
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

■ About the Author .. x

■ About the Technical Reviewer... xi

■ Acknowledgments.. xii

■ Introduction... xiii

■ Chapter 1: Getting Started .. 1
■ Chapter 2: Objective-C in a Nutshell ... 15
■ Chapter 3: Managing On-Screen Content with View Controllers........ 41
■ Chapter 4: Saving Content in Your App... 79
■ Chapter 5: Handling User Touches.. 109
■ Chapter 6: Integrating Networking and Web Services...................... 141
■ Chapter 7: Writing Modern Code with Blocks................................... 181
■ Chapter 8: Managing What Happens When....................................... 209
■ Chapter 9: User Interface Design .. 243
■ Chapter 10: Hardware APIs... 277
■ Chapter 11: Media in Your App: Playing Audio and Video 309
■ Chapter 12: Localization and Internationalizion............................... 351
■ Appendix A: Running Code on an iOS Device.................................... 371
■ Index... 375

www.it-ebooks.info

http://www.it-ebooks.info/

 xiii

Introduction

With every successive release of iOS and its related hardware products, Apple and journalists the
world over spout hyperbolic statements about “revolutionary” features, “insanely great” devices,
and “unbelievable” sales. The numbers don’t disappoint, with hundreds of millions of iOS
devices having been sold and billions of dollars sent to developers in revenue. As we enter the
post-PC era, we do so using our smartphones and tablets. Apple’s iOS is consistently the most
user-friendly, powerful platform for these new devices, and developers the world over benefit
from offering their products on the App Store. That being said, it is a market that continues to
grow every day, especially when customers can obtain an iPhone for next to nothing up front
with a two-year contract. As the barrier to entry to the smartphone market declines and the user
base goes up, opportunity skyrockets. This book will allow you to take advantage of that
opportunity. We’ll get up and running using Xcode on Mac OS X, we’ll create applications as we
learn Objective-C (the language in which you’ll be developing your apps), and we’ll tour the
frameworks that make Cocoa Touch one of the best development environments in the world.

As you should get used to when programming for an Apple environment, there are rules. As such,
there are some things you’ll need to go through this book: a Mac with an Intel processor running
Mac OS X 10.7 (Lion) or newer, with Xcode 4.3 or newer (available from the Mac App Store), and
ideally an iOS device running iOS 5.1 or newer. While older versions of Mac OS X, Xcode, and iOS
may still be in use, screenshots and step-by-step instructions in this book may not work for other
versions.

Who This Book Is For
This book assumes a basic level of programming knowledge. You don’t have to be an expert, but
any experience you have with C, C++, or even Java will be useful to help frame concepts explained
in the early stages of the book. You should also be familiar with the basics of Apple’s Mac OS X
and iOS operating systems, enough to get around the filesystem in Mac OS X and launch Xcode
and enough to launch apps and understand typical app behavior on iOS.

How This Book Is Structured
In general, chapters in this book will begin with more abstract concepts. Where there has been
evolution in the development frameworks and libraries, we’ll start with the older, more
complicated ways and lead in to the newer way of doing things in order to better understand why
things have developed the way they have. As each chapter progresses, we’ll switch from the

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

xiv

abstract to the concrete, with sample projects and example code. We’ll develop two apps in
multiple chapters, with other smaller examples in addition.

Chapter 1 gets you up and running with Xcode and creating a “Hello, World!” app.
Chapter 2 covers the Objective-C language in detail, including memory management,

best practices, and the latest additions to the language.
Chapter 3 discusses working with view controllers, one of the most important types of

objects you’ll use in iOS development.
Chapter 4 covers handling your data, from moving it around inside the app to saving

and loading from disk.
Chapter 5 details handling user touches and basic app flow.
Chapter 6 covers networking and web services, including parsing JSON and XML.
Chapter 7 introduces blocks, Apple’s new addition to the C language that encapsulates

code.
Chapter 8 explains more about the message dispatch process in iOS, leading to a

discussion of multithreaded code.
Chapter 9 covers user interface design in your app.
Chapter 10 details the multitude of hardware APIs available on iOS devices, including

the accelerometer, gyroscope, and magnetometer, as well as location services using GPS.
Chapter 11 outlines using media in your app, both audio and video.
Chapter 12 covers the internationalization and localization processes, which help give

your app a broader reach.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com.
You can find a link on the book’s information page under the Source Code/Downloads tab. This
tab is located underneath the Related Titles section of the page.

Contacting the Author
Send your questions, comments, criticisms, and lame puns (especially lame puns) to me on
Twitter as @SlaunchaMan or by e-mail at SlaunchaMan@gmail.com. Read my blog at
http://blog.slaunchaman.com, and check out my professional work at www.detroitlabs.com.

www.it-ebooks.info

http://www.apress.com
mailto:SlaunchaMan@gmail.com
http://blog.slaunchaman.com
http://www.detroitlabs.com
http://www.it-ebooks.info/

1
Chapter

Getting Started
While apps for your iPhone are a relatively new phenomenon, they’re based on
decades-old technologies present also on your Mac. Mac OS X introduced a
new set of APIs and frameworks collectively known as Cocoa. While iOS shares
many lower-level system frameworks and APIs with Mac OS X, the APIs relating
to its touch-based user interface, telephone capabilities, and iOS-only
functionality reside in the Cocoa Touch layer, an analog to Cocoa for mobile
devices. One of the similarities Cocoa Touch has with its desktop counterpart is
the tools used for development, including the same IDE, Xcode. In fact, SDKs
for iOS and Mac OS X development are included when you download the
developer tools. In this chapter, we’ll take a closer look at these tools and get
started using them.

Installing Xcode
Before you get started writing your applications, you’ll need to install Apple’s
developer tools. While there are many individual applications, libraries, and
utilities you’ll use over the course of app development, the main one you’ll use is
Apple’s IDE, Xcode.

NOTE: Unlike the iPhone and other Apple products, the leading X in Xcode is
capitalized.

There are two ways to install Xcode. The easiest, best-supported, and most up-
to-date way is to download Xcode from the Mac App Store. When the download
finishes, Xcode will be in your /Applications directory, with no further
installation required.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 2

NOTE: By default, the Xcode installer installs developer tools to the /Applications
folder on your hard drive. It is possible to install Xcode to a different location, but
recent versions of the installer have not exposed that option to users. I recommend
installing the App Store version of Xcode to /Applications and installing any beta
versions you may use to other folders.

The second way to install Xcode is by downloading an installer from Apple’s
developer site. While Apple doesn’t always release each final shipping version of
Xcode this way, this is how you’ll install prerelease versions of the tool set. Once
you log in with your developer credentials, you’ll download a disk image
containing an Installer package for the developer tools. Run that package to
install Xcode. As of this writing, the latest version of Xcode is 4.3; while older
versions may work on your Mac, versions older than 4.0 are significantly
different, enough so that it may be difficult to follow along with the tutorials in
this book.

Either way, you should know going in that Apple’s tool set is a large download,
usually more than several gigabytes. There has been some progress on
separating individual components into something that Xcode can update
without redownloading the whole set of tools, but the initial download is
something you probably can’t do at your local coffee shop.

The Developer Tools
The developer tools you’ve installed center around Xcode, but there are some
other components that you’ll use a lot over the course of this book:

 Instruments allows you to inspect the performance of your
application, finding memory leaks, discovering computational
bottlenecks, and even breaking down the 3D rendering of
games with ease.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 3

 The iOS Simulator runs your iOS applications in a simulated
environment. It’s important to note the difference between a
simulator and an emulator. In a simulator, your code is
compiled for the platform the simulator is running on. In the
case of an iOS app, the code is compiled for your Mac and
runs in a fake, iPhone-like environment. In an emulator, the
code is compiled the same for the emulator and the platform
you’re writing for. There is no iOS emulator available, but if
there were, code compiled for the emulator would be the same
as code compiled for the device. This is important in testing
because the processor architectures are different on different
platforms; your Mac has an Intel processor, but an iPhone has
an ARM processor. For this reason, you should always test on
the device before releasing an app to ensure that there aren’t
any device-specific bugs.

 Xcode allows you to download local copies of the entire
documentation set usually available at
http://developer.apple.com; this documentation allows you
to see help inline in Xcode while you write.

 Finally, the tools include compilers, linkers, and other tools
needed to turn your code into an actual, functioning
application. If you’re comfortable with the command line, you
can now use gcc and related tools to compile applications.
Xcode 4 replaced GCC with Clang running on the LLVM
infrastructure, a more modern compiler and the new default.
For most cases, LLVM can replace GCC with no loss in
functionality-----in fact, the gcc command-line utility is really just
a symlink to LLVM in recent tool set distributions.

To get started, launch Xcode. By default, the path will be
/Applications/Xcode.app. With Xcode installed and launched, let’s make our
first application.

Hello, World!
When you first start Xcode, you’ll see a welcome screen (Figure 1-1). From here,
you can open recent projects, launch Apple’s developer web site, open the
Xcode user guide (which you should definitely read at some point), download
source code from a revision control system, and create a new project. Since we
haven’t created one yet, click ‘‘Create a new Xcode project.’’

www.it-ebooks.info

http://developer.apple.com
http://www.it-ebooks.info/

CHAPTER 1: Getting Started 4

Figure 1-1. The Xcode welcome screen

When you create a new project, Xcode presents a wizard, seen in Figure 1-2,
that starts with a list of the types of projects it can make. Xcode uses templates
to speed the development of common types of applications. On the left, you can
see the categories of templates that are currently installed. If it isn’t already
selected, select Application under iOS on the left to display all of the iOS
templates. Our simple application will have only one screen, so select Single
View Application and click Next.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 5

Figure 1-2. Selecting a template from the Xcode New Project Wizard

The next screen gives you some options to set the metadata for the project and
to further refine which template Xcode uses. Since this is our first project, we’ll
create a ‘‘Hello, World!’’ iOS application. ‘‘Hello, World!’’ is a tradition nearly as
old as programming itself wherein the first thing you do in a new language or on
a new platform is make a program that displays the words ‘‘Hello, World!’’ to the
user. Enter HelloWorld for Product Name. The Company Identifier value should
be a reverse-DNS label for your company name (if you have one). If you don’t
have one, your personal web site will do. If you don’t have one, consider getting
one before releasing any apps to the App Store.) Since my web site is at
http://learncocoatouch.com, I use com.learncocoatouch as my company
identifier. This reverse-DNS style listing is used often in iOS to differentiate
between applications and other identifiable things, typically with your application
ID affixed to the end. For me, the HelloWorld project has the identifier of
com.learncocoatouch.HelloWorld. App IDs must be unique in the App Store,
and installing an app on a device with the same ID as another app will overwrite
the existing one.

The class prefix is used to identify code that you create and differentiate it from
code that others write. Typically you’ll use your initials. This is important to

www.it-ebooks.info

http://learncocoatouch.com
http://www.it-ebooks.info/

CHAPTER 1: Getting Started 6

ensure that two developers don’t create things with the same name. If your
initials happen to be the same as another developer’s or what a system
framework uses for a prefix, you can use three letters, letters from your
company name, or any combination of letters you like. For Learn Cocoa Touch,
I’ll use LCT.

NOTE: You can find an unofficial list of “claimed” prefixes at
www.cocoadev.com/index.pl?ChooseYourOwnPrefix. Claim yours now!

The next options affect the template that the project will use. Leave Device
Family set to iPhone for now. If you’re creating an app for iPad or a Universal
app that supports both devices, this is where you set it. Uncheck Use
Storyboard and Include Unit Tests, but check Automatic Reference Counting.
We’ll go over what those mean in more detail later. Once those are set, we’re
finally ready to create our application. Your screen should look like Figure 1-3.
Click Next.

Figure 1-3. Choosing options for the new project

www.it-ebooks.info

http://www.cocoadev.com/index.pl?ChooseYourOwnPrefix
http://www.it-ebooks.info/

CHAPTER 1: Getting Started 7

Xcode will prompt you to select a location for the project on your hard disk, as
well as give you the option to create a local Git repository while it creates the
project. If you know and use Git, feel free to select that option; otherwise, it’s
unneeded for this project. While going through this book, you may find it useful
to create a separate directory somewhere in your Home folder for the various
apps we’ll be writing, such as ~/Projects/Learn Cocoa Touch/.

Once you select a location, Xcode creates your project. The initial screen,
shown in Figure 1-4, shows you your project settings. Here we can modify
project metadata such as supported resolutions, which iOS version(s) the
project will run on, the version number of the application, which device
orientations it supports, the icons to use, and so on. We’ll leave these alone for
now.

Figure 1-4. This is the initial layout of the Xcode window once you’ve created a project.

To run your application in the iOS Simulator, click the Run button at the upper-
left corner of the Xcode window (the one that looks like the iTunes Play button).
Since we haven’t modified the code at all, it won’t look like much. Figure 1-5
shows what you should see at this point when you run your app.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 8

NOTE: If the text to the right of the Run button says iOS Device, change the selection
to the iPhone Simulator.

Figure 1-5. Our first iOS app running in the simulator

Now that we have the application set up and ready to modify, let’s take a look at
our goal for this application:

Goal: Build an app that says ‘‘Hello, world!’’ to the user.

Ready to modify the app? Good. Quit the iOS Simulator and head back to
Xcode. Press Command+1 to open the File browser on the left pane. Find the
file under HelloWorld that ends in ViewController.xib and select it. Note that it

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 9

will start with your class prefix-----in my case, it’s called LCTViewController.xib
by default. The file will open in an Interface Builder view: a visual layout of your
application’s interface. Right now, it’s the same gray view that you saw in the
iOS Simulator. Let’s change that. The bottom-right corner of the screen contains
the Object Library, a collection of user interface elements that you can add to
the view. You can switch to its search field by pressing
Control+Option+Command+3. Figure 1-6 shows what your screen should look
like with the Object Library visible.

Figure 1-6. The Xcode window using Interface Builder with the object library visible.

To add an object to your view, either drag it from the Object Library to your view
or double-click it. Drag two objects to your view: a Label and a Round Rect
Button. Double-click the button to add a title; let’s make this one read ‘‘Say
Hello.’’ Notice that the button resizes itself when you add the title. You can get
labels and buttons to resize themselves to their content by pressing
Command+=. Double-click the label and remove the text, and then make it
stretch across the view. Once you remove the text, the label will appear to be
invisible; if you can’t find it, click Editor ➤ Canvas ➤ Show Bounds Rectangles,
which will outline the label for you. When you’re done, it should look something
like Figure 1-7. If so, now is a good time to save your work. Xcode isn’t perfect,
and if it crashes, your unsaved changes go with it, so getting into a habit of
saving often is recommended.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 10

Figure 1-7. The view set up for our “Hello, World” application

Now let’s add some code to this application. We want the label to say ‘‘Hello,
World!’’ when the user presses the button. To do that, we’ll add a method to our
view controller. Method is Objective-C’s word for function. If you’re familiar with
object-oriented programming, then methods will be familiar. If not, follow along
in this chapter; we will discuss Objective-C later in much more detail.

The view controller’s header file is a file that describes it. Headers are the
‘‘public’’ portion of your code; they describe what the code will do without
actually showing how it works. When you receive source code that’s already
been compiled, typically you’ll also receive the headers associated with it. In the
file browser, select the file ending in ViewController.h with your prefix before it.
In the header, we define the methods that we will create. By default, it should
look like this (with some comments at the top):

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 11

//
// LCTViewController.h
// HelloWorld
//
// Created by Jeff Kelley on 1/28/12.
// Copyright (c) 2012 Jeff Kelley. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController

@end

The first part of creating a method is declaring it, that is, telling the code that
there will be a method. So, add this line between the @interface and @end lines
and save your changes:

- (IBAction)sayHelloButtonPressed:(id)sender;

We’ll go into more detail later on what each part of this line means. For now, you
should know that the name of the method is sayHelloButtonPressed:. Now that
we’ve declared it, we can go back to the view and tell our app to run our
method when the button is pressed. Head back to the view by opening
LCTViewController.xib and select the button. Open the right utilities pane to the
Connections Inspector, either by clicking the rightmost icon at the top of the
pane or by pressing Command+Option+6. You’ll see a list of empty circles on
the right side of the list under Sent Events. We’re interested in the event Touch
Up Inside. These events represent different points of interaction the user has
with the button. When they first place their finger on the button, the Touch Down
event occurs, and when they lift it, the Touch Up Inside event occurs. Typically
on iOS, we use the Touch Up Inside event for user interaction; that way, the user
can cancel pressing the button by moving their finger away.

To connect the Touch Up Inside event to the method we created, click the
empty circle next to it and drag. We’re connecting it to the object called File’s
Owner, which looks like a transparent box and is to the left of our view. With
File’s Owner highlighted, release the mouse button, and a list of methods will
pop up. The method we created should be the only one in the list. Select it, and
the button is now connected to the method. It should look like Figure 1-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 12

Figure 1-8. The Connections Inspector view after we’ve connected the button to the method

The next step is writing the code that will happen when we press the button.
First, we need to create a way to get to the label from our code. Much like
creating the method, we’ll modify the header first and then connect the view to
it. Modify the header to add this line:

#import <UIKit/UIKit.h>

@interface JKViewController : UIViewController {
 IBOutlet UILabel *helloWorldLabel;
}

- (IBAction)sayHelloButtonPressed:(id)sender;

@end

Now, we need to connect the label in our view to the IBOutlet we created.
Select the label in your view, and then open the Connections Inspector. Drag the
circle next to New Referencing Outlet to File’s Owner and select
helloWorldLabel. Now that we’ve done that, we can use helloWorldLabel in our
code to refer to the label.

