewayne E., 476
personal life, as motivation, 260-61
personnel (employees; staff). See also people
(peopleware issues.)
evaluations of, measurements misused for, 476
long-term teambuilding and. 293
outsourcing and staffing flexibility, 492
problem, 40-41
failure of teams and, 291-92
recovery of projects and, 377
risks associated with, 90
weak, 40
Peters, Chris, 255, 324, 413, 536
Peters, Tomas J., 247, 258, 203, 265, 271, 272, 317
Pfleeger, Shari Lawrence, 441, 533-36
philosophy, best practices and. 395
Pietrasanta, Alfred M., 14, 474
Pirbhai, Imliaz A., 66
planned reuse, 531-35
planning (plans), 486
abandonment of. under pressure, as classic
mistake, 44
change, 419
customer oriented, 239
as development fundamental, 56
insufficient, as classic misiukc, 44
outsourcing and, 493

Index

planning (plans), continued
overly optimistic scheduling and adherence
to, 211
overly optimistic scheduling and quality of, 211
risk-management, 85, 96-97
Plauger, P.J., 28, 66-67
point-of-departure spec, 324
politics placed over substance, 43
postmortems, interim, 102
"potential reduction from nominal schedule"
entry, 392
Practical Guide to Structured Systems Design, The
(Page-Jones), 67
Practical Software Metrics for Project Management
and Process Improvement (Grady), 479
Prasad, Jayesh, xiii, 178, 319
precision, accuracy.vs., 173
predictability, as rapid-development look-alike, 113
premature convergence, overly optimistic
scheduling and, 213-15
premature releases, daily build and smoke test
and, 412-13
presentation styles, for estimates, 179-82
Pressman, Roger S., 59, 75, 79
principled negotiation method, 222-29, 503
degrees of freedom in planning a software
project and, 225-26
focusing on interests, not positions, 224—25
insisting on using objective criteria, 227-29
inventing options for mutual gain, 225-27
separating the people from the problem, 222—23
Principles of Software Engineering Management
(Gilb), 59, 71, 106, 204, 231, 428, 430, 432,
489, 558
priorifization of risks, 85, 94—96
problem-resolution team, 300
process
abuse of focus on, 14—I15
classic mistakes related to, 4446
as dimension of development speed, 11, 14—16
recovery of projects and, 379—82
risks associated with, 91

product. See also features (feature set)
as dimension of development speed, 11, 17
risks associated with, 89-90
trade-offs among schedule, cost, and, 126-27
product characteristics, 17
product families, 420-21
productivity
barriers to, 269
failure of teams and, 290
classic mistakes and (,see classic mistakes)
factors that affect, 37-38
lines-of-code measurement of, 477
motivation and, 40
peopleware issues and, 12, Id
per-person-efficiency trade-offs and, 127
team
permanent-team strategy, 292
variations in, 276-77
variations in, 14
among groups (teams), 12
among individuals, 12
productivity environments, 505-13
bottom line on, 511
further reading on, 513
interactions with other practices, 511
managing the risks of, 510—11
side effects of, 511
summary of, 505
using, 508-9
keys to success in, 513
productivity tools, 345-70
acquisition of, 353-58
criteria for tool selection, 356-58
risks of setting up a tools group, 355
tools person or group, 354—55
case studies
effective tool use, 368-69
ineffective tool use, 346-47
defined, 346
further reading on, 369-70
maturity of, ;356-57

Index

rapid prototyping, use of term, 434

"Rapid Prototyping: Lessons Learned" (Gordon and

Bieman), 443
Raytheon, 14, 15, 21
RDLs. See rapid-development languages
"Realities of Off-Shore Reengineering" (Dedene
and De Vreese), 502
real-time systems, 22
recalibration of schedules, 199-200
recognition. See appreciation (recognition)
recovery of projects, 371-88. See also features
(feature set), late-project feature cuts and
mid-project changes
case studies
successful project recovery, 385-87
unsuccessful project recovery, 372-73
characteristics of projects in trouble, 371-72
fundamental approaches to, 373—74
philosophy of this book's approach to, 374
plan for, 375-85
first steps, 376
people issues, 376-79
process, 379-82
product, 382
timing, 385
reestimation mistakes, 46
Reifer, Donald J., 493, 502
Reinertsen, D. G., 131
Reinventing the Corporation (Naisbitt and
Aburdene), 258
release cycles, short, 339
requirements (requirements specifications or
analysis), 61-62, 124
case studies, 234-36, 246
creeping (feature creep) {see features (feature
set), creeping (creeping requirements))
customer-oriented, 239-42, 338
detailed, 321-23
further reading on, 66
gold-plating, 46
JAD and, 450, 461-62
minimal specification, 323-29
benefits of, 325-26
keys to success in using, 328-29