We have everything set up for our method, so let’s create it. We define our
methods in the view controller’s implementation file, which ends in .m. Open the
file and add the lines in bold:

#import "JKViewController.h"

@implementation JKViewController

// Other methods will be defined here

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Getting Started 13

- (IBAction)sayHelloButtonPressed:(id)sender
{
 [helloWorldLabel setText:@"Hello, World!"];
}

@end

This code calls a method on your label, setText:, with the text ‘‘Hello, World!’’
Now that we’ve implemented our method, click Run again to run the application.
Xcode will build the app and run it in the iOS Simulator. You’ll see the button.
Click it, and the label will say ‘‘Hello, World!’’

Summary
While creating a ‘‘Hello, World!’’ app is an important beginner’s task in any
language, it’s not going to sell too many copies in the App Store. It doesn’t
really access too many features of the device, and it doesn’t push the envelope
with an engaging user interface. It’s a good step toward making a quality app,
however, and that’s what counts. In this chapter, we covered installing and
using Xcode, as well as the beginnings of using it for programming. Now that
we’ve created a simple app in Xcode, let’s learn more about Objective-C, the
programming language we’ll be using throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Chapter

Objective-C in a
Nutshell
Objective-C is the primary language you’ll be using to create iOS apps using
Cocoa Touch. This chapter will walk you through the basics of the language,
covering new developments in its evolution as well as tried-and-true methods
that are decades old. In this book, I’m assuming that you have at least a basic
understanding of the C programming language. If you’re coming from a Java or
C++ background, you can probably get by just fine, but if you’re new to C-like
languages altogether, I recommend familiarizing yourself with it. Some excellent
books on the subject are The C Programming Language by Brian Kernighan and
the late Dennis Ritchie, who originally designed the language; Programming in C
by Stephen Kochan; C Programming by K. N. King; and Learn C on the Mac by
Dave Mark.

Object-Oriented Programming
Objective-C is an object-oriented language, as are Java and C++, but Objective-
C is unique in that it is a superset of C; that is, anything that is valid in C is also
valid in Objective-C. C++ gets close, but not quite there. This means that if you
already have code written in C, you can use it as is for iOS. You can also use
existing C data structures, functions, and preprocessor macros. The more
interesting parts, however, are those that Objective-C adds to turn C into an
object-oriented programming language.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 16

An object in Objective-C is used much like other data types (integers, floating-
point values, characters, and so on) in C, but typically you’ll use a pointer to
refer to it. The following line is an example of creating an object in Objective-C:

NSString *myString = @"Hello, World!";

In that line, we created the object myString. Its class, or the kind of object it is, is
NSString. myString is an instance of NSString. The asterisk (*) signifies that
we’re c reating a pointer-----technically speaking, myString isn’t the object itself
but rather a pointer to an instance of NSString.

NOTE: We created myString as a constant string. The @ followed by a string in
quotes signifies this to the compiler.

To declare a class, use the following syntax:

@interface ClassName : SuperClassName

The @interface is a compiler directive-----that is, a special command to the
compiler that gives it instructions on how to compile your code. In this case,
@interface begins the class definition for a class. The SuperClassName is the
name of another class from which the class you’re creating will inherit variables
and methods. The root object for most of the objects you’ll create is NSObject
(the NS stands for NeXTStep, NeXT’s operating system). While there are
technically other base classes, you’re free to create your own. For now we’ll use
NSObject; it contains many functions that Cocoa Touch relies on.

NOTE: The reason the NS prefix remains from NeXTStep has to do with the history of
Mac OS X. Apple purchased NeXT Software, Inc., in 1996, and the NeXTStep
operating system formed the basis of Mac OS X, introduced in 2001. iOS shares
many of its system-level frameworks, including Objective-C and the Foundation
framework, which contains NSObject and other essential classes, with Mac OS X,
thereby inheriting the shared legacy of NeXTStep’s NS prefix. One advantage of this
is that in most cases, classes that begin with an NS prefix are also available on the
Mac, so if you’re interested in programming in Cocoa (the Mac OS X equivalent of
Cocoa Touch), learning Cocoa Touch is a great first start.

To help explain this, we’ll work toward a goal instead of talking in the abstract
the whole time. Our goal is going to be to create an address book. Let’s create a
class that represents an entry in the address book. Each entry corresponds to
an individual person, so we’ll name the class Person:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 17

@interface Person : NSObject

Now, what should we store in our address book? Obvious candidates are the
person’s first and last names. We can use the Objective-C class NSString that
we used earlier to store those values as strings. To add variables, we use this
syntax:

@interface Person : NSObject {
NSString *firstName;
NSString *lastName;

}

@end

There are a few new syntactical intrigues to cover in that last sample. First, note
that variables are declared inside curly braces ({ and }). These variables are
called instance variables, meaning that each instance of Person-----that is, every
Person object we create-----will have firstName and lastName variables
associated with it. Objective-C does not have class-level storage, so instance
variables are the only kind you can create for an object. Second in our new
syntaxes is the definition of the variables themselves; you’ll notice the *
character before their names. This declares those variables as a pointer. Instead
of storing an NSString object, firstName is a pointer to an NSString object.
This means that firstName contains the memory address of an NSString object.
This may be a difficult concept to grasp at first, but for now, just remember to
always refer to Objective-C objects with a pointer. You almost never need to
refer to them without a pointer. Finally, notice the @end compiler directive; this
signifies that the class definition is complete.

Objects can have primitive variables as instance variables. Suppose we want to
store the person’s birth year. We can store that as an integer. While int will
work to declare an integer, just like in C, Apple platforms support the use of
NSInteger, which is not an object. Instead, NSInteger is a way of defining an
integer that’s safer to use on different architectures. Don’t worry about that for
now; just know that NSInteger, despite the NS prefix, is not an object. Let’s add
a birth year to our Person object:

@interface Person : NSObject {
NSString *firstName;
NSString *lastName;
NSInteger birthYear;

}

@end

Great. You can use any primitive C type as an instance variable in your
Objective-C class, even custom structures, unions, and arrays.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 18

So, how do we use this object we’ve created? We’ll create an instance of our
Person class and call it someone:

Person *someone = [[Person alloc] init];

The square brackets are usually the first thing programmers notice about
Objective-C as being ‘‘weird’’ compared to other languages. This is how you
send messages in Objective-C, with the pattern defined as [receiver message].
When you send a message, the Objective-C runtime looks up the corresponding
method (if it exists) in the receiver’s class and executes it. Message sending,
therefore, is like calling a function, but with the key difference that in Objective-C
the function isn’t resolved until runtime. In the previous example, first we
evaluate the inner message call: [Person alloc]. This is the alloc message sent
to the Person class, which allocates enough memory for a new Person object
and returns a pointer to it. The next message, init, is then sent to the object at
the pointer returned by alloc. If we wanted, we could write it as follows:

Person *someone = [Person alloc];
someone = [someone init];

NOTE: This pattern of calling alloc and init is common enough that Objective-C
supports the new message to do both, but in practice, it isn’t used. It is extremely
rare to use one without the other, so unless you have a very good reason to do so
(and even if you do), you probably shouldn’t separate the calls.

Now that we’ve done this, we can use our new object. But what messages can
we send it? Since Person inherits from NSObject, we can send it any message
that NSObject defines, but nothing very exciting. Let’s add a method to our
class so that we can call it on our object. We add a method in the class
declaration after the instance variables are declared (and outside of the curly
brace) but before the @end symbol. We’ll add a method called displayName,
which will return the first and last names in one string. Note that method names
start with a lowercase letter and use camelCase; this isn’t a language
requirement, just a convention. Similarly, it’s named displayName, not
getDisplayName as you might see in other languages. Here’s what the
declaration looks like:

@interface Person : NSObject {
NSString *firstName;
NSString *lastName;
NSInteger birthYear;

}

- (NSString *)displayName;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 19

@end

The first character is a hyphen (-) because displayName is an instance method,
that is, a message that you send to an instance of a class. Class methods,
which you call on the class directly (like alloc) begin with a plus (+). Next, in
parentheses, is the return type of the method. We’re returning a pointer to an
NSString object in this method. Finally, we have the name, ending with a
semicolon. This method doesn’t take any parameters-----we’ll get to methods that
take parameters later.

To implement any of this, even an empty class with no methods, we need to
define the implementation of our class. We made the interface with the
@interface compiler directive, so it should come as no surprise that the
implementation begins with @implementation. Here’s how we implement our
class, as well as the method:

@implementation Person

- (NSString *)displayName
{
 NSString *name = [NSString stringWithFormat:@"%@, %@", lastName, firstName];

 return name;
}

@end

We’ve written our interface and implementation pieces for this class, but we
haven’t actually done anything with them yet. Let’s change that. Open your
‘‘Hello, World!’’ example project and click File  New  File… (or, just press
⌘+N). When the new file dialog appears, select Cocoa Touch in the left column
and then Objective-C Class on the right (see Figure 2-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 20

Figure 2-1. The new file dialog

On the next screen, enter Person for Class and NSObject for Subclass of. Click
Next, and then choose the path (the default should be fine for now). (See
Figure 2-2.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 21

Figure 2-2. Filling in class information in the new file dialog

Xcode has been nice enough to fill in some basic things for us in two files:
Person.h and Person.m. The former, Person.h, is the header file and is where we
place our @interface block. The latter, Person.m, is the implementation file
(hence the m in the file name) and contains our @implementation block. To fill in
the rest of the class, open Person.h and add the lines in bold:

//
// Person.h
// HelloWorld
//
// Created by Jeff Kelley on 1/28/12.
// Copyright (c) 2012 Jeff Kelley. All rights reserved.
//

#import <Foundation/Foundation.h>

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
 NSInteger birthYear;
}

- (NSString *)displayName;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 22

@end

Next, open Person.m and add the implementation for displayName (in bold):

//
// Person.m
// HelloWorld
//
// Created by Jeff Kelley on 1/28/12.
// Copyright (c) 2012 Jeff Kelley. All rights reserved.
//

#import "Person.h"

@implementation Person

- (NSString *)displayName
{
 NSString *name = [NSString stringWithFormat:@"%@, %@", lastName,
firstName];

 return name;
}

@end

We’ll want to modify our application to display the result of the displayName
method instead of ‘‘Hello, World!’’ To do that, however, we need to be able to
see the first and last names of a Person object. One way to do this is by creating
a new init method. This will be called the designated initializer of our class, that
is, the initializer that we’ll use when creating new Person objects by default. This
method will take three parameters: the first name, the last name, and the birth
year. Here’s how we declare the method in our interface. Add the following
method declaration to Person.h, before the declaration for displayName:

- (id)initWithFirstName:(NSString *)firstName lastName:(NSString *)lastName
birthYear:(NSInteger)birthYear;

You may notice that the return type is id, not a pointer to an object like you
might expect. Actually, id is just a pointer to an object; it’s a good stand-in for
when you can use any object. We use it in the init methods so that if we create
a class that inherits from Person, we don’t have to redefine the return type. We
can also split this declaration into multiple lines to look better. (By convention,
we align the colons, which Xcode will do for you automatically if you press the
Return key to insert a carriage return before the parameter name. If you modify
the text and find it misaligned, Xcode will correct your alignment if you select the
code and press Control+I.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 23

- (id)initWithFirstName:(NSString *)firstName
 lastName:(NSString *)lastName
 birthYear:(NSInteger)birthYear;

You may also have noticed that the three parameters have text before the colon,
the type in parentheses, and then a name. The part before the colon is actually
part of the method’s name. We would call this method
initWithFirstName:lastName:birthYear:. The three parameters are named
according to the text after their type until a space. To implement the method,
add the following lines to Person.m before the @end compiler directive:

- (id)initWithFirstName:(NSString *)fName
 lastName:(NSString *)lName
 birthYear:(NSInteger)bYear
{
 self = [super init];

 if (self) {
 firstName = fName;
 lastName = lName;
 birthYear = bYear;
 }

 return self;
}

NOTE: In the implementation, I changed the names of the method’s parameters in
order to avoid a conflict with the names of the instance variables. One convention to
get around this is to prefix your instance variables with an underscore (_). Be careful,
however; prefixing anything with two underscores is reserved for Apple and may
break your app in mysterious ways if you accidentally choose a name that Apple has
already used. Because Objective-C lacks namespaces, this can happen even if you
don’t use a double-underscore prefix, so you must be careful to avoid repeating
names.

The first line of this method has two names you haven’t seen yet: self and
super. Since this is an instance method (it operates on an instance of Person),
self refers to the instance that received the message. super refers to the class
that Person i nherits f rom-----in this case, NSObject. This isn’t calling a class
method, however; when you call [super init], you’re sending the message to
the same object that received the current message, but you’re using the init
method from its superclass. We assign this value back to self in case the
superclass’s implementation returns a modified value.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 24

The next piece of code checks to see whether self is not nil and, if it isn’t, sets
the instance variables according to the parameters. Finally, it returns self. We
can use this method in our code like so:

Person *person = [[Person alloc] initWithFirstName:@"Jeff"
 lastName:@"Kelley"
 birthYear:1986];

This creates and returns a new instance of Person with my name and birth year.
Calling [person displayName] will return the string ‘‘Kelley, Jeff.’’ Let’s put this
to use. In your ‘‘Hello, World!’’ example project from Chapter 1, open the main
view controller implementation file (LCTViewController.m). At the top, add this
line:

#import "Person.h"

This lets us use our Person class in this file. Without importing the header, the
compiler won’t know about the class. Now, modify the method called
sayHelloButtonPressed: to create a Person:

- (IBAction)sayHelloButtonPressed:(id)sender
{
 Person *person = [[Person alloc] initWithFirstName:@"Jeff"
 lastName:@"Kelley"
 birthYear:1986];
 [helloWorldLabel setText:[person displayName]];
}

Build and run the application. When you click the Hello, World! button, the text
field should display the person’s name formatted as ‘‘Last Name, First Name.’’

Getting and Setting Data
One thing you may notice about our Person class is that there’s no way to get to
the instance variables (firstName, lastName, and birthYear) from outside the
class. To get these variables and set them, we can add some methods to the
class. Open Person.h and add these methods before the @end directive:

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
 NSInteger birthYear;
}

- (id)initWithFirstName:(NSString *)firstName
 lastName:(NSString *)lastName
 birthYear:(NSInteger)birthYear;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 25

- (NSString *)firstName;
- (NSString *)lastName;
- (NSInteger)birthYear;
- (NSString *)displayName;

@end

There’s no issue of a name conflict with the name of the method being the same
as the name of the instance variable. To implement these methods, add the
following code to Person.m:

@implementation Person

- (id)initWithFirstName:(NSString *)fName
 lastName:(NSString *)lName
 birthYear:(NSInteger)bYear
{
 self = [super init];

 if (self) {
 firstName = fName;
 lastName = lName;
 birthYear = bYear;
 }

 return self;
}

- (NSString *)displayName
{
 NSString *name = [NSString stringWithFormat:@"%@, %@", lastName, firstName];

 return name;
}

- (NSString *)firstName
{
 return firstName;
}

- (NSString *)lastName
{
 return lastName;
}

- (NSInteger)birthYear
{
 return birthYear;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 26

}

@end

Now we can get the first name from a Person by sending it the firstName
message. To be able to set the values, we’ll define some other methods. Add
the following method declarations to Person.h:

@interface Person : NSObject {
 NSString *firstName;
 NSString *lastName;
 NSInteger birthYear;
}

- (id)initWithFirstName:(NSString *)firstName
 lastName:(NSString *)lastName
 birthYear:(NSInteger)birthYear;

- (NSString *)firstName;
- (void)setFirstName:(NSString *)firstName;
- (NSString *)lastName;
- (void)setLastName:(NSString *)lastName;
- (NSInteger)birthYear;
- (void)setBirthYear:(NSInteger)birthYear;
- (NSString *)displayName;

@end

The convention is to prepend set to the name of the variable, with the first letter
capitalized. Implementing these is also straightforward, but we have to rename
the parameter to avoid it having the same name as the instance variable. There’s
a lot of back-and-forth between the header and the implementation file in
Objective-C. One thing that can help, if your Mac’s display is wide enough, is
the Assistant editor in Xcode. Open Person.m and select View  Assistant Editor
 Show Assistant Editor, or press ⌘+Control+Return. A secondary editing pane
will open on the right side of the screen. If the Assistant Editor doesn’t have
Person.h open, press ⌘+Shift+Option+Z to switch to Counterparts mode, which
will automatically open the header file for the implementation you’re looking at.
Now that you have both files open, adding a method declaration in your header
and then implementing it in your implementation file is much easier. With
Person.h open, add the implementations for our three setter methods:

- (void)setFirstName:(NSString *)name
{
 firstName = name;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 27

- (void)setLastName:(NSString *)name
{
 lastName = name;
}

- (void)setBirthYear:(NSInteger)year
{
 birthYear = year;
}

@end

While creating these methods is easy enough, it’s tedious. There’s a lot of typing
and switching files, and if you want to change the name of something, there are
a lot of places where you need to do so. When Objective-C was in its early
years, this was the best it got. Some developers would use third-party
applications to create these methods to get and set their instance variables,
which is a sign of how tedious it was. Thankfully, Apple added some new
features to the language to make this easier.

Properties
Properties are a way to define accessor methods in your class. Instead of
defining a getter and a setter for an instance variable, you can use a property to
do so. Here’s an example of a property:

@property (nonatomic, copy) NSString *firstName;

The declaration tells us a few things. First, it tells us the type and name of the
variable. This line in the header is the equivalent of these two lines:

- (NSString *)firstName;
- (void)setFirstName:(NSString *)firstName;

With the property declared, we can refer to these methods (and implement
them) without declaring them by name. Second, the words in the parentheses
define some information about how the variable is used. We use nonatomic to
define access rules for threading. It’s not important to learn now, but in general
atomic is safer for multithreaded applications but slower than nonatomic. Most
of the time, you’ll use nonatomic. The next word is copy, which indicates that
we’ll make a copy of the string when setting it. We typically use copy for strings
to ensure that the string is not modified after we set it. Instead of copy, there are
some things we can use for memory management, but we’ll discuss that in a bit.
You can also pass a third word, either readonly or readwrite. If you use
readonly, then the setter will not be created (readwrite is the default). For future

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 28

reference, Table 2-1 lists the attributes you can set (the bold options are the
default).

Table 2-1. Attributes for Objective-C Properties

Memory Management Semantics Read/Write Semantics Atomicity

assign readwrite Atomic

weak (iOS 5+ with ARC enabled and Xcode 4.2
or newer)
__unsafe_unretained (iOS 4.3 and older and
Xcode 4.2 or newer)

strong (iOS 5+ and Xcode 4.2 or newer)
retain (iOS 4.3 and older)

copy

readonly Nonatomic

As you can see, weak, __unsafe_unretained, and strong all require Xcode 4.2.
To use weak, you must be using ARC, which is a type of memory management
automation. We’ll discuss ARC in more detail in just a bit.

You can also define the names for the getter and setter methods if you want to
change them. If you don’t, then they will be assumed to be the default names,
but if, for instance, your variable is a Boolean type (BOOL), then you might want
the getter to use the word is. This is such a property declaration line in a
header:

@property (getter = isFoo) BOOL foo;

This line is the equivalent of the following lines:

- (BOOL)isFoo;
- (void)setFoo:(BOOL)foo;

Similarly, if you want to change the name of the setter methods, you can use
setter = with the name you’d like to use (though this is rare in practice). Using
the attributes, you can use properties to declare most, if not all, of the accessor
methods your objects will need.

Writing Your Code for You
Properties are nice, but they only take care of the method declaration for you.
There’s still the matter of implementing the methods with boilerplate code that
just sets the variables as needed. Luckily, when Apple added properties to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 29

language, it also added a way to implement these methods: the @synthesize
compiler directive. Inside an implementation block, you can use @synthesize to
tell the compiler to generate those methods for you. It will use the property
attributes you set to generate the methods appropriately. If you don’t have an
instance variable to store the property, using @synthesize will create one for
you. The following class is an object with one property, completely implemented
without explicitly implementing a single method:

@interface BoolWrapper: NSObject {
 BOOL _value;
}
@property BOOL value;
@end

@implementation BoolWrapper
@synthesize value = _value;
@end

This defines a BOOL property value, using the instance variable _value as storage
for the value. If we had omitted declaring _value as an instance variable, the
@synthesize line would have created it for us. We can send an instance of
BoolWrapper the value and setValue: messages, never having written them.
This is where properties really shine. Not only do you not have to implement
boilerplate code, but if you ever need to refactor your code, it makes it much
easier. It also makes your code much less likely to have errors in it, since the
code generated by the compiler i s very well-tested-----and the compiler doesn’t
make typos or get tired.

Memory Management
Memory is a precious resource on iOS devices. The original iPhone had 128MB
of RAM, most of which was used by the OS. Four years later, the iPhone 4S has
512MB of RAM, still much less than modern systems running Mac OS X. That
being the case, how we use the memory available to us is very important. While
this section might not be exciting, understanding how memory management on
iOS works is crucial to troubleshooting performance problems.

The memory on the device is split up into two types: stack memory and heap
memory. The stack is filled up as your code executes; when one function calls
another, it pushes a stack frame onto the stack: its local variables and storage
required for it. When the function is done, that stack frame is popped off of the
stack, and that space is reclaimed for future use. Stack space is very limited,
and when you run out, the program crashes, having caused a stack overflow
(hence the name of the popular programming Q&A site). While stack memory is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 30

convenient, there’s a huge drawback: when the stack frame is popped,
everything on it disappears. This doesn’t really work well with objects. Typically,
when we create an object in a method, we’ll want that object to still be available
after that method completes. If the object is created on the stack, though, it will
be destroyed at the end of the method.

For this reason, all Objective-C objects are created on the heap. While it’s
possible to manually override object creation and create objects on the stack, in
practice this is unnecessary. Heap memory is different from stack memory in
that we have to request it from the operating system. In C, we use the malloc()
function to allocate a portion of memory. You may notice the similarity with the
alloc message you sent to your classes to create new objects.

Unlike the stack, the heap does not clean itself up once we’re done; all memory
allocated with malloc() must be cleared with free(). Once you free a block of
memory that you’ve manually allocated, that space is once again available for
use. Objects are created on the heap, as well, but it’s more difficult than
allocating arbitrary memory. We know we want objects to stick around, but how
can we tell how long they should stick around for in order to free their memory?

Garbage Collection
One way to do this is called garbage collection. Java, used on Android and
other managed systems, uses garbage collection, which works by keeping track
of your objects and periodically destroying them when it can tell that they’re no
longer being used. While this sounds easy, there’s a trade-off: your app is
paused while the garbage collector runs, causing performance issues. There are
some ways to mitigate that, but none of them is perfect. Another problem is that
if two objects reference one another, the garbage collector can’t tell when they
are no longer used, because either one might be using the other. This is called a
retain cycle, and the net effect is large swaths of memory taken up by unusable
objects. Apple briefly introduced garbage collection into Objective-C on Mac OS
X with mixed results, and today its use is discouraged.

Reference Counting
Objective-C uses another method for keeping track of objects: reference
counting. Reference counting works by counting the number of references there
are to an object and destroying the object when that number reaches 0. In
Objective-C, this is called the retain count of the object. All objects start their life
with a retain count of 1, and when it reaches 0, the object is destroyed, and its

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 31

memory is returned to the system. Here is an example of a typical retain-
counting scenario:

- (void)doSomething
{
 MyObject *foo = [[MyObject alloc] init];

 [foo doAnImportantTask];

 [foo release];
}

In this example, foo is created with a retain count of 1; then before we’re done,
we send it the release message, which decrements the retain count. One
crucial thing to note, however, is that we don’t actually know that foo will be
destroyed at this point. Before sending it the release message, we sent foo the
doAnImportantTask message. In that method, foo could have been retained (by
being sent the retain message), which increments its retain count. The general
rule is that in any given method, we have to balance calls to retain and release.
Since allocating foo gave it a retain count of 1, we sent it the release message
to go down to 0 before the method finished. We need to release an object only if
we have retained it or created it. In Cocoa Touch, there is a naming convention
that indicates when you need to release an object: if the method name begins
with alloc, new, copy, or create, then it is expected that the object will be
returned with a +1 retain count, and you will need to release it when you’re
done. All other methods should return objects that do not need releasing.

Autorelease Pools
While reference counting systems are effective, sometimes you want to return
an object and release it at the same time. You often see class methods that are
factories for an object:

+ (MyObject *)object;

The object method returns an instance of MyObject, but since its name doesn’t
begin with a prefix that indicates ownership, we shouldn’t return an object with a
+1 retain count. To get around that, object is implemented thusly:

 + (MyObject *)object
{
 MyObject *object = [[MyObject alloc] init];

 return [object autorelease];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 32

At first glance, this seems like object will be deallocated immediately: it’s
created with a retain count of 1 and then sent an autorelease message, with
seems like something that would decrement its retain count, causing it to go to
0 and be deallocated. Autoreleasing an object does decrement its retain
count...just not yet. It’s not too important when the object is actually released,
because that depends on how busy the system is and how your code is written,
but the important thing is that it won’t happen until your stack frames are gone,
so autoreleased objects are OK to use for the duration of the method.

Automatic Reference Counting
Looking back at the code we wrote for the ‘‘Hello, World!’’ sample application,
you may notice something: you never called retain or release on an object. In
fact, there’s no memory management code in them at all! Consider yourself a
very lucky person; you’re learning memory management in an era where all the
code is written for you.

Just as properties and @synthesize write your getters and setters for you,
automatic reference counting writes your memory management code for you.
How does it work? Consider the general goal of balancing calls to retain and
release. Generally speaking, an object’s retain count should be the same at the
end of a method as it is at the beginning of the method. What automatic
reference counting (ARC) does is to retain objects when a pointer to them is
created and release objects when that pointer falls out of scope. This code:

{
 MyObject *object = [MyObject object];
}

will produce this code through ARC:

{
 MyObject *object = [[MyObjet object] retain];
 [object release];
}

ARC knows which methods return already retained objects and deals with those
accordingly. It can even use its knowledge of the memory management code to
optimize an app’s memory usage and speed execution. The calls to retain and
release that it generates are also faster than the messages you would send. All
in all, ARC, like properties, transfers work from you, the programmer, to the
compiler. And believe me, the less time you spend writing memory management
code, the better. The largest portion of crashes on pre-ARC iOS applications is
incorrect memory management code. Consider this fragment:

- (void)importantTask

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 33

{
 MyObject *object = [[MyObject alloc] init];

 [object doSomething];
 [object release];

 [object doSomethingElse];
}

Assuming that doSomething does not incorrectly retain object, we have a
problem. The call to release will cause object’s retain count to go to 0,
destroying it, but after that, we call doSomethingElse on object. Since object is
just a pointer to an object, it still has the memory address of the object stored in
it. If you try to access that memory, the system knows that it’s already taken it
back from you. Since you aren’t allowed to access memory that the system has
not given to you, this call to doSomethingElse causes the application to crash.
ARC nearly eliminates these types of errors, saving untold hours of developer
heartache.

ARC and Properties
One thing you do need to understand about memory management with ARC is
how to use it with properties. One category of attributes you can set on a
property is its memory management semantics. Using the attribute strong will
cause the property to be retained when it’s set and not released until the object
is deallocated. This is the most common use of properties. One common
problem, however, is that if two objects have a strong reference to one another,
neither will ever be released, just like with garbage collection. The solution is for
one of them to have a reference to the other but not retain it. Before iOS 5, the
assign attribute was used for this. The trouble here, though, is that if you use
assign, you can have a reference to an object after it’s been released, crashing
the app when you try to use it. In iOS 5, Apple introduced the weak attribute,
which is a reference to an object that does not retain it. When the referenced
object is deallocated, however, the weak reference goes away, so you can’t try
to call methods on deallocated objects. Weak references allow you to
temporarily store pointers to objects without worrying about affecting their life
cycle or being affected by it.

When a weak referenced object is destroyed, all weak pointers to it are set to
nil, Objective-C’s equivalent to a null object. Sending messages to nil is OK,
so with weak references, you don’t need to check to see if the reference points
to an object. Messages sent to nil that return a return value will return nil for all
object types and 0 for all primitive types.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 34

Categories
Sometimes, instead of writing your own class, you just want to add a method to
an existing class. Let’s say, for instance, that you want a quick way to double a
string by appending it to itself. It would be nice if you could write the following
code:

NSString *myString = @"Hello, World!";
NSString *doubleString = [myString doubleString];

Unfortunately, the doubleString method does not exist on NSString. One way to
get it would be to create a subclass of NSString that implements the method.
This isn’t perfect, however, because then we have to replace our NSStrings with
the subclass everywhere we want to use the new method. Fortunately,
Objective-C categories allow us to add the method to the existing class! Here’s
how we would create a category:

@interface NSString (DoubleString)
- (NSString *)doubleString;
@end

This looks like creating a new class, but instead of the superclass, we specify a
category name-----in this case, DoubleString. Then, in our implementation, we
specify the same name:

@implementation NSString (DoubleString)
- (NSString *)doubleString
{
 return [self stringByAppendingString:self];
}
@end

Note that we can still access self while in the category. Categories make it very
easy to extend classes without modifying the original class or subclassing them.
Another useful thing you can do with categories is to use them to separate
functionality. If you have an object that can be used in a Mac OS X app as well
as an iOS app, for instance, you might have one category that draws it on-
screen on a Mac and another for iOS. One example of Apple doing this is the
UIKitAdditions category on NSString, which has plenty of useful methods for
determining how a string will be drawn on iOS. Since NSString is shared
between Mac OS X and iOS and those methods are useful only on the latter, a
category is a good way to separate those concerns.

Categories are not without risk, however. In the previous example where we
implemented the doubleString method, we made an important assumption: that
there was not already a doubleString method declared on NSString. If there
was, then one of the implementations would override the other, which is clearly

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 35

not what we want. Even worse, it’s not always clear which implementation will
‘‘win,’’ so you don’t even know what code is running! Another scenario that we
want to avoid is the case where Apple also decides to add the same
functionality. If, in a future iOS release, Apple added the doubleString method,
the same problem would occur. To avoid this, it’s always considered a best
practice to declare your category methods using a prefix. In this case, I would
change doubleString to LCT_doubleString. While this isn’t quite as elegant, it
serves the important purpose of protecting the code from being broken by
somebody else’s. The naming convention for category files is
<ClassName>+<CategoryName>.[h/m]. For our string doubling category, we could
name the files NSString+Doubling.h and NSString+Doubling.m.

NOTE: One other caveat of categories is that you cannot declare new instance
variables in a category. This would change the internal memory layout of the object,
and since the original class can’t always be recompiled, we can’t modify the layout of
its memory.

Class Extensions
Unlike other languages, Objective-C does not offer private methods. Any
method can be called at any time by anyone. In fact, it’s possible to query an
object at runtime and obtain a list of every method that can be called on it. That
being said, there is still some usefulness in hiding a method from other
developers. Generally speaking, any method declared in your header file should
be a method that can be called from other classes on your object. If you want to
declare a method that is only to be used inside your class, you can do so with a
special type of category: a class extension. Since we don’t want this to be
public, the interface declaration of the class extension goes in the
implementation (.m) file for your class, not the header (.h). Here’s an example of
a class extension being declared:

@interface MyClass()
- (void)superSecretMethod;
@end

As you can see, a class extension is declared with the class name and then an
empty set of parentheses. Unlike with categories, you are allowed to define new
instance variables in a class extension, making them a good place to store
internal variables that you don’t want to expose outside of the class.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 36

NOTE: Like methods, there is no way to truly make an instance variable secret. It is
possible to query an object at runtime and obtain a list of its instance variables.

The methods that you declare in a class extension are implemented alongside
the regular methods for the class. A typical implementation file with a class
extension might look like this:

#import "MyClass.h"

@interface MyClass() {
 NSString *secretString;
}
- (void)mySuperSecretMethod;
@end

@implementation MyClass
- (void)mySuperSecretMethod
{
 // Implement super-secret method here.
}
…
@end

Protocols
When programming with more than one developer, often you’ll be working on
two classes simultaneously that, while separate from one another in many
respects, need to work together to accomplish a task. This is where header files
come in; one developer creates the header file for the class, and the other looks
at the header to determine what methods are available. Often, though, you
won’t care about the other class, other than what you need to know in order to
work with it. Protocols are a way to abstract a group of methods away from a
class. When we create a protocol, we define a list of methods. Objects that
conform to this protocol must then implement those methods. One common
example is one class sending a message to another class when it has finished a
long-running task. Let’s create a class called Worker with a long-running task:

@interface Worker: NSObject
- (void)longRunningTask;
@end

What we want to happen is for the worker to notify some other object when the
task is complete. In Objective-C, it’s common to refer to these helper objects as
delegates. The practice of using them is called delegation, and it’s one of the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 37

more common design patterns used in Objective-C. To create the protocol, we’ll
create a new header file, WorkerDelegate.h:

// WorkerDelegate.h

@class Worker;

@protocol WorkerDelegate
@required
- (void)workerDidFinish:(Worker *)worker;
@end

NOTE: The @class compiler directive is called a forward declaration. This allows us
to use the Worker class without actually importing the Worker class’s header file. In
general, it’s better to import as few headers as needed; whenever any header your
implementation files includes is changed, the file will need to be recompiled, even if
its contents are unchanged. Even without the compile-time speedup, it’s better to
avoid including unneeded headers to keep your code clean and organized.

The compiler directive @protocol signifies the creation of a protocol, with the
name following. The naming convention is to capitalize the first letter and to use
camelCase throughout. Next, we use @required to indicate that any methods
following must be implemented by objects that conform to the WorkerDelegate
protocol. You can also use @optional to signify methods that are declared but
do not need to be implemented. Methods are now declared as optional by
default, which wasn’t always an option. Because of that prior limitation, some
older classes use ‘‘informal protocols,’’ which aren’t protocols in the language
sense of the word. Informal protocols are simply one or more methods that you
can implement in your code to be called from other objects, like a regular
protocol, but aren’t enforced by any header.

Conforming to Protocols
To conform to a protocol, we create a list after the declaration of a class. We’ll
create a new class, Delegate, to conform to the protocol:

#import "WorkerDelegate.h"

@interface Delegate : NSObject <WorkerDelegate>

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 38

The syntax is to use angle brackets (< and >) to indicate the beginning and end
of the list of protocols the class conforms to; multiple protocols are separated
by a comma and space. If you create a new class and leave its header like that
without implementing the required method, you’ll get a compiler warning that
you haven’t yet implemented the workerDidFinish: method.

NOTE: It is common practice to group all of a protocol’s methods together in your
implementation file for a class that conforms to the protocol.

Next, we need to modify Worker to store a pointer to the delegate:

#import "WorkerDelegate.h"

@interface Worker : NSObject

@property (weak) id <WorkerDelegate> delegate;

@end

Typically delegates are created with type id, since we don’t care what kind of
object it is, only that it conforms to the WorkerDelegate protocol. Then, in our
long-running task method, we can use the delegate like so:

- (void)longRunningTask
{
 // Perform task.

 [[self delegate] workerDidFinish:self];
}

Protocols allow you to keep your code clean and separate different areas of
functionality in your classes. Apple uses protocols all over Cocoa Touch,
especially using the delegation design pattern, so they are something every iOS
developer should know extremely well.