requirements (requirements specifications or
analysis), continued
lack of support for parallel activities, 327
omission of key requirements, 326
risks of, 326-28
unclear or impossible goals, 326
wrong reason for using, 328
outsourcing and, 492, 494
recover)' of projects and, 382-84
risks associated with, 89
scrubbing (entirely removing), 329-30, 525
research-oriented development, 47
resources, targeting, 16
reuse (reusable components), 527-38
bottom line on, 537
further reading on, 538
interactions with other practices, 536-37
keys to success in using, 537-38
managing the risks of, 535-36
outsourcing and, 492
side effects of, 536
summary of, 527
using, 528-35 ,
opportunistic, reuse, 528—31
planned reuse, 531—35
rewards
case study: at Microsoft, 270-71
motivation and, 262
rework
amount of time spent on, 123
avoidance of, 15
customer relationships and, 237
Rich, Charles, 366, 367
Rifkin, Stan, 468, 474
risk analysis, 85, 91-94
risk assessment, elements of, 85
risk, assuming, 98
risk control, 85, 96-102
risk exposure, 92
risk 1dentification, 85-91
complete list of schedule risks, 86-91
contractor risks, 89
customer risks, 88-89
'design and implementation risks, 91

risk identification, continued
development environment risks, 88
end-user risks, 88
external environment risks, 90
organization and management risks, 87-88
personnel risks, 90
process risks, 91
product risks, 89-90
requirements risks, 89
schedule creation risks, 87
general risks, 85-86
most common schedule risks, 86
risk management, 8, 15, 81-106. See also
managing-risks sections ofbest-practice
Chapters 17-43
case studies, 82-83
systematic risk management, 103-5
disadvantages of, 82
elements of, 84
further reading on, 106
insufficient, as classic mistake, 44
levels of, 84
outsourcing and, 493
risk-management planning, 85, 96—97
risk monitoring, 85, 100-102
risk officer, 102
risk prioritization, 85, 94-96
risk quantification, estimation and, 180-81
risk resolution, 85, 97-100
risks, 102
customers-related, 237
roles, clear, team structure and, 302
Ross, Rony, 484, 559, 568
Rothfeder, Jeffrey, 82
runaway prevention, as rapid-developmeiil look-
alike, 113
Rush, Gary W., 46l
Russell, Glen \\", 74

S
Sackman, H., 12, 217, 249
Saiedian, Hossein, 14
sashimi model, 143—44
schedule compression. 191-92

Index

schedule constraints, 112-13
schedule creation risks, 87
schedule estimation, 183—85
schedule-oriented practices, 3. 9, 10. See also
speed of development; visibility-oriented
practices
focusing only on, 10
focusing too much on single. 5
kinds of, 4
schedule pressure
beating, 220-29
build and smoke testing even under, 411
excessive, as morale killer, 267
schedule recalibration, 199-200
schedule risk, miniature milestones and, 483
schedule-risk-oriented practices. See fundamentals
of software development
scheduling (schedules). 205—31
beating schedule pressure, 220-29
principled negotiation, 222—?29
case study: .a successful schedule negotiation,
229-30
commitment-based, 184
as development fundamental, 55
further reading on, 231
overly optimistic, 207-20
accuracy of schedules and, 210
adherence to plan and. 211
bottom line and, 218-20
burnout and, 217
creativity and, 216-17
customer relations and, 213
developer-manager relationships and, 217
effects of. 210-15
example of, 207
gambling and, 216
long-term rapid development and, 217
motivation and, 216
premature convergence. 213—15
project focus and. 213
quality and, 215 In
quality of project planning and, 211
root causes of, 2U">-10
underscoping the project and. 212

Index

scheduling (schedules), continued
overly optimistic, as classic mistake, 44
principled negotiation method and, 222-29
probability of meeting, //6-19
timebox development and, 580
trade-offs among product, cost, and, 126
Scherr, Allen, 285, 540, 542
Scholtz, 367, 421, 534
Schulman, Edward, 12, 217, 255, 276
scientific software, 22
scribe, in JAD sessions, 455
scrubbing (entirely removing) features,
329-30, 525
search-and-rescue team model, 307-8
Seewaldt, T, 12, 217, 277
Selby, Richard, 74, 116, 255, 270, 272, 290, 324,
327, 341, 407, 414, 432, 536
Shafer, Linda, 443
Shaw, 436
Shen, V. Y., 479
Sherman, Roger, 138
shortest possible schedules, 188-92
efficient schedules and, 193
Showstopper! (Zachary), 272, 388
shrink-wrap software, defined, 22
Shultz, Scott, 586
signing up, 539-45
bottom line on, 545
in different environments, 542
further reading on, 545
giving people a choice about, 541
interactions with other practices, 54445
keys to success in using, 545
managing the risks of, 543-44
shaky requirements and, 542
side effects of, 544
at the team level, 541
vision and, 540
Silver, Denise, 463
silver bullets (silver-bullet syndrome), 47-48,
363-69, 520-21
biting the bullet, 367-68
identifying, 365-67