Model-View-Controller Programming:
Well-Designed Code
The design philosophy behind much of Apple’s code (and, in fact, much modern
code) is called Model-View-Controller (MVC). MVC dictates a separation of your
code between the model, or the data that your application deals with; the view,
or the presentation of that data; and the controller, which mediates between the
two. Consider, for instance, an address book. In an address book, the model is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 39

the address data: people, addresses, phone numbers, and so on. The view is
the layout of the app: lists of people, buttons for editing information, and so on.
The belief behind MVC is that the model code should never have any view code
in it. If, for instance, you’re writing a cross-platform address book, then the code
that draws the window for the address book on Mac OS X should not be in the
model code, nor should the code to draw it on iOS. On the other hand, code
that affects the model should not be in the view; while the view might display an
alphabetized list of people, it should not contain code for changing someone’s
name. Figure 2-3 illustrates the separate nature of the MVC paradigm.

Figure 2-3. The separation of concerns in the Model-View-Controller paradigm

The benefits of MVC programming often occur not when writing an app for the
first time but when adding features to it. By turning your code into more modular
pieces, it’s easier for it to be modified or swapped. The more modular the code,
the easier this is. If tomorrow Apple were to release an API for writing apps for
the Apple TV, you wouldn’t want to have to sift through iOS button-creating
code to get important pieces of the address book for an Apple TV version. In
general, assume that the view can be anything: a screen on iOS, a window on
Mac OS X, a web site, or perhaps even output on a physical LCD screen! If your
model code concentrates on storing data and your view code concentrates on
displaying data to the user and receiving input from the user, your code will have
a head start on the road to greatness.

MVC is achieved using the controller, an invisible intermediary between the
model and view. The controller reads the first and last names from the model
and sends them to the view, as well as receiving user input in the view and
updating the model accordingly. Controllers are the least-reusable portion of
MVC code, because they’re often tied both to the model code and to the view
code. iOS uses the concept of controllers so much that Apple has created a
special class for them: UIViewController. We’ll discuss view controllers more
in-depth as we build our first real app in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Objective-C in a Nutshell 40

Summary
In this chapter, we went over the basics of Objective-C. You should now be
comfortable creating classes, declaring and implementing methods, using
properties, and conforming to protocols, as well as using Xcode and the other
developer tools to achieve these goals. Thanks to ARC, you’ll also be writing
perfect memory-management code, since you won’t be writing any! Your ‘‘Hello,
World!’’ example project from Chapter 1 now has a Person class in it that you’ve
used to display a sample person. You should also be starting to think about the
Model-View-Controller paradigm to get ready for Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Chapter

Managing On-Screen
Content with View
Controllers
By and large, iOS apps deal with their content one screen at a time. The
Contacts app, for instance, has a list of contacts on one screen. It has one
function: to display a list of contacts. When you tap a contact, another screen of
content is displayed, this time detailing the contact you selected. Safari displays
one web page at a time, the Settings app displays one group of settings at a
time, and Mail displays a folder at a time and then displays one message when
you select it. This trend of displaying content one screenful at a time is
necessary when dealing with screens as small as the iPhone’s; with a resolution
of only 320x480, there simply isn’t much room for multiple groups of
information.

The screens that do appear in iOS applications have some common features.
Often the application has a navigation bar at the top with the name of the screen
that’s being displayed and a Back button on the left side. Other apps use a
black tab bar on the bottom to switch between different screens. Some
behaviors are common to all screens of content: loading them when they’re
needed, disposing of them when they aren’t, and presenting them to the user.
This common behavior and these common tasks are encapsulated in one of the
most important classes in all of Cocoa Touch: UIViewController. A view
controller manages a single view, usually a screenful of content. This view can

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 42

have many subviews in a complex hierarchy, but a view controller deals directly
with one view-----its view p roperty-----as its primary piece of content.

In this chapter, we’ll take a tour through UIViewController, learning how and
when to use them, as well as some subclasses of it in UIKit that allow you to
take advantage of framework code instead of writing it yourself. We’ll cover all
of the major types of view controllers, as well as the nib loading system that
loads user interfaces for the view controllers from files that you create. We’ll also
start MyStuff, an app that we’ll be working on for a few chapters that serves as
a home inventory system.

View Controller Life Cycle
The life cycle of a view controller begins when your app creates one. You might
think that as part of its creation process, the view controller creates its view. In
fact, to preserve memory, the view is created only at the last possible second; if
you were to create 1,000 view controllers but display only one to the user, only
one view would be created. Creating a view controller is easy:

UIViewController *viewController = [[UIViewController alloc]
initWithNibName:@"MyViewController" nibBundle:nil];

The ‘‘nib name’’ portion of that refers to one of the more powerful tools at your
disposal as a Cocoa Touch developer: Interface Builder. Formerly a stand-alone
application outside of Xcode, Interface Builder now refers to the interface you
see in Xcode when working on your app’s UI. A nib, which today has the .xib
file extension, is a view that’s been archived in XML onto the disk. When the
view controller needs its view, it opens that XML file and loads the view from it.
The real strength of Interface Builder---created nibs, however, is the way you
create them. Instead of writing tedious UI layout code wherein you manually
position every element of your view hierarchy, Interface Builder allows you to
manually drag and drop user interface elements into a live representation of your
view, as you can see in Figure 3-1. You can modify the view’s properties
directly, tweaking settings with immediate visual feedback of how it’s going to
look in your app.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 43

Figure 3-1. Using Interface Builder to create a view controller’s UI

Laying out your views without writing a line of code is convenient enough, but
Interface Builder goes a step further. When you create a view and add it to your
interface, sometimes you need a pointer to it in your code. Other times,
especially with user interface elements like buttons, sliders, and switches, you
need the view to call a method when it’s pressed or its value changes. Interface
Builder uses two special keywords to denote these use cases: IBOutlet and
IBAction. An IBOutlet is a pointer that will get filled in when the nib is loaded.
To create one, simply add IBOutlet to your property declaration:

@property (strong, nonatomic) IBOutlet UILabel *titleLabel;

NOTE: You can also use the IBOutlet keyword when declaring instance variables.

One you’ve defined the outlet, you can use Interface Builder to ‘‘fill it in.’’ Simply
hold Control and drag from File’s Owner on the left side of the view to your
outlet, as shown in Figure 3-2. This makes the connection between the view and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 44

your code. Now, when the nib is loaded, it will call setTitleLabel: on your view
controller with the label you’ve created.

Figure 3-2. Connecting the view controller to the title label

Using IBOutlets allows us to change user interface elements dynamically,
making them essential to effective UI design. When we need to go from the UI to
the code, we use IBActions. Replace void with IBAction as the return type for
your method:

- (IBAction)doneButtonPressed:(id)sender;

The parameter on the method, sender, will be a pointer to the button that was
pressed. Just like you connected your view controller to the title to connect the
title label to its property, you connect from the button to the view controller to
connect it to the method. Xcode will automatically link the method to the proper
control event and call your method when the user presses it.

Once your view has been created in Interface Builder and loaded into the view
controller’s view property, the rest of the view controller life cycle begins. Not all
view controllers’ views are created in Interface Builder, however. If you prefer to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 45

create the view in code, you can implement the loadView method in your
subclass of UIViewController and do it there. Sometimes creating your views in
code is easier, especially if their contents are highly dynamic or if you use many
custom subclasses of UIView.

Regardless of how you load the view, the next step in the life cycle is the
viewDidLoad method. You can use this method to do any further setup of your
view needs, such as filling in labels with values from your objects or starting a
network request.

NOTE: In all of the view controller life cycle methods that you implement in
UIViewController subclasses, be sure to call the superclass’s implementation.
For viewDidLoad, for instance, you’d call [super viewDidLoad].

There are a few more places where you can customize your view controller’s
behavior. The life cycle methods viewWillAppear:, viewDidAppear:,
viewWillDisappear:, and viewDidDisappear: are fairly self-explanatory.
Typically, if you’re going to perform custom animations when your view appears
on the screen, you do that in the viewWillAppear: method and then begin the
animations in the viewDidAppear: method. If your view has long-running or
repeating animations, you might stop them in viewDidDisappear:. Most of the
time you can get away without implementing these methods, but they’re always
available if you need them.

When the view is unloaded, your view controller subclass will receive the
viewDidUnload message. This is one of the more important methods to override
in a view controller, because one view controller might load and unload its view
multiple times in its life. Anything you set up in viewDidLoad must be reversed,
as well as anything that was set up in the nib, such as your outlets. Before iOS
5, it was necessary to set all of your outlets to nil in your viewDidUnload
method to release them when your view was released. If you’re using ARC and
targeting only iOS 5 and newer, you can use a weak reference for your
IBOutlets:

@property (weak) IBOutlet UILabel *myLabel;

Once your view is deallocated, the label will be released, and when it in turn is
deallocated, the weak pointer to it is reset to nil. This allows you to avoid
having huge implementations of viewDidUnload just to release all of your outlets.
Xcode will set these outlets to nil in your viewDidUnload method if you create
the outlets by Control+dragging, but you aren’t obligated to do so yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 46

You might be asking when a view controller would release its view but not be
deallocated. The answer is when memory pressure forces it to do that. Since
iOS devices have much less memory than desktop computers have, memory is
a very constrained resource. The system takes every opportunity possible to
reclaim it. When memory gets low, the system sends out a notification, and all
view controllers respond by calling their didReceiveMemoryWarning methods.
This method can figure out if the view controller’s view is on the screen; if it
isn’t, then the view controller will release its view to reclaim that memory.
Subclasses of UIViewController can implement didReceiveMemoryWarning to
take that opportunity to release large objects. If you have large objects that are
easily re-created, use this method to release them and set pointers to them to
nil to help the application reclaim some memory. If you don’t release enough,
the system will quit your application if there isn’t enough memory for it to run.

The final view controller life cycle method we’ll look at is
shouldAutorotateToInterfaceOrientation:. This long-winded method is called
when the user rotates their device. Its one parameter is interfaceOrientation,
which is one of four orientations. To support rotation, simply return YES for
orientations your view controller supports, and return NO for orientations it
doesn’t. The system will take care of animating your view during the rotation,
but if you need more control over the process, such as if you need to adjust
your view’s layout depending on the rotation, you can implement various
methods to manage it.

NOTE: For iPhone, it is uncommon to support the
UIInterfaceOrientationPortraitUpsideDown orientation, but for iPad you
should try to support all four orientations.

Implementing Application Logic with Controls
View controllers play a central role in your application’s behavior. iOS
applications respond to user touches on user interface elements such as
buttons, sliders, and so forth. Instead of implementing the logic to respond to
those touches in the views themselves, you should use view controllers to
receive those user actions and respond. This makes user interface elements
more reusable, keeping application-specific logic in your view controllers.
Apple’s user interface elements support this pattern, implemented in the
abstract class UIControl. Common examples include UIButton, UISlider,
UISwitch, and, with iOS 5, UIStepper.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 47

Apple’s controls use the concepts of ‘‘targets’’ and ‘‘actions’’ to call back to
your code when the user interacts with them. This is set up automatically when
you use Interface Builder, but it’s fairly easy to set up in code. To get a button to
call didTapButton: in our code, we would write the following code:

[myButton addTarget:self
 action:@selector(didTapButton:)
 forControlEvents:UIControlEventTouchUpInside];

The final parameter is a bitmask of control events. For buttons, the convention is
to use UIControlEventTouchUpInside, which is fired when the user lifts their
finger off the device when it was touching the button. Another common event is
UIControlEventValueChanged, which is called when, for instance, the user
adjusts the value of a slider.

The UIButton class is easy to customize. It has several control states, which
allow you to customize its behavior based on how the user is currently
interacting with it. To make a button have red text by default but blue text when
touched, two lines of code will suffice:

[button setTitleColor:[UIColor redColor] forState:UIControlStateNormal];
[button setTitleColor:[UIColor blueColor] forState:UIControlStateHighlighted];

NOTE: The UIColor class defines several helpful class-level methods to quickly
create common colors.

Creating buttons is easy, too. Most of the time, your designer will want a custom
button, because iOS’s typical buttons are rather uninspiring. This is best
accomplished with a background image. When you create a button, you use the
buttonWithType: class method on UIButton, passing one of several types.
Creating a custom button with a background image is straightforward:

UIButton *myButton = [UIButton buttonWithType:UIButtonTypeCustom];
[myButton setBackgroundImage:myBackgroundImage forState:UIControlStateNormal];

By default, iOS will darken the button when the user taps it, but you may also
specify an image for UIControlStateHighlighted to customize that.

Need a button with multiple sections? Use a UISegmentedControl. Instead of
providing a title, you provide multiple titles, one for each segment on the control.

 Another typical user interface element is a UISlider. Sliders have a button
(referred to as the thumb) that moves on a track from a minimum value to a
maximum value. So, if you wanted to make a slider to change a value between 1
and 100 that calls the method sliderValueChanged: when its value changed,
you would write the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 48

UISlider *slider = [[UISlider alloc] init];
[slider setMinimumValue:0];
[slider setMaximumValue:100];
[slider addTarget:self
 action:@selector(sliderValueChanged:)
 forControlEvents:UIControlEventValueChanged];

As the user adjusts the slider, you will receive messages constantly, unless you
set its continuous property to NO. You can also customize the appearance of the
slider, providing custom images for the thumb, minimum track (to the left of the
thumb), and maximum track. In iOS 5 and newer, you can also change the tint
color of the slider to fit your app’s color scheme.

Sometimes you need to interrupt the user to get input. In those cases, you can
present the user with an alert using the UIAlertView class. Alert views are
created with a title, message, and one or more buttons, examples of which you
can see in Figure 3-3. To receive the button that the user selected, implement
the UIAlertViewDelegate protocol. Creating an alert view is easy:

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Title"
 message:@"Message"
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"OK", nil];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 49

Figure 3-3. A UIAlertView with two buttons

Showing an alert view is as easy as calling its show method. Once the user taps
a button, it calls its delegate’s alertView:clickedButtonAtIndex: method with
the index of the button that the user tapped. Alert views are best used for
situations where you need the user to select between two or three actions
before continuing. Using too many as notifications will simply annoy your users.

Providing Lists of Content with Table Views
One of the most basic interfaces you’ll use in an iOS application is the table
view, implemented in the UITableView class. Nearly every application that has a
list of items the user must pick from uses a table view, and for good reason:
they perform well, they’re easy to create, and they provide common behavior
that the user expects. A table view consists of sections, each of which contains
zero or more rows. Each row is drawn using a UITableViewCell, a reusable class

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 50

that performs the drawing work for each row. Table views have only one
column, so be sure to maximize the horizontal space your data uses. The more
vertical space each cell uses, the fewer cells will fit on the screen. There are two
styles to table views, illustrated in Figure 3-4.

Figure 3-4. A prototypical UITableView. On the left is a table view with the “plain” style, and on the
right is the “grouped” style.

Instead of subclassing UITableView, you implement two protocols:
UITableViewDataSource and UITableViewDelegate. Since a view controller that
solely consists of a table view and implements both of these protocols is such a
common pattern, you can use the built-in subclass UITableViewController,
which will perform the initial setup for you. Implementing the table view protocol
methods follows a pattern for every table view.

First, the data source method numberOfSectionsInTableView: is called. Like
every table view protocol method, the first parameter is a pointer to the table

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 51

view. Next, the table view gets the number of rows in its sections in the
tableView:numberOfRowsInSection: method. Finally, we’re ready to create a
cell. The table view calls the tableView:cellForRowAtIndexPath: method on its
data source, which returns a UITableViewCell object. This process is heavily
optimized, however, since table view performance is so important. Table views
should be smooth and responsive even when the user is scrolling through
hundreds of cells as quickly as they can, so the operations in this method need
to be as fast as possible. One of the shortcuts taken here is that the table view
cells are reused as the user scrolls. When one cell moves past the top of the
screen, it is reused as the next cell coming up from the bottom. To accomplish
this, each cell has a string property called reuseIdentifier, which should be
unique for each kind of cell in your table view. When you’re creating a cell, first
try to get a cell that’s ready for reuse. A typical implementation of this method
might look like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"CellIdentifier"];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"CellIdentifier"];
 }

 [[cell textLabel] setText:[NSString stringWithFormat:@"Row %d", [indexPath
row]]];

 return cell;
}

NOTE: Table views use the NSIndexPath class with table view–specific extensions
to represent a row in the table. Use the section and row methods to retrieve the
desired values.

By calling dequeueReusableCellWithIdentifier: on the table view, we might get
a cell that’s ready to use. If not, we get nil back and have to create one
ourselves. There are several built-in styles to use, or you can use your own
subclass of UITableViewCell. By reusing these cells, the table view avoids
having to create and destroy them, saving what would otherwise be an
expensive operation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 52

Once a table view’s contents grow beyond a reasonable quantity, it’s difficult for
the user to navigate it. One solution is a search bar at the top of the table view
that narrows the list of content to that which matches the user’s search term.
Another is to separate the content into letters, such as sorting a list of people by
last name and then to allow the user to tap a letter on the right margin of the
table view to jump to that letter’s section. To accomplish this, provide an array
of letters in the data source’s sectionIndexTitlesForTableView: method, and
specify which titles correspond to which sections in the
tableView:sectionForSectionIndexTitle: method. This is a quick and easy
way to help users navigate your app without getting frustrated from seemingly
endless scrolling.

Another way to provide more information to the user is to provide header and
footer text for the sections, using the tableView:titleForHeaderInSection: and
tableView:titleForFooterInSection: methods. Depending on the style of the
table view, the titles are rendered differently; by default, the ‘‘plain’’ table view
style pins the header of the topmost section to the top of the table view. You
may also specify custom views for your header and footer using the table view
delegate’s tableView:viewForHeaderInSection: and
tableView:viewForFooterInSection methods.

Until now we’ve used only the data source methods, but once we want to
respond to the user’s actions, we use the delegate methods. The most common
one to implement is tableView:didSelectRowAtIndexPath:, which is called when
the user taps a row. In many applications, this is where you would transition to a
new view controller to display the details of the item the user tapped. It’s
important to let the user know that they can select a row, and one common way
to do so is to use the table view cell’s accessoryType property. Setting it to
UITableViewCellAccessoryDisclosureIndicator adds an icon to the right of the
cell that indicates to the user that tapping the cell will cause an action to occur.

Providing Data to Your Table View
One common pattern for table views is to store an array of objects, one per row.
The number of objects in the array is the number of rows in the table view’s first
(and usually only) section.

By storing your data in an array, you can use its ordered nature to allow the
array to represent the state of the table view, obtaining your object by calling
[myArray objectAtIndex:[indexPath row]]. This holds up well when you edit
the data, because the changes you make in the array can be reflected in the
table view, and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 53

These methods are enough to provide great table views that allow your users to
navigate information quickly, but sometimes you’ll need to modify the contents
of a table view. Perhaps you’re syncing with the cloud in the background and
more items have been added to the list, or the user needs to delete one.
Whenever you need to modify the order of a table view or manage its contents,
it’s a two-step process: first, tell the table view what changes are being made,
and second, modify the data to reflect those changes. The exact order doesn’t
matter, but when you reorder the table view, the values it receives from its data
source must match up; if you delete a row in section 2, the number of cells you
return for section 2 must be one fewer.

Deleting a cell or inserting a cell is a matter of a method call on the table view:
either deleteRowsAtIndexPaths:withRowAnimation: or
insertRowsAtIndexPaths:withRowAnimation:. If you have a few different
changes to make, you can tell the table view to wait before making any changes
by sending it the beginUpdates method at the beginning and the endUpdates
method at the end. You could alternatively call reloadData on the table view to
reload all data, but it’s less efficient and isn’t animated. Finally, if you need to
move cells around, use the moveRowAtIndexPath:toIndexPath: method or, for
large changes, the moveSection:toSection: method.

Table views can support the reordering of rows by displaying a reordering
control on the right of the cell. To do this, the table view must enter ‘‘editing’’
mode, done by calling setEditing:animated: on the table view. For each row,
the table view calls the data source method tableView:canMoveRowAtIndexPath:
and, if it returns YES, displays the control. When the user drags the cell to
reorder it and releases it, the table view will call its data source method
tableView:moveRowAtIndexPath:toIndexPath:, in which the data source should
update the data model (in our case, the array of objects) to reflect the user’s
changes. As the user is dragging the cell around, you can restrict which
locations it can move to by implementing
tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIndexPath:
in your table view’s delegate.

Editing mode also allows you to display delete buttons, add buttons, and further
adjust the appearance of your table view. To learn more about these
customizations, refer to the UITableView, UITableViewDataSource, and
UITableViewDelegate documentation.

Providing Custom Table View Cells
While Apple’s provided table view cells are good enough for many uses, often
you’ll want your table views to have a specific look to them or to have a heavily

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 54

customized internal view hierarchy. In that case, you have two options: create a
subclass of UITableViewCell or implement a table view cell in a nib. If you’re
creating a subclass of UITableViewCell, you can add subviews in the
initWithStyle:reuseIdentifier: method. Much like any other custom UIView
subclass, override layoutSubviews to lay out your cells programmatically. One
extra step for table view cells is the prepareForReuse method, which will be
called when the table view is ready to reuse your cell for a new row. In this
method, you should return your table view cell to its initial state. This is
especially important if the table view cell doesn’t always use the same subviews;
you wouldn’t want information from one row to be displayed elsewhere.

Whether you’re creating your cells in code or in a nib, the cell has a subview
accessible with the contentView property. Your subviews should be inserted into
the content view, which will resize when the table view enters editing mode or
when accommodating cell accessories.

If you need to adjust the height, there are two ways. The first (and easy) way is
the rowHeight property on UITableView. In cases where you want every cell to
have the same height, this is easy and works well. You might think that
specifying a dynamic height for each cell would be easy. It’s not impossible, but
doing so can be quite involved. The first step is implementing the
tableView:heightForRowAtIndexPath: method in your table view’s delegate. In
this method, you will return the correct value for the height of that particular cell.
If you’re trying to size your cells based on text content, however, you have to
figure out how tall the text is based on the width of the table view. With
complicated layouts, you essentially need to lay out the subviews of your cell to
figure out how tall the cell needs to be. There isn’t an easy solution for this
problem-----and i t’s worse i f you have localized content-----but thankfully, it’s
uncommon to use table views with large pieces of text.

Nib Loading In Depth
If you need to load a table view cell from a nib, there are a few ways to do it.
Before we talk about table view cells specifically, let’s talk about how nibs work.
As we’ve established before, each one is a collection of one or more views in an
array, archived to disk in an XML-formatted .xib file. When your app is compiled
for release, the .xib file is compiled into a .nib file, which is why it’s called a
nib. When you open the .xib file in Xcode, one of the objects it displays on the
left side of the interface has an ethereal, mostly transparent style to its icon and
the name File’s Owner. The style of the icon indicates that the object does not
exist in the nib but is referenced from outside of it. This object is the ‘‘owner’’ of

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 55

the nib when it’s loaded. For view controllers, you’ll notice that the File’s Owner
object is set up as a member of your view controller subclass.

When the view is loaded by a view controller, it connects the outlets and actions
set up via Interface Builder. The same thing happens when you manually load a
nib, but you must specify the owner:

[[NSBundle mainBundle] loadNibNamed:@"MyNib"
 owner:self
 options:nil];

By passing self as the owner, we can specify how the connections from
Interface Builder will be made.

Loading Table View Cells from Nibs
For a table view cell, one common pattern is to use an IBOutlet as temporary
storage for a table view cell, which allows you to use Interface Builder to
connect the cell to the outlet. In your table view controller’s header, add a
property for the cell:

@property (strong) IBOutlet UITableViewCell *incomingCell;

Then, when it’s time to create the cell, load it from a nib:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"CellIdentifier"];

 if (cell == nil) {
 [[NSBundle mainBundle] loadNibNamed:@"MyCellNib"
 owner:self
 options:nil];

 cell = [self incomingCell];
 [self setIncomingCell:nil];
 }

 return cell;
}

This can be confusing at first, mostly because of the odd role that incomingCell
plays. It’s a temporary storage area for the cell used to capture the outlet in the
nib. Once you have the cell, you assign it to cell and then set incomingCell to
nil since you’re done with it. A slightly more straightforward method relies on

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 56

the fact that the loadNibName:owner:options: method returns an NSArray of the
top-level objects in the nib:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:@"CellIdentifier"];

 if (cell == nil) {
 NSArray *nibObjects = [[NSBundle mainBundle] loadNibNamed:@"MyCellNib"
 owner:nil
 options:nil];

 cell = [nibObjects objectAtIndex:0];
 }

 return cell;
}

This method relies on the cell being the only object in the nib, but it doesn’t use
any sleight of hand with outlets like the former method. I prefer doing it this way,
but the net effect is the same in either case: a nib you can use to adjust your
cell’s layout without spending all of your time writing layout code.

iPhone and iPad Nibs
When you’re writing an app that works on iPhone and iPad, you will typically
reuse some view controllers. Often, however, you’ll want to change the layout of
the view controller to better fit the device the app is running on. Writing this in
code is easy; the class UIDevice has a property called userInterfaceIdiom that
will tell you whether you’re on an iPad, allowing you to lay out views manually
depending on the idiom the current device uses. In nibs for view controllers’
views, it’s even easier: simply provide two nibs. In fact, the default
UIViewController implementation will look for nibs automatically. If the name of
your view controller class is MyViewController, name your iPhone-sized nib
MyViewController.xib and your iPad-sized nib MyViewController~ipad.xib.
Then, when you create your view controller, don’t specify a name:

[[MyViewController alloc] initWithNibName:nil bundle:nil];

Since the nibs are named properly, they will be loaded automatically. This allows
you to manage the user interface for each device without writing any code to do
so.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 57

Parent and Child View Controllers
Thus far in this chapter, we have focused on one view controller at a time. Apps
with a single view controller are rare, however, but you need a way to move
between them. One way is to call setRootViewController: on your app’s
window, but this doesn’t give you animation or keep a reference to both view
controllers. Depending on your needs, there are three built-in ways to switch
between view controllers in Cocoa Touch, as well as some other uses for parent
and child view controllers.

Modal View Controllers
If you want a view controller to be displayed on top of your current view
controller modally, UIViewController has a built-in method,
presentModalViewController:animated:, that will do exactly that. Since modal
view controllers prevent the user from accessing the first view controller, they
are best used where the user must take action to continue, such as a login
screen for a web service. The modal view controller animates in from the bottom
of the screen and, on iPhone, completely covers it. On iPad, you can set the
property modalPresentationStyle to adjust how it’s displayed. Once you’re
done with the view controller, call dismissModalViewControllerAnimated: on the
parent view controller, which will animate it away, revealing your first view
controller underneath. You could alternatively call
dismissModalViewControllerAnimated: on the modal view controller, which will
forward the message to the parent view controller, but since the message must
eventually reach the parent, it’s best to call it on the parent directly if you can.

NOTE: You can specify the animation a view controller uses to animate onto the
screen with its modalTransitionStyle property.

Navigation Controllers
Navigation controllers are probably the most used view controller in all of Cocoa
Touch. They provide common functionality that many apps use: a title bar at the
top of the screen, a Back button that moves the user back in the view controller
hierarchy, and animation between view controllers. The UINavigationController
class provides this functionality and manages the presentation of your view
controller’s view for you. The navigation controller maintains a stack of view
controllers, with the visible view controller as the topmost item on the stack. To

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 58

move to a new view controller, call pushViewController:animated: on the
navigation controller, and to go back, call popViewControllerAnimated:.
Pressing the built-in Back button will automatically pop the current view
controller off the stack. One of the best things about these transitions is that the
animations are built-in, so the behavior is consistent across all of a user’s apps.
If you need to manage the view controller hierarchy manually, perhaps to
initialize it to a known state, the navigation controller exposes a
viewControllers array that you can use to modify the stack of view controllers
directly. If you need to go all the way back to the beginning, you can call
popToRootViewControllerAnimated:.

Navigation controllers are also integrated into UIViewController through the
UINavigationItem object. The navigation item is created on demand by the view
controller and customizes how the view controller interacts with the navigation
controller. The most common use is its title property, which controls the title
displayed on the navigation controller’s navigation bar (the bar at the top of the
navigation controller’s view), as well as the default text for the Back button when
the view controller is next-to-highest in the navigation controller’s view controller
hierarchy. You can also specify the leftBarButtonItem and rightBarButtonItem
properties to control the buttons that appear on the navigation bar. Like with
UIButton, these buttons, instances of the UIBarButtonItem class, use the target-
action paradigm to send messages. You can create them two ways: with
system-provided bar button items or with a custom title.

Navigation items also allow you to manage the behavior of the Back button.
When a view controller is behind the topmost view controller in the stack, its
Back button is displayed, because it’s what will be displayed when the user taps
the Back button. Set the backBarButtonItem property to a bar button item with a
custom image or title, and you can customize the appearance of the Back
button.

Tab Bar Controllers
Tab bar controllers are used less but are still popular objects for navigation
between view controllers. A UITabBarController maintains an array of view
controllers, each represented by a UITabBarItem. It displays buttons along the
bottom of its view representing each view controller. Tapping the buttons
highlights them and shows the view controller’s view above the tab bar. If the
tab bar controller cannot display a button for every view controller because of
the width of the screen, it replaces the last one it can display with a More
button. Tapping this button displays a view controller that allows the user to
select between the remaining view controllers, as well as edit which ones

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 59

appear in which positions. A canonical example of using a tab bar controller is
the Music app on iOS.

Often you’ll want to combine navigation controllers and tab bar controllers. This
usually works well, but you should be sure that the root view controller is the tab
bar controller, not a navigation controller. Switching between tabs should switch
between different navigation controllers, allowing them each to maintain their
own navigation hierarchies. The Phone app on iPhones behaves this way.

Split View Controllers
On iPad, the increased screen real estate from iPhone relaxes the ‘‘one view
controller per screenful of content’’ rule established earlier. The screen is more
than large enough to display two sets of information. One common use for this
is the split view controller. When the iPad is in landscape orientation, the split
view controller displays a list of items on the left in a table view and displays a
detail view on the right. In portrait orientation, the list on the left disappears by
default but can be summoned again with a button on the detail view’s navigation
bar. Mail on iPad is the canonical example of this behavior, and it’s a good
example of the ideal use of this controller: sorting through a list of items on one
side while viewing them one at a time in large detail on the other.

Page View Controllers
Another built-in view controller that manages multiple view controllers is
UIPageViewController. New in iOS 5, it allows you to flip between two view
controllers like a book in iBooks without writing the complex OpenGL code to
curl the page. The page view controller, like the table view, has dataSource and
delegate properties. Instead of rows of data, the data source for
UIPageViewController provides view controllers, one for each page. Instead of
using an index path or something similar, the page view controller’s data source
protocol is two methods:
pageViewController:viewControllerBeforeViewController: and
pageViewController:viewControllerAfterViewController:. It’s up to you to
keep t rack o f the view controllers and f igure out which ones to pass-----just return
nil if there is no view controller before or after the one it sends as the final
parameter.

Another nifty feature of the page view controller is that it exposes some of its
inner workings to you, enabling you to further customize its behavior. It has
objects that manage the user’s interaction with it called gesture recognizers.
These recognizers can be added to other views, allowing you to create a page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 60

view controller in a frame that the user can interact with by dragging from the
frame into the page. We’ll discuss gesture recognizers in more detail later.

Passing Data Between View Controllers
As you’ve read, there are plenty of ways to show the user different view
controllers. The next step in building a great app is to send data from one view
controller to another. There are some common patterns here, too, depending on
the relationship between the view controllers. One thing to keep in mind as a
goal is to reduce coupling, that is, to prevent as much as possible situations in
which your view controller class is directly integrated into the other view
controller class. Generally, it’s OK for a view controller to use methods specific
to v iew controllers that i t c reates-----it has to c reate them, a fter all-----but the
reverse should be avoided. We’ll examine how this works with a typical master-
detail application that we’ll work on for a few chapters: a home inventory system
called MyStuff.

Open Xcode and create a new project. In the template chooser, select Empty
Application. For the Product name, enter MyStuff. Enter your class prefix; I’ll
use LCT in this book. For Device Family, select iPhone. Check the Use
Automatic Reference Counting box but not the other two. Save the project to
your hard drive, and we’re ready to go!

The project as defined doesn’t have any view controllers, nor does it have any
data. Let’s make a new class to represent a possession in our house. In Xcode,
select File ➤ New ➤ New File…, and in the dialog that opens, select Cocoa
Touch on the left side, followed by ‘‘Objective-C class’’ on the right. Select Next,
and for the name of the class, enter Possession. For Subclass Of, specify
NSObject. Save it to disk, and it will open in Xcode.

In Possession.h, add two properties:

#import <Foundation/Foundation.h>

@interface Possession : NSObject

@property (copy) NSString *name;
@property (strong) NSNumber *value;

@end

Implement those properties in the ‘Possession.m’:

#import "Possession.h"

@implementation Possession

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 61

@synthesize name = _name;
@synthesize value = _value;

@end

As you can see, this is a very simple class, but it’s a good starting point for us.
Let’s create a view controller to serve as our master list view controller. Create a
new file, but this time select ‘‘UIViewController subclass’’ instead of ‘‘Objective-
C class.’’ Name it PossessionListViewController and make it a subclass of
UITableViewController. Uncheck the ‘‘With XIB for user interface’’ box. The view
for a view controller this simple is pretty much just a table view, so we won’t
need to customize it further. In the implementation file
(PossessionListViewController.m), import the Possession header so we can
use the Possession class by entering the line in bold:

#import "PossessionListViewController.h"

#import "Possession.h"

Next, let’s create an array to store our possessions into. Other classes don’t
need to access this array, so instead of creating it as a property, we’ll add it as
an instance variable in the implementation file using a class extension. We’ll also
add a method for retrieving a possession at an index in the array. Add all of the
following lines before the existing @implementation line:

@interface PossessionListViewController() {
 NSMutableArray *_possessions;
}

- (Possession *)possessionAtIndex:(NSUInteger)index;

@end

We’ll make it a mutable array so we can add to it later, and the _ prefix is
convention for instance variables. Next up, let’s implement our table view
methods to get a basic implementation together. Remove the existing methods
between @implementation and @end and replace them with following lines in
bold:

@implementation PossessionListViewController

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 62

{
 return [_possessions count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *cellIdentifier = @"PossessionCell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:cellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleValue1
 reuseIdentifier:cellIdentifier];
 }

 Possession *possession = [self possessionAtIndex:[indexPath row]];

 [[cell textLabel] setText:[possession name]];
 [[cell detailTextLabel] setText:[[possession value] stringValue]];

 return cell;
}

- (Possession *)possessionAtIndex:(NSUInteger)index
{
 return [_possessions objectAtIndex:index];
}

@end

In Xcode, click Run and…you’ll see a white screen. We need to add the view
controller to the view hierarchy. Click Stop in Xcode, and open your app
delegate’s implementation file (remember, it uses your class prefix if you have
one; mine is LCTAppDelegate.m), and import your view controller’s header:

#import "LCTAppDelegate.h"

#import "PossessionListViewController.h"

…

In the application:didFinishLaunchingWithOptions: method, just before the
return YES; line, add the following code to create and display your view
controller:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 63

PossessionListViewController *listViewController =
[[PossessionListViewController alloc] initWithNibName:nil
 bundle:nil];

[[self window] setRootViewController:listViewController];

Now when you click Run in Xcode, you’ll see an empty table view. This is
expected, since we never added any items to our list! Go back to
PossessionListViewController.m and implement an init method after the
@implementation line:

@implementation PossessionListViewController;

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {
 Possession *iPhone = [[Possession alloc] init];
 [iPhone setName:@"iPhone 4S"];
 [iPhone setValue:[NSNumber numberWithInt:649]];

 Possession *iPad = [[Possession alloc] init];
 [iPad setName:@"iPad 2"];
 [iPad setValue:[NSNumber numberWithInt:499]];

 _possessions = [NSMutableArray arrayWithObjects:iPhone, iPad, nil];
 }

 return self;
}

This will initialize our array to include two sample items. Feel free to put
whatever values you’d like in there. Click Run and, as you can see in Figure 3-5,
success!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 64

Figure 3-5. Our application showing some data

As you can see, the values for our possessions are displaying correctly, but so
far the user interface is a bit spartan. Let’s spice it up a bit. First let’s embed it in
a navigation controller. Open up the app delegate (LCTAppDelegate.m for me),
remove the lines that have been struck through, and add the code in bold in
application:didFinishLaunchingWithOptions::

PossessionListViewController *listViewController =
[[PossessionListViewController alloc] initWithNibName:nil
 bundle:nil];

UINavigationController *navigationController =
[[UINavigationController alloc]
initWithRootViewController:listViewController];

[[self window] setRootViewController:listViewController];
[[self window] setRootViewController:navigationController];

return YES;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 65

Now we have a navigation bar at the top of our screen, but it has no title. In our
view controller, add the line in bold to the init method:

- (id)initWithNibName:(NSString *)nibNameOrNil

 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {
 [self setTitle:@"Item Details"];
 }

 return self;
}

Now we have a navigation bar and a title. Lookin’ better already! Just a few
more tweaks and we’ll be ready for venture capital….