Sims, James, 452
size estimation, 174-82
definition of size, 175
function-point estimation, 174
size of product, 17
skill variety, work itself as motivation and, 258
skunkworks-team structure, 306—7
Smith, Douglas, 296, 275
Smith, P. G., 131
smoke test, fee daily build and smoke test
Sobol, Marion G., 366
software, types of, 22
Software Acquisition Management (Marciniak and
Reifer), 493, 502
Software Configuration Management (Babich), 68
Software Configuration Management (Bersoff), 68
software configuration management (SCM)
as development fundamental, 65-66
further reading on, 68
software development. See fundamentals of
software development; rapid development
software engineering, further reading on, 79
Software Engineering (Pressman), 75, 79
Software Engineering (Sommerville), 75, 79
Software Engineering Economics (Boehm), 203
Software Engineering Institute, 14, 28, 55, 57, 59,
66, 70, 374, 502
Software Engineering Laboratory (NASA), 74, 277,
352,421,469, 474, 475, 530,533
Software Engineering Metrics and Models
(Conte et al.), 479
"Software Engineering Under Deadline Pressure"
(Costello), 231
Software Implementation (Marcotty), 68
Software Inspection (Gilb and Graham), 76
Software Measurement Guidebook (NASA), 478
Software Metrics (Grady and Caswell), 478
"SoftwareProductivity ResearchProgramming
Languages Table" (Jones), 524
Software Risk Management (Boehm), 106, 161
"Software RiskiVIanagement: Principlesand
Practices" (Boehm), 106
"Software's Chronic Crisis" (Gibbs), 343

Theory-W management, continued
using, 561-66
keys to success in, 568
kinds of projects that can use Theory-W, 566
manager's role, 566
step 1: establish win-win preconditions,
562-64
step 2: structure a win-win software
process, 564
step 3: structure a win-win software ®
product, 565
"Theory-W Software Project Management:
Principles and Examples" (Boehm and
Ross), 568
third-generation languages. See 3GLs
Third Wave Project Management (Thomseti), 106
Thomsett, Rob, 42, 106, 253, 293, 294, 317, 388
Thriving on Chaos (Peters), 258
throwaway prototyping, 433, 569-73
evolutionary prototyping and, 441
user-interface prototyping and, 591-92
timebox development, 575-83
bottom line on, 582
further reading on, 583
interactions with other practices, 582
managing the risks of, 581
side effects of, 581
using, 577-80
entrance criteria, 579
keys to success in, 583
timebox team, 580
variations, 580
tools group, 585
acquisition of productivity tools and, 354—56
summary of, 585
Top-10 Risks List, 100-102, 587
Townsend, Robert, 287
tracking, as development fundamental, 56—358
Tracz, Will, 534-36, 538
trade-offs
per-person-efficicncy, 127
quality, 127
among schedule, cost, and product, 120—27'

Index

training, in productivity tool use, 357
transferring risks, 97
trust
failure of teams and lack of, 290
among team members, 285
Turner, Albert J., 556
turnover
long-term teambuilding and, 293
overly optimistic scheduling and, 217
Tutorial on Software Design Techniques (Parnas).
423
Tutorial: Software Engineering Project Manage-
ment (Thayer), 59
Tutorial: Software Quality Assurance (Chow, ed.).
76

u
Udell, John, 538
Umphress, David, 49 '
underscoping, overly optimistic scheduling and,
212
unrealistic expectations, 42
of customers, 120—21
after JAD session, 460
about performance, evolutionary prototyping
and,437-38
about schedule and budget
evolutionary prototyping and, 436
throwaway prototyping and, 572
upstream activities, shortchanged, 45
Ury, William, 231, 562
user-interface prototyping, 324, 589-97
bottom line on, 597
interactions with other practices, 596
managing the risks of, 595 -96
side effects of, 596
summary of, 589
using, 591-95
choosing a prototyping language, 592
end-user feedback and involvement, 593-94