The next thing to create is our detail view controller. This screen should allow us
to edit the name of the possession and its value. In Xcode, create a new view
controller by selecting File  New  New File…, name it
PossessionDetailViewController, and create it as a subclass of
UIViewController. Check the box to create a XIB this time. Save it to disk and
open the nib, which will be named PossessionDetailViewController.xib. Drag
two labels onto the view from the right side’s object list, as well as two text
fields. If you don’t see the object list, press ⌘+Option+1 or select View ➤
Utilities ➤ Show Object Library; the object library will appear in the Utilities pane
on the right portion of the Xcode window, on the bottom half. Change the text
on the labels to read Name and Value (either by double-clicking them or by
selecting them, opening the Attributes inspector in the Utilities pane by pressing
⌘+Option+4 or selecting View ➤ Utilities ➤ Show Attributes Inspector and
changing the value for Text) and arrange them as shown in Figure 3-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 66

Figure 3-6. Our beautiful detail page layout

Next, create two IBOutlets in your header for the text fields:

@interface PossessionDetailViewController : UIViewController

@property (weak) IBOutlet UITextField *nameField;
@property (weak) IBOutlet UITextField *valueField;

@end

Don’t forget to add corresponding @synthesize calls in your implementation file
(PossessionDetailViewController.m):

@implementation PossessionDetailViewController

@synthesize nameField = _nameField;
@synthesize valueFeild = _valueField;

Next, connect the views to these outlets in your nib. To do that, open the nib
(PossessionDetailViewController.xib). Holding the Control key, drag from the
File’s Owner object on the left side of the editor pane to your text fields, one at a
time. When you release the mouse button, you’ll see a window appear with the
various destinations for the connection. Choose nameField for the text field next
to the Name label and valueField for the text field next to Value. If you

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 67

accidentally connect the text field to the wrong outlet, you can fix it in the
Connections Inspector. To open it, select the text field you incorrectly
connected and press ⌘+Option+6 or select View ➤ Utilities ➤ Show
Connections Inspector. The Connections Inspector, as shown in Figure 3-7, lists
the connections you’ve made to the text field under Referencing Outlets. The
outlet in Figure 3-7 is correct. If you connect it to the wrong outlet, press the
small x to the left of the referencing object’s name (in Figure 3-7, it’s File’s
Owner) to disconnect it.

Figure 3-7. The Connections Inspector

Once you’ve connected your text fields’ outlets, let’s add another property to
our view controller: a pointer to the possession we’re showing details for. Open
PossessionDetailViewController.h, and add the lines in bold:

@class Possession;

@interface PossessionDetailViewController : UIViewController

@property (weak) IBOutlet UITextField *nameField;
@property (weak) IBOutlet UITextField *valueField;
@property (strong) Possession *possession;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 68

We use a forward declaration of the Possession class (the @class Possession;
line) to ensure that other classes that import the
PossessionDetailViewController.h header don’t also import the Possession.h
header. This is important with larger projects, because you may have circular
references through header files that are tough to resolve. It also speeds
compilation to import as few header files as possible. You won’t get Xcode’s
code completion for the name of the class when you create a forward
declaration, but that’s OK. To use the Possession class in your view controller’s
implementation, you do need to import the Possession header, even with the
forward declaration in the view controller’s header.

Don’t forget to add the @synthesize line for possession in the view controller’s
implementation file. Open PossessionDetailViewController.m, and add the line
in bold:

@implementation PossessionDetailViewController

@synthesize nameField = _nameField;
@synthesize valueFeild = _valueField;
@synthesize possession = _possession;

Now that we have our header straightened out, let’s write some methods in the
implementation file. We’ll need a Done button to get back to the list, and we’ll
need to populate the fields with the correct values. The following code block is
the entire implementation file except for the comments at the top; the lines we’re
adding now are bold.

#import "PossessionDetailViewController.h"

#import "Possession.h"

@interface PossessionDetailViewController()

- (void)doneButtonPressed:(id)sender;

@end

@implementation PossessionDetailViewController

@synthesize nameField = _nameField;
@synthesize valueField = _valueField;
@synthesize possession = _possessionField;

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 69

 if (self) {
 [self setTitle:@"Item Details"];

 UIBarButtonItem *doneButtonItem =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self

action:@selector(doneButtonPressed:)];

 [[self navigationItem] setRightBarButtonItem:doneButtonItem];
 }

 return self;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [[self nameField] setText:[[self possession] name]];
 [[self valueField] setText:[[[self possession] value] stringValue]];
}

- (void)doneButtonPressed:(id)sender
{
 if ([[possession name] isEqualToString:[[self nameField] text]] == NO)
{
 [possession setName:[[self nameField] text]];
 }

 NSNumber *newValue = [NSNumber numberWithInt:[[[self valueField] text]
intValue]];

 if ([[possession value] isEqualToNumber:newValue] == NO) {
 [possession setValue:newValue];
 }

 [[self navigationController] popViewControllerAnimated:YES];
}

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 70

Passing Data from a Parent View Controller
to a Child View Controller
This code will change the values of possession when the Done button is pressed
and go back to the list. We’re almost at the point where we can use it, but we
need to add some code to get to the detail view controller. Open the list view
controller (PossessionListViewController.m), and add the line in bold (the
ellipsis indicates that there is code between these two sections that I’ve
omitted):

#import "PossessionListViewController.h"

#import "Possession.h"
#import "PossessionDetailViewController.h"

…

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *cellIdentifier = @"PossessionCell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:cellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue1
 reuseIdentifier:cellIdentifier];
 }

 Possession *possession = [self possessionAtIndex:[indexPath row]];

 [[cell textLabel] setText:[possession name]];
 [[cell detailTextLabel] setText:[[possession value] stringValue]];

 [cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator];

 return cell;
}

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 71

 [detailViewController setPossession:[self possessionAtIndex:[indexPath
row]]];

 [[self navigationController] pushViewController:detailViewController
 animated:YES];
}

…

@end

Now run your application. When you select the first item, you’ll see its detail
view controller push onto the screen, and when you hit Done, it’ll take you back
to the master list. At this point, the Back button does not save our changes, but
the Done button does. If you change values, however, you won’t see them
immediately on the list view controller. If you scroll that item offscreen and back
on, the values will be updated. This is because we never told our table view to
reload any rows. For now, we can fix that with a single method in our list view
controller:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [[self tableView] reloadData];
}

This is a bit heavy-handed for this purpose, because it forces the table view to
reload all of its contents every time, but it will work for our purposes. In future
chapters, we’ll go over better ways to pass data around the application. For
now, though, we need to implement one more feature to make our first app
complete: the ability to add new items to the list.

Passing Data to and from a Modal View Controller
Let’s add a button to the navigation bar on the list view to add a new item, along
with declaring a method for it to call in our class extension by adding the lines in
bold in PossessionListViewController.m:

@interface PossessionListViewController() {
 NSMutableArray *_possessions;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 72

- (void)addItemButtonPressed:(id)sender;
- (Possession *)possessionAtIndex:(NSUInteger)index;

@end

@implementation PossessionListViewController

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {
 Possession *iPhone = [[Possession alloc] init];
 [iPhone setName:@"iPhone 4S"];
 [iPhone setValue:[NSNumber numberWithInt:649]];

 Possession *iPad = [[Possession alloc] init];
 [iPad setName:@"iPad 2"];
 [iPad setValue:[NSNumber numberWithInt:499]];

 _possessions = [NSMutableArray arrayWithObjects:iPhone, iPad, nil];

 [self setTitle:@"My Stuff"];

 UIBarButtonItem *addItemButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self

action:@selector(addItemButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:addItemButton];
 }

 return self;
}

This creates a nice-looking button for us with a plus sign in it. To get it to work,
let’s have it create a new PossessionDetailViewController and present it
modally. We’ll begin with a basic implementation; add the following code to
PossessionListViewController.m, before the @end directive:

- (void)addItemButtonPressed:(id)sender
{
 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 73

 [self presentModalViewController:detailViewController
 animated:YES];
}

Run your app after putting this method in, and you’ll quickly discover that this
needs a bit more. For starters, there’s no way to get out of the modal view
controller. To get another navigation bar for this view controller, we’ll create
another navigation controller and present it modally. Modify the method you just
created with the line in bold:

- (void)addItemButtonPressed:(id)sender
{
 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

 UINavigationController *navigationController =
 [[UINavigationController alloc]
initWithRootViewController:detailViewController];

 [self presentModalViewController:navigationController
 animated:YES];
}

This is better, but the Done button won’t work, because there’s no view
controller behind it to pop to in the navigation stack. We’ll need to modify the
Done button’s behavior to determine what it should do. To properly encapsulate
the behavior, we need to make sure that the list view controller determines the
behavior of the detail view controller, since the list view controller creates it for
different purposes. Let’s create a flag we can set on the detail view controller
that we can use for this purpose. In PossessionDetailViewController.h, add
the line in bold after the other @property lines:

@property (weak) IBOutlet UITextField *nameField;

@property (weak) IBOutlet UITextField *valueField;

@property (strong) Possession *possession;

@property (getter = isModal) BOOL modal;

Add the @synthesize line to the detail view controller’s implementation file
(PossessionDetailViewController.m) by adding the line in bold:

@synthesize nameField = _nameField;

@synthesize valueField = _valueField;

@synthesize possession = _possession;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 74

@synthesize modal = _modal;

Next, modify this file’s doneButtonPressed: method by replacing the struck-out
line with the bold lines:

- (void)doneButtonPressed:(id)sender
{
 if ([[possession name] isEqualToString:[[self nameField] text]] == NO) {
 [possession setName:[[self nameField] text]];
 }

 NSNumber *newValue = [NSNumber numberWithInt:[[[self valueField] text]
intValue]];

 if ([[possession value] isEqualToNumber:newValue] == NO) {
 [possession setValue:newValue];
 }

 [[self navigationController] popViewControllerAnimated:YES];
 if ([self isModal]) {
 [self dismissModalViewControllerAnimated:YES];
 } else {
 [[self navigationController] popViewControllerAnimated:YES];
 }
}

This will use the value of the modal property to determine the proper closing
behavior. Back in our list view controller, we’ll set this to YES when creating it
from the Add button. Open PossessionListViewController.m, and modify the
addItemButtonPressed: method with the line in bold:

- (void)addItemButtonPressed:(id)sender
{
 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

 [detailViewController setModal:YES];

…

Passing Data Between View Controllers
with a Delegate Protocol
Now the detail view controller appears and disappears properly in either case,
but adding an item still won’t work, since possession is nil in the detail view
controller when we add a new item. To accomplish this, we need to inform our

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 75

list view controller when a new item has been added. We don’t want the detail
view controller to rely on any details about how the list view controller works,
because this allows it to be reusable. If we were to call a method on the list view
controller directly from the detail view controller, we’d have to rewrite the detail
view controller if we replaced the list view controller later. To avoid that, we’ll
create a protocol that the list view controller can conform to. In Xcode, create a
new file by selecting File ➤ New ➤ New File…. This time, use ‘‘Objective-C
protocol’’ in the Cocoa Touch category and name it
PossessionDetailViewControllerDelegate. We’ll define one required method
that we’ll call whenever the detail view controller finishes editing an item. Open
your new header file, PossessionDetailViewControllerDelegate.h, and add the
lines in bold:

#import <Foundation/Foundation.h>

@class Possession;
@class PossessionDetailViewController;

@protocol PossessionDetailViewControllerDelegate <NSObject>

@required

- (void)possessionDetailViewController:(PossessionDetailViewController
*)detailViewController
 didEditPossession:(Possession *)possession;

@end

Now, in the list view controller’s header, we can import this protocol’s header
and declare that the list view controller conforms to it. Open
PossessionListViewController.h, and add the code in bold:

#import <UIKit/UIKit.h>

#import "PossessionDetailViewControllerDelegate.h"

@interface PossessionListViewController : UITableViewController
<PossessionDetailViewControllerDelegate>

@end

For the implementation, we’ll simply add the possession to our _possessions
array if it isn’t already in the array. Open PossessionListViewController.m, and
add the following method in bold before the @end directive:

- (void)possessionDetailViewController:(PossessionDetailViewController
*)detailViewController
 didEditPossession:(Possession *)possession
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 76

 if ([_possessions containsObject:possession] == NO) {
 [_possessions addObject:possession];
 }
}

@end

Now, we need to tell the detail view controller what to call when it’s done
editing. We also need to create a new possession when the possession detail
view controller is done editing and its possession property is nil. We’ll start by
giving the detail view controller a delegate property. Open
PossessionDetailViewController.h, and add both the header import and
property declaration lines in bold:

#import <UIKit/UIKit.h>

#import "PossessionDetailViewControllerDelegate.h"

@class Possession;

@interface PossessionDetailViewController : UIViewController

@property (weak) IBOutlet UITextField *nameField;

@property (weak) IBOutlet UITextField *valueField;

@property (strong) Possession *possession;

@property (getter = isModal) BOOL modal;

@property (weak) id <PossessionDetailViewControllerDelegate> delegate;

@end

Next, open the detail view controller’s implementation file
(PossessionDetailViewController.m), and add the line in bold to import
synthesize accessor methods for the delegate:

@implementation PossessionDetailViewController

@synthesize nameField = _nameField;
@synthesize valueField = _valueField;
@synthesize possession = _possession;
@synthesize modal = _modal;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 77

@synthesize delegate = _delegate;

Next, in the detail view controller’s doneButtonPressed: method, add the code in
bold to call the delegate method, as well as create new possessions as
necessary:

- (void)doneButtonPressed:(id)sender
{
 if ([self possession] == nil) {
 [self setPossession:[[Possession alloc] init]];
 }

 if ([[[self possession] name] isEqualToString:[[self nameField] text]] ==
NO) {
 [[self possession] setName:[[self nameField] text]];
 }

 NSNumber *newValue = [NSNumber numberWithInt:[[[self valueField] text]
intValue]];

 if ([[[self possession] value] isEqualToNumber:newValue] == NO) {
 [[self possession] setValue:newValue];
 }

 [[self delegate] possessionDetailViewController:self
 didEditPossession:[self possession]];

 if ([self isModal]) {
 [self dismissModalViewControllerAnimated:YES];
 } else {
 [[self navigationController] popViewControllerAnimated:YES];
 }
}

Now, the final piece will be to set the list view controller as the delegate of the
detail view controller. Open PossessionListViewController.m. In both places
where a PossessionDetailViewController is created by calling
[[PossessionDetailViewController alloc] initWithNibName:nil bundle:nil],
add the lines in bold:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

 [detailViewController setDelegate:self];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Managing On-Screen Content with View Controllers 78

 [detailViewController setPossession:[self possessionAtIndex:[indexPath
row]]];

 [[self navigationController] pushViewController:detailViewController
 animated:YES];
}
…
- (void)addItemButtonPressed:(id)sender
{
 PossessionDetailViewController *detailViewController =
 [[PossessionDetailViewController alloc] initWithNibName:nil
 bundle:nil];

 [detailViewController setDelegate:self];
 [detailViewController setModal:YES];

 UINavigationController *navigationController =
 [[UINavigationController alloc]
initWithRootViewController:detailViewController];

 [self presentModalViewController:navigationController
 animated:YES];
}

Run your app, and add a new item. If you’ve done everything properly, it’s been
added to the list! We now have a fully functional way to add items to the list.
Ship it. You may notice, however, that possessions are not saved between
launches of the app. We’ll expand on this app in the next chapter to add that
and other additional functionality.

Summary
This chapter covered a lot of ground on view controllers. We went over their life
cycle, how to implement application logic using them, and how to load content
with nibs. By now, you should be familiar with creating and using view
controllers. You should also be able to pass data from one view controller to
another in an app. In the next chapter, we’ll expand on this idea, passing data
not only between view controllers but between launches of the app by persisting
it to disk.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Chapter

Saving Content
in Your App
No matter how great your Cocoa Touch app is, your users aren’t going to be
using it forever. They’ll be getting phone calls, switching to other apps,
downloading new ones, and even getting new devices. When they come back to
your app, they want-----and expect-----everything to be just as they left it the last
time they used it. Their data should be there (and unchanged), and even their
user interface should be just as it was the last time they opened the app. Some
of this you get by virtue of the app remaining in memory while it isn’t open, but
when iOS removes it from memory to reclaim space, you need to be prepared to
re-create that data on demand. In this chapter, we’ll discuss how to persist your
app’s data to the disk to save it between launches. Since you have to walk
before you run, though, let’s first discuss how to move data around inside the
app; if you can’t move it inside the app, it’s going to be difficult to move it
outside of the app. Once we discuss moving data around inside your app, we’ll
discuss how to persist that data to disk to make it available between launches.

Moving Data Around Your App
So far, your experience with moving data around has been very basic. When you
created a list of possessions in our sample app, MyStuff, the only data you
passed around was a possession the user tapped to display a detail view
controller. Passing a pointer to said possession was simple and easy between
the two view controllers, because they had a direct parent-child relationship, but
it won’t always be so easy. Often you won’t have a direct link between two
objects but need to pass data between them. The simplest way is what you did

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 80

in MyStuff: passing the object directly and using a delegate the other way. In
this section, we’ll discuss how to pass data between different sections of your
app using this and other methods.

Delegate Chains
When you pass a pointer to an object from a parent view controller to its child
and then pass it back to the parent using a delegate protocol, the flow of the
data is neatly contained. If you need to add more steps to the process, however,
things get more complicated. Suppose your detail view controller needed to
present a second detail view controller to modify some specific detail of the
object. The solution would be to pass a pointer to the object from the detail view
controller to a new child view controller. Once that view controller was done, it
would then notify its parent through a delegate message, which would in turn
notify its parent the same way. As you can probably see, it’s possible to extend
this ad infinitum, creating an unbroken chain of view controllers passing objects
to their children and receiving messages in return. This works fine, but it’s not
the most elegant solution, especially for complicated view controller hierarchies,
and it also works only when there’s a direct connection between two view
controllers, such as this parent-child relationship.

Key-Value Observing
When we wrote the delegate protocol for our detail view controller in MyStuff,
the goal was to tell the parent view controller that we were done editing the
object, which in turn allowed us to update the user interface and display the new
values. To our parent view controller, which is just a list of objects, it doesn’t
matter where these objects are modified; we simply want to always present the
most up-to-date information possible. You might, for example, later implement a
website that syncs objects across devices and then update from that website in
the background. In these circumstances, since we care about the value of an
object changing, we can use an Objective-C paradigm called Key-Value
Observing (KVO) to receive notifications when the values change.

Key-Value Observing is implemented in the root NSObject class, which means
that it works with nearly every object you’ll ever use in Objective-C code on an
Apple platform, including Cocoa Touch on iOS. What it allows us to do is
observe the value of an object and receive notifications when that value
changes. The value is most often a property of the object, though later we’ll look
at other uses.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 81

Using KVO
To register for a notification when a property changes, call the
addObserver:forKeyPath:options:context: method on the object you want to
observe:

[someObject addObserver:self

 forKeyPath:@"propertyName"

 options:NSKeyValueObservingOptionNew

 context:NULL];

This adds self as an observer on someObject whenever its property named
propertyName changes. The options argument is a bitmask specifying how
you’d like to be notified. Passing NSKeyValueObservingOptionNew results in the
notification including the new value when the value changes. The context
argument allows you to specify a void pointer for a custom context, but in
practice it’s rarely used. When you’re programming with ARC, the compiler
forbids you from using an object as the context pointer, which was one use
before ARC was commonplace. When the value changes, it calls the following
method:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 // Write code here that reacts to the change.
}

You’re responsible for implementing this method for any class that acts as an
observer. In our example, the keyPath argument will be propertyName, and the
object argument will be someObject, but you should always inspect those values
to be sure you’ve observed the correct change. To observe the value of a flag
property on self, you would first call this method:

[self addObserver:self
 forKeyPath:@"flag"
 options:0
 context:NULL];

To make sure you’re responding to the correct change, you’ll want to verify
these values when you observe the change:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 82

{
 if (object == self) {
 if ([keyPath isEqualToString:@"flag"]) {
 // Respond to the change here
 }
 }
}

The two consecutive if statements help future-proof your app, because the
observeValueForKeyPath:ofObject:change:context: method might be called by
several different changes.

The change dictionary will contain different values based on the options we
specified when adding the observer; for NSKeyValueObservingOptionNew, the
new value will be in the dictionary for the key NSKeyValueChangeNewKey. In this
method, you should respond to the change appropriately, whether that means
updating your UI, saving your content, or triggering further changes.

NOTE: It’s very important that you remember to always remove your observers when
you’re done with them by calling removeObserver:forKeyPath: on the object. If
you’ve specified a context pointer, you can use the
removeObserver:forKeyPath:context: method to remove the observer just for
that context pointer. You should do this when you no longer need the observer to be
called, or in dealloc for objects that need to be notified of changes for their entire
life cycle. If you don’t, you may wind up receiving a notification after your object has
been released, crashing your app.

How KVO Works
Something you’ll notice fairly quickly as you begin to use KVO in your day-to-
day programming is that if you create your own objects and use KVO on their
properties, you didn’t have to write any code to get these notifications, so long
as you set the properties using the synthesized setter methods. How does this
work? It takes advantage of the dynamic nature of Objective-C. Since the
Objective-C runtime allows you to create classes while the program is running,
that’s exactly what it does. The runtime creates a subclass of the class you’re
observing, overriding the setter method for the property you’re observing. That
setter method calls the original setter method and then sends out your
notifications. Once this new class is created, the runtime does one sneaky trick:
it changes the class pointer on the observed object to the new class. This isn’t

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 83

something I recommend doing yourself, but in the case of KVO, it’s perfectly
safe.

Manual KVO Implementations
What we’ve covered of KVO so far works extremely well for changing a single
property at a time. More complicated objects, however, need special treatment.
A common case where KVO falls short is if your custom setter has other side
effects. A class that represents a home loan, for instance, will probably have a
principal property, an interestRate property, and a monthlyPayment property,
with the last one being read-only. When you change the interestRate property,
the monthlyPayment property will need to be re-computed. In that case, you
could call another property setter, triggering another KVO notification, but in the
event where monthlyPayment is not a writable property, we can trigger the
notification manually:

- (void)setInterestRate:(float)newInterestRate
{
 [self willChangeValueForKey:@"interestRate"];
 interestRate = newInterestRate;
 [self didChangeValueForKey:@"interestRate"];

 [self willChangeValueForKey:@"monthlyPayment"];
 monthlyPayment = MonthlyPaymentForInterestRate(interestRate);
 [self didChangeValueForKey:@"monthlyPayment"];
}

As you can see, each call to willChangeValueForKey: is balanced with a call to
didChangeValueForKey: with the same key path argument. If you implement this,
you should also override the class method
automaticallyNotifiesObserversForKey:, returning NO for the key path for which
you’re manually sending notifications. Suppose you have a class with two
properties, subtotal and taxRate, which are used to calculate a third, read-only
property, totalDue. You would first implement
automaticallyNotifiesObserversForKey: to avoid automatically returning
notifications for totalDue:

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)key
{
 if ([key isEqualToString:@"totalDue"]) {
 return NO;
 }

 return [super automaticallyNotifiesObserversForKey:key];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 84

Next, when you set the subtotal or taxRate values, you would manually notify
observers of a change in totalDue:

[self willChangeValueForKey:@"totalDue"];
_totalDue = [self subtotal] + ([self subtotal] * [self taxRate]);
[self didChangeValueForKey:@"totalDue"];

Using this method, you can control when the observation methods are called
and provide custom logic for your data.

KVO In Action
Let’s put what we’ve learned about KVO into action in our MyStuff app. Remove
the following line from PossessionListViewController.m:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [[self tableView] reloadData];
}

We’ll use KVO to update the table cells’ contents automatically instead of
reloading the entire contents of the table view every time the view appears. This
will result in new items not immediately showing up, but we’ll fix that later in this
chapter. In Xcode, create a new file (File ➤ New ➤ New File…) and select
Objective-C Class from Cocoa Touch on the left column. Click Next, name the
class PossessionListTableViewCell, and make it a subclass of
UITableViewCell. Save it to disk, and Xcode will add it to the project. Open the
header (PossessionListTableViewCell.h), and add the following lines in bold:

#import <UIKit/UIKit.h>

@class Possession;

@interface PossessionListTableViewCell : UITableViewCell

@property (strong, nonatomic) Possession *possession;

@end

Switch to the header (Possession.h) by pressing ⌘, Control, and the up-arrow
key simultaneously (or selecting it in Xcode’s file browser), and remove the
methods created by Xcode’s template. Add the following code in bold (we’ll
walk through it afterward):

#import "PossessionListTableViewCell.h"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 85

#import "Possession.h"

static NSString * const kPossessionNameKeyPath = @"name";
static NSString * const kPossessionValueKeyPath = @"value";

@implementation PossessionListTableViewCell {
 BOOL isObservingPossession;
}

@synthesize possession = _possession;

- (void)dealloc
{
 if (isObservingPossession == YES) {
 [_possession removeObserver:self
forKeyPath:kPossessionNameKeyPath];
 [_possession removeObserver:self
forKeyPath:kPossessionValueKeyPath];
 isObservingPossession = NO;
 }
}

- (void)setPossession:(Possession *)possession
{
 if (isObservingPossession == YES) {
 [_possession removeObserver:self
forKeyPath:kPossessionNameKeyPath];
 [_possession removeObserver:self
forKeyPath:kPossessionValueKeyPath];
 isObservingPossession = NO;
 }

 _possession = possession;

 if (_possession != nil) {
 [_possession addObserver:self
 forKeyPath:kPossessionNameKeyPath
 options:(NSKeyValueObservingOptionInitial |
 NSKeyValueObservingOptionNew)
 context:NULL];

 [_possession addObserver:self
 forKeyPath:kPossessionValueKeyPath
 options:(NSKeyValueObservingOptionInitial |
 NSKeyValueObservingOptionNew)
 context:NULL];

 isObservingPossession = YES;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 86

- (void)prepareForReuse
{
 [self setPossession:nil];

 [super prepareForReuse];
}

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 if (object == [self possession]) {
 if ([keyPath isEqualToString:kPossessionNameKeyPath]) {
 [[self textLabel] setText:[change
objectForKey:NSKeyValueChangeNewKey]];
 }
 else if ([keyPath isEqualToString:kPossessionValueKeyPath]) {
 [[self detailTextLabel] setText:[[change
objectForKey:NSKeyValueChangeNewKey] stringValue]];
 }
 }
}

@end

When we set the value of possession, we add an observer for its name and value
properties. Whenever we set the observer, we set the value of
isObservingPossession to YES to keep track of whether we need to remove it. If
we didn’t do this, we would run the risk of crashing the app by removing an
observer that wasn’t registered. When we add the observer, we specify the
given options to get a notification immediately with the initial value, as well as on
any subsequent changes. Finally, when we observe the change, we set the
values in the table view cell. This class is done, so save your work and open
PossessionListViewController.m. Add a line with the other #import declarations
at the top of the file to import your table view cell class:

#import "PossessionListTableViewCell.h"

Next, modify the tableView:cellForRowAtIndexPath: method to use our new
table view cells:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 NSString *cellIdentifier = @"PossessionCell";

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 87

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 PossessionListTableViewCell *cell = (PossessionListTableViewCell
*)[tableView dequeueReusableCellWithIdentifier:cellIdentifier];

 if (cell == nil) {
 cell = [[PossessionListTableViewCell alloc]
initWithStyle:UITableViewCellStyleValue1

reuseIdentifier:cellIdentifier];
 }

 Possession *possession = [self possessionAtIndex:[indexPath row]];

 [cell setPossession:possession];

 [cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator];

 return cell;
}

Run the app and edit a possession. You’ll see the list’s table view cell being
updated automatically after you edit its item. While this looks the same as it did
before, it’s much more efficient, because only the parts that needed to change
did, whereas before, every on-screen table view cell was being reloaded. For a
larger app with complicated table view cells that require a lot of processor time
to create, this can be the difference between a well-performing app and a slow,
unpopular app.

Using Key-Value Observation is a great way to control the flow of your app’s
data. By using KVO to update UI elements, you can decouple the code that
updates the model object from the code that updates the UI; now that we’ve set
these table view cells up, we can modify our Possession class instances at will
without remembering to update the table view cell. We do still have a problem:
new items aren’t being added. For that, we can modify the detail view
controller’s delegate method to inform the table view of the changes. Open
PossessionListViewController.m, and modify the
possessionDetailViewController:didEditPossession: method as follows:

- (void)possessionDetailViewController:(PossessionDetailViewController
*)detailViewController
 didEditPossession:(Possession *)possession
{
 if ([_possessions containsObject:possession] == NO) {
 [_possessions addObject:possession];
 NSIndexPath *newIndexPath = [NSIndexPath
indexPathForRow:[_possessions indexOfObject:possession]
 inSection:0];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 88

 NSArray *indexPaths = [NSArray arrayWithObject:newIndexPath];

 [[self tableView] insertRowsAtIndexPaths:indexPaths

withRowAnimation:UITableViewRowAnimationAutomatic];
 }
}

Now, when you add a new item, the table view will add a row for it automatically
without reloading the other rows, which is more efficient. This works well for us
in a delegate method, because we already have a connection between these
two view controllers. If we didn’t, how would we get notified when a new item
was added? The answer is another way to move data around in your app:
notifications.

Notifications
A common pattern in good code design, as we’ve mentioned, is decoupling.
While delegate protocols are great for this, they still require a one-to-one
relationship between the object and its delegate. Notifications, on the other
hand, allow you to broadcast a message across your entire app without
knowledge of which objects are listening. Notifications are handled by the
NSNotificationCenter class, which i s a singleton------an object that is designed to
have only one instance. You access the singleton instance like so:

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

Registering for Notifications
Like many other APIs in Cocoa Touch, using NSNotificationCenter usually
involves setting a target and an action; in this case, the observer is the target.
To receive a notification, much like with KVO, you need to register for it:

static NSString * const kNotificationName = @"notificationName";

[nc addObserver:self
 selector:@selector(handleNotification:)
 name:kNotificationName
 object:nil];

The four arguments begin with the observer, followed by a selector specifying
the message to send to the observer when the notification fires. Next is the
notification name. This is just a string that identifies the notification. In your own
apps, it’s better to define the name in a string constant, as shown earlier with
kNotificationName, than to retype it every time you use it; it’s quite

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 89

embarrassing to spend a few hours hunting down a bug only to realize that
you’ve misspelled the notification name (not that I’ve ever done that!). The final
argument allows you to specify which object you’d like to receive notifications
from. Typically you’ll pass nil here, which tells the NSNotificationCenter to
send the message when any object fires the notification.

NOTE: Just like with Key-Value Observing, it’s important to remove an observer for
NSNotificationCenter before it’s deallocated, lest you run the risk of your app
crashing when a deallocated object is sent a message. You’ll typically do this in your
dealloc method.

You may notice that the selector passed to NSNotificationCenter in that
example code ended in a colon, signifying an argument. The argument is of type
NSNotification, and it contains some useful information about the notification.
Notifications have three instance methods you can use to get this information:
name, the name of the notification; object, the object that posted the notification;
and userInfo, an NSDictionary containing whatever key-value pairs were
included with the notification when it was posted. The userInfo dictionary is one
of the more useful features of using NSNotifications, and several system
notifications give useful information this way. You can also craft your own
userInfo dictionaries when you create your own notifications to pass whatever
data you need along with them.

Posting Your Own Notifications
When you want to post a notification, instead of creating your own
NSNotification objects, just use one of NSNotificationCenter’s convenience
methods: either postNotificationName:object: or
postNotificationName:object:userInfo:. The first argument, like with
registering an observer, is the name of the notification, and the second
argument is the object that’s posting the notification (almost always self). You
can create your own notification objects if you prefer; just use the
postNotification: method instead. Creating a notification might look like this:

NSDictionary *userInfo = [NSDictionary dictionaryWithObject:@"Fido"
 forKey:@"dogName"];

[nc postNotificationName:@"notificationName"
 object:self
 userInfo:userInfo];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 90

One of the more powerful reasons to use notifications is that you don’t need to
know anything about the objects that are receiving them. Unlike with delegate
messages, you can have multiple objects receive a single notification, so if your
app has multiple view controllers that all display the contents of a single object,
you can send one notification to inform all of them that the object has been
updated.

Common System Notifications
There are some very useful notifications available for your objects to listen for in
iOS. Paramount among these is
UIApplicationDidReceiveMemoryWarningNotification, which is sent whenever
the system is running low on available memory. You’ve seen this before in view
controllers, but if you have an object outside of a view controller that uses large
quantities of memory, such as an image cache, you can use this notification to
tell you when to purge that memory. Another helpful notification is
UIApplicationSignificantTimeChangeNotification, which will be posted when,
for instance, daylight saving time takes effect. Any calendar-like application
would do well to respond to that notification. There are, of course, more
notifications in iOS that are helpful, but it won’t do to simply list them here.
Instead, you can refer to the developer documentation for more details.

NOTE: As you can see from the two earlier examples, Apple’s naming conventions for
notification names seem to make them as long as possible. If in other platforms
you’ve tried to keep your code in 80- or 100-character wide screens, if possible, you
may have trouble keeping up that style when using Cocoa Touch. Apple errs on the
side of verbosity over ambiguity, so long names are common.

Singletons
NSNotificationCenter is a great example of a singleton. Put simply, a singleton
is an object designed to have a single instance that lives forever. Singletons are
useful for any object that coordinates data for multiple objects, serving as a
single point of reference for a common set of functionality. Another example of a
singleton is NSFileManager, which is used to access the filesystem of the device,
something you’ll be doing later in this chapter. Many programmers have a low
opinion of singletons, because there is a danger of using them too frequently; if
your singletons are never deallocated, they’ll use memory indefinitely, so using
too many will have adverse performance effects. In Cocoa Touch, singletons are

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 91

used frequently, but be sure to think about when singletons make sense in your
code before you use them.