evolutionary vs. ihrowaway prototyping,
591-92
finished product, 595

845

Index

user-interface prototyping, using, continued

keys to success in, 597

prototype as a Hollywood movie facade, 593
user manual, as specification, 324

\'
Vaishnavi, Vijay K., 417
Valett, J., 12, 249, 277, 469
van Genuchten, Michiel, 46, 184, 199, 210, 486
vendors. See outsourcing
version 1 of productivity tools, 356
version 2
features, 339
of productivity tools, 357
version 3 of productivity tools, 357
versioned development, 330-31
visibility-oriented practices, 10
vision
failure of teams and lack of, 289
managing a high-performance team and, 288
sharing a, in high-performance teams, 279
signing up and, 540
vision statement, minimal specification and, 324
Visual C++, Microsoft, 242
voluntary overtime, 599-608
bottom line on, 606-7
further reading on, 608
interactions with other practices, 606
managing the risks of, 605-6
side effects of, 606
summary of, 599
using, 600-605
caution about too much overtime, 604—5
developer-pull vs. leader-push approach,
, 600-601
how much overtime to ask for, 603
keys to success in, 607
out-of-control projects, 603
overtime should not be mandatory, 601-3
Vosburgh, J. B., 37, 38, 60, 240, 241, 256, 319, 335
Votta, Lawrence G., 476

I
" "
’

W
Waligora, Sharon, 530, 534
walkthroughs, 73
estimating by, 178
wasted effort, minimal-specification approach and
avoidance of, 326
wasted time, during fuzzy front end, 44
waterfall lifecycle model, 136-39
modified, 143-47
with risk reduction, 146
sashimi model,. 143
with subprojects, 145
strengths and weaknesses of, 156
Waterman, Robert H., Jr., 247, 263, 271, 272, 317
Waters, Richard, 366, 367
Weinberg, Gerald M., 12, 40-41, 58, 66, 77, 217,
218, 221, 255, 271, 272, 276, 296, 388, 600,
601, 608
Weiss, David M., 423, 469
"What Are the Realities of Software Productivity/
Quality Improvements" (Glass), 369
"When the Rubber Hits the Road: A Guide to
Implementing Self-Managing Teams"
(Thomsett), 317
Whitaker, Ken, 247, 267, 554
Why Does Software Cost So Much? (DeMarco), 231,
317
"Why Is Technology Transfer So Hard?" (Jones),
370
Wicked Problems, Righteous Solutions (DeGrace
and Stahl), 16l
Wiener, Lauren Ruth, 321
Windows NT 3.0, development of, 388, 408,
542-44
win-win projects, 239
WinWord (Microsoft Word for Windows) 1.0
optimistic scheduling practices arid, 207-9
Wirth, Niklaus, 319
Wisdom of Teams, Tlie (Katzenbach and-Smith),
275

wishful thinking, 43
schedules and, 221
Witness (film), 273, 296
Wood, Jane, 463
Word for Windows 1.0, optimistic scheduling
practices and, 207-9
work environments. See also productivity environ-
ments
noisy, crowded, 41
Work Redesign (Hackman and Oldham), 272
Wosser, 531, 534
Writing Solid Code (Maguire), 68

Y

Yourdon, Edward, 66-67, 73, 337, 423
Z

Zachary, Pascal, 23, 271, 272, 388, 408, 412, 413,
542, 544

Zawacki, Robert, xviii, 259, 351
Zelkowitz, 351

Index

About the Author

Steve McConnell is chief software engineer at Construx Software Builders,
Inc., a Seattle-area software-construction firm. He is the author of Code Com-
plete, editor of IEEE Software's "Best Practices" column, and an active devel-
oper. His primary focus has been on the development of mass-distribution
shrink-wrap software, which has led him to consulting engagements with
many companies in the Puget Sound area, including Microsoft Corporation.

Steve earned a Bachelor's degree from Whitman College in Walla Walla,
Washington, and a master's degree in software engineering from Seattle
University. He is a member of the IEEE Computer Society and the ACM.

Steve lives in Bellevue, Washington, with his English Springer Spaniel, Odie;
Bearded Collie, Daisy; and elementary-school-teacher wife, Tammy.

If you have any comments or questions about this book, please contact Steve
care of Microsoft Press, on the Internet at stevemcc @ construx.com, or at his
website at http://www.construx.com/stevemcc.

B A
=y

-

o - -
B
- 3 ~
. o
.
" 1 (« \
¥ -
' w/
X . {
- y
en "
Ny~ v
o)
\