A typical singleton has a shared instance that’s accessed with a class method.
A prototypical singleton might look like this:

@interface Singleton : NSObject

+ (id)sharedInstance;

@end

@implementation Singleton

static Singleton *_sharedInstance = nil;

+ (id)sharedInstance
{
 if (_sharedInstance == nil) {
 _sharedInstance = [[self alloc] init];
 }

 return _sharedInstance;
}

@end

NOTE: Although we initialized _sharedInstance to nil in its declaration line in the
previous code, this is not strictly necessary if you’re using ARC, because it will be
initialized with nil by default. If you aren’t using ARC, you’ll need to initialize it to
nil, because immediately after declaration it will point to a garbage value.

Singletons created in this manner will never be deallocated, because the
_sharedInstance variable will always be a reference to it. With ARC’s weak
references, you could define it as a weak reference, therefore allowing it to be
deallocated when it’s not in use, but if your singleton is expensive to create (in
performance terms), it’s probably not worth it.

Some websites may direct you to override the retain, release, and retainCount
methods for singletons, allowing you to prohibit the creation of more than one.
While this is impossible under ARC, because you can’t override those methods,
it wasn’t the best advice before ARC, either. Sometimes, for performance
reasons, you might want to create a separate instance of NSNotificationCenter
or NSFileManager that isn’t a singleton at all; in that case, using the regular alloc
and init methods returns an object just like any other with a normal life cycle.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 92

Another common use for singletons is to manage resources, such as a network
connection. Instead of having every view controller in your app loading data
from the network, it can be helpful to funnel those operations through a single
point, preventing you from trying to load multiple connections at once. This is
good for performance and for battery life. We’ll cover some more techniques for
networking later.

Persisting Data to a File
So far in this chapter we’ve covered various ways to move data around your
application. They all share one large disadvantage: they don’t save data in a way
that outlives the application. When your app quits, Key-Value Observing
notifications cease to fire, system notifications don’t reach your code, and your
delegates are gone. Ideally, you would save your user’s data to disk before the
app quits and load it in when the app starts, allowing their work to outlive the
app’s session. There are a few ways to save data, each with their own
advantages and limitations. We’ll start with the simplest of these: user defaults.
We’ll also cover saving data to files using archiving, as well as writing files
directly.

NSUserDefaults
If you’ve been a long-time Mac user, then you’ve probably wanted to enable
hidden preferences for some applications before. For instance, to view hidden
files in Finder, the trick is to open Terminal and issue the following command:

defaults write com.apple.finder AppleShowAllFiles TRUE

Restart the Finder, and you’re all set. The defaults command on your Mac is
interacting with the user defaults system of Mac OS X, which exists on iOS as
well. On the Mac, in your home folder, application preferences can be found at
the directory ~/Library/Preferences/. Each file corresponds to an application’s
preferences, and they contain key-value pairs, just like an NSDictionary. Instead
of saving, loading, and managing these files manually, NSUserDefaults manages
them for you, allowing you to set persistent values. It’s just as easy on iOS. To
save a value into a key called userName, simply call the NSUserDefaults
singleton:

[[NSUserDefaults standardUserDefaults] setObject:@"Jeff" forKey:@"userName"];

From that point forward, unless you delete that key or the user deletes the app,
you can always get the value of userName just as easily:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 93

NSString *userName = [[NSUserDefaults standardUserDefaults]
objectForKey:@"userName"];

NOTE: If the key you ask for doesn’t exist in the user defaults dictionary, you’ll get
nil back. Be sure to account for this possibility.

Not all objects can be saved using NSUserDefaults. Those that can are NSArray,
NSData, NSDate, NSDictionary, NSNumber, and NSString. These are the types of
objects that iOS knows how to write into a property list, which is a special XML-
based file that encodes these objects. The code you just saw to save userName
to the user defaults would result in the following property list file being written:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>userName</key>
 <string>Jeff</string>
</dict>
</plist>

‘‘Property list’’ is abbreviated as plist here. In between the opening <plist>
and closing </plist> tags is a hierarchy of objects. Property lists have one root
object, usually either an array or a dictionary, specified here with dict. A
dictionary has key-value pairs, specified by alternating <key> tags with value
tags. Since we specified a string, the value tag is <string>, but other types can
also appear. Dictionaries and arrays can nest one another. This is a property list
containing two dictionaries in an array:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <dict>
 <key>userName</key>
 <string>Jeff</string>
 </dict>
 <dict>
 <key>userName</key>
 <string>Amanda</string>
 </dict>
</array>
</plist>

www.it-ebooks.info

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 94

As you can see, the two dictionaries appear one after the other in the array.
There’s no special syntax between objects in an array, just a series of them.

Using User Defaults to Save App Data
Let’s modify MyStuff to save data to disk using NSUserDefaults. Open
PossessionListViewController.m in Xcode. We’ll declare two new methods in
our class extension. Add the lines in bold:

@interface PossessionListViewController() {
 NSMutableArray *_possessions;
}

- (void)addItemButtonPressed:(id)sender;
- (Possession *)possessionAtIndex:(NSUInteger)index;
- (void)savePossessionsToDisk;
- (void)loadPossessionsFromDisk;

@end

First, we’ll implement savePossessionsToUserDefaults. Since we can’t save a
Possession object directly to the user defaults, we’ll convert it to an
NSDictionary first. Add the new method in the @implementation block of the file:

- (void)savePossessionsToDisk
{
 NSMutableArray *possessionsAsDictionaries =
 [NSMutableArray arrayWithCapacity:[_possessions count]];

 for (Possession *possession in _possessions) {
 NSDictionary *possessionRepresentation =
 [NSDictionary dictionaryWithObjectsAndKeys:
 [possession name], @"name",
 [possession value], @"value", nil];

 [possessionsAsDictionaries addObject:possessionRepresentation];
 }

 [[NSUserDefaults standardUserDefaults] setObject:possessionsAsDictionaries
 forKey:@"possessions"];
 [[NSUserDefaults standardUserDefaults] synchronize];
}

This code creates a mutable array with enough capacity for each possession. A
mutable array is simply an array that can be modified after it’s created. Next, we
iterate through our array of possessions. For each one, we create a dictionary
with keys to match the properties of the object. Then we add the dictionary to
the mutable array and move to the next possession. When this is all done, we

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 95

save the array to the user defaults database for the key possessions. We’ll use
that key in our loading method. Finally, we send the synchronize method to the
user defaults singleton. This forces it to save our changes to disk. If you omit
this, you may find that the application is killed by the system before
NSUserDefaults periodically writes its in-memory cache to the filesystem. Calling
synchronize forces your changes to be persisted. This is especially helpful while
debugging an app, since killing the iPhone Simulator will almost always quit the
app before NSUserDefaults saves automatically.

The method to load possessions from the user defaults is similarly simple. Add
this method after the previous one:

- (void)loadPossessionsFromDisk
{
 NSArray *possessionDictionaries =
 [[NSUserDefaults standardUserDefaults] objectForKey:@"possessions"];

 _possessions = [NSMutableArray array];

 for (NSDictionary *dictionary in possessionDictionaries) {
 Possession *possession = [[Possession alloc] init];

 [possession setName:[dictionary objectForKey:@"name"]];
 [possession setValue:[dictionary objectForKey:@"value"]];

 [_possessions addObject:possession];
 }
}

In this method, first we load the array of possessions from NSUserDefaults. Even
though we saved it from an NSMutableArray, it’s actually saved as an immutable
array. Next, we set _possessions to an empty mutable array to prepare it for
loading our possessions in. We iterate over the dictionaries in the array from
NSUserDefaults, creating a new Possession value for each one and filling in its
values from the dictionary and then adding it to our possessions array.

Now that we’ve written this array, we need to save it. Modify the
possessionDetailViewController:didEditPossession: method to save the
array:

- (void)possessionDetailViewController:(PossessionDetailViewController
*)detailViewController
 didEditPossession:(Possession *)possession
{
 if ([_possessions containsObject:possession] == NO) {
 [_possessions addObject:possession];
 NSIndexPath *newIndexPath = [NSIndexPath indexPathForRow:[_possessions
indexOfObject:possession]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 96

 inSection:0];
 NSArray *indexPaths = [NSArray arrayWithObject:newIndexPath];

 [[self tableView] insertRowsAtIndexPaths:indexPaths

withRowAnimation:UITableViewRowAnimationAutomatic];
 }

 [self savePossessionsToDisk];
}

Next, we need to load our items when the app starts. Modify
initWithNibName:bundle: to do so, removing our test data from earlier:

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {
 Possession *iPhone = [[Possession alloc] init];
 [iPhone setName:@"iPhone 4S"];
 [iPhone setValue:[NSNumber numberWithInt:649]];

 Possession *iPad = [[Possession alloc] init];
 [iPad setName:@"iPad 2"];
 [iPad setValue:[NSNumber numberWithInt:499]];

 _possessions = [NSMutableArray arrayWithObjects:iPhone, iPad, nil];

 [self loadPossessionsFromDisk];

 [self setTitle:@"My Stuff"];

 UIBarButtonItem *addItemButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self

action:@selector(addItemButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:addItemButton];
 }

 return self;
}

Run the app again, and you’ll notice that your list of items is empty. Add a new
one, and then quit the iPhone Simulator. Run the app again, and there’s your

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 97

item! You now have an app that persists data between launches. If you added
two sample items and examined the preferences file, it would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>possessions</key>
 <array>
 <dict>
 <key>name</key>
 <string>iPhone 4S</string>
 <key>value</key>
 <integer>649</integer>
 </dict>
 <dict>
 <key>name</key>
 <string>iPad 2</string>
 <key>value</key>
 <integer>499</integer>
 </dict>
 </array>
</dict>
</plist>

Notice that the array of possessions is itself in a dictionary. The top-level object
of all preference files is a dictionary. This is a good example of the nesting that
occurs in property lists, because we have two dictionaries in an array in another
dictionary.

Using NSUserDefaults to persist data works well enough, but it isn’t really
designed to store all of your app’s data. It would be better if we could archive
our possessions to a separate file, leaving NSUserDefaults for preferences in our
app. This is actually fairly easy to do, because both NSArray and NSDictionary
support writing their contents to disk directly as a property list. This still means,
however, that we can’t save our objects directly, so we’ll still have to convert our
Possession objects to NSDictionary objects. First, we’ll need a location to save
the file. Add a new method declaration in the class extension in
PossessionsListViewController.m by adding the line in bold:

@interface PossessionListViewController() {
 NSMutableArray *_possessions;
}

@property (strong) NSMutableArray *possessions;

- (void)addItemButtonPressed:(id)sender;
- (Possession *)possessionAtIndex:(NSUInteger)index;

www.it-ebooks.info

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 98

- (NSString *)possessionsArchivePath;
- (void)savePossessionsToDisk;
- (void)loadPossessionsFromDisk;

@end

Next, add the following lines in bold in the class implementation to implement
the method:

- (NSString *)possessionsArchivePath
{
 NSString *documentsPath =
 [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask,
 YES) objectAtIndex:0];
 return [documentsPath
stringByAppendingPathComponent:@"possessions.plist"];
}

To save our objects to disk, we simply need to call a single method on the
temporary array of dictionaries we’ve created. Modify the
savePossessionsToDisk method by removing the lines that are struck out and
adding the lines in bold:

- (void)savePossessionsToDisk
{
 NSMutableArray *possessionsAsDictionaries =
 [NSMutableArray arrayWithCapacity:[_possessions count]];

 for (Possession *possession in _possessions) {
 NSDictionary *possessionRepresentation =
 [NSDictionary dictionaryWithObjectsAndKeys:
 [possession name], @"name",
 [possession value], @"value", nil];

 [possessionsAsDictionaries addObject:possessionRepresentation];
 }

 [[NSUserDefaults standardUserDefaults] setObject:possessionsAsDictionaries
 forKey:@"possessions"];
 [[NSUserDefaults standardUserDefaults] synchronize];
 [possessionsAsDictionaries writeToFile:[self possessionsArchivePath]
 atomically:YES];
}

The writeToFile:atomically method of NSArray will take care of creating a
property list file for you. The atomically argument, if passed YES, will create the
file in a temporary location and move it into place once it’s done. This helps
avoid having an unfinished file in that location if there’s an error saving it,
preventing further errors when you’re loading the file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 99

Loading from this file is a quick change. Modify the loadPossessionsFromDisk
method by removing the lines that have been struck out and adding the lines in
bold:

- (void)loadPossessionsFromDisk
{
 NSArray *possessionDictionaries =
 [[NSUserDefaults standardUserDefaults] objectForKey:@"possessions"];
 NSArray *possessionDictionaries =
 [NSArray arrayWithContentsOfFile:[self possessionsArchivePath]];

 _possessions = [NSMutableArray array];

 for (NSDictionary *dictionary in possessionDictionaries) {
 Possession *possession = [[Possession alloc] init];

 [possession setName:[dictionary objectForKey:@"name"]];
 [possession setValue:[dictionary objectForKey:@"value"]];

 [_possessions addObject:possession];
 }
}

Just like that, we’re saving and loading to our own file. In fact, you can even
open this file and edit it on your Mac. Run the application, save some content
into it, and quit the iPhone Simulator. The file that’s been saved is on your
filesystem, but it’s in a hidden-by-default location on Lion: your Library folder.
Open a Finder window on your Mac, and select Go  Go to Folder… in the
menu bar or press Shift+⌘+G; then enter ~/Library/Application
Support/iPhone Simulator in the dialog box that appears. Select the subfolder
that matches the version of iOS you’ve been using (check Xcode if you’re
unsure) and then the Applications folder contained inside. All of the apps in your
iPhone Simulator are represented as a folder with a long, nonsensical UUID for a
name. Select them until you see the one that has MyStuff inside. In that folder,
look in the Documents subfolder, and you’ll see possessions.plist. You can
open this file in Xcode, which has an editing mode for property lists. Figure 4-1
shows the file opened in Xcode.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 100

Figure 4-1. Xcode’s Property List editor with possessions.plist open

You can see that each dictionary has a drop-down element on the left, with
items listed underneath while expanded. For the dictionary, you can edit the key,
type, and value f rom w ithin Xcode. T ry i t yourself-----change one of the values,
save the file, and then run your app from Xcode. This ability to open property
lists and edit those values directly is an excellent debugging tool.

NSCoding
As good as our file-saving solution is, we still have to go through the trouble of
converting our objects to an NSDictionary when we save them and from a
dictionary back to an object when we load them. Fortunately, there is a protocol
we can conform to, NSCoding, that helps with this. We still have to do some
work, but we don’t have to create any temporary arrays or dictionaries. Let’s
implement NSCoding in MyStuff to simplify how we save and load files. Open the
header file for Possession, Possession.h, and declare your conformity to this
protocol by adding the code in bold:

@interface Possession : NSObject <NSCoding>

There are two methods to implement in Possession.m. First, we’ll set up some
string constants that we’ll refer to. These constants are the keys we’ll use to
archive properties to disk. Add the following lines in bold before the
implementation:

static NSString * const kNameKey = @"name";
static NSString * const kValueKey = @"value";

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 101

@implementation Possession

Then, we’ll implement initWithCoder:, which is called to load your object from
disk by adding the code in bold to the implementation:

- (id)initWithCoder:(NSCoder *)aDecoder
{
 self = [self init];

 if (self) {
 [self setName:[aDecoder decodeObjectForKey:kNameKey]];
 [self setValue:[aDecoder decodeObjectForKey:kValueKey]];
 }

 return self;
}

You’ll notice that this looks just like a regular init method, albeit with this
NSCoder argument. The NSCoder is a helper object that transfers values from the
file to your object. Saving an object is shorter. Add an encodeWithCoder: method
by adding the following code in bold after initWithCoder: in your
implementation:

- (void)encodeWithCoder:(NSCoder *)aCoder
{
 [aCoder encodeObject:[self name]
 forKey:kNameKey];
 [aCoder encodeObject:[self value]
 forKey:kValueKey];
}

NOTE: When you have many properties that you’re saving to disk, the potential for
typos is high. It’s recommended you use string constants for all of your keys so that if
you do make a typo, you make it in a way that’ll be consistent. There’s no rule that
says you have to save a property to a key that matches its name, so if you mistype it,
the compiler won’t complain.

To write your object to disk, open PossessionListViewController.m, and modify
the savePossesionsToDisk method:

- (void)savePossessionsToDisk
{
 [NSKeyedArchiver archiveRootObject:_possessions
 toFile:[self possessionsArchivePath]];

 NSMutableArray *possessionsAsDictionaries =

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 102

 [NSMutableArray arrayWithCapacity:[_possessions count]];

 for (Possession *possession in _possessions) {
 NSDictionary *possessionRepresentation =
 [NSDictionary dictionaryWithObjectsAndKeys:
 [possession name], @"name",
 [possession value], @"value", nil];

 [possessionsAsDictionaries addObject:possessionRepresentation];
 }

 [possessionsAsDictionaries writeToFile:[self possessionsArchivePath]
 atomically:YES];
}

This introduces the NSKeyedArchiver object, which you’ll use in conjunction with
any class that conforms to the NSCoding protocol. When we pass it our array of
possessions, it simply iterates over them and archives them to a file using the
NSCoding methods we wrote. And, as you can see, the amount of code it took to
write the file in this method was drastically reduced. The story is similar for
loading objects from the file. Modify loadPossessionsFromDisk as follows:

- (void)loadPossessionsFromDisk
{
 NSArray *possessionDictionaries =
 [NSArray arrayWithContentsOfFile:[self possessionsArchivePath]];

 _possessions = [NSMutableArray array];
 _possessions = [NSKeyedUnarchiver unarchiveObjectWithFile:[self
possessionsArchivePath]];

 if (_possessions == nil) {
 _possessions = [NSMutableArray array];
 }

 for (NSDictionary *dictionary in possessionDictionaries) {
 Possession *possession = [[Possession alloc] init];

 [possession setName:[dictionary objectForKey:@"name"]];
 [possession setValue:[dictionary objectForKey:@"value"]];

 [_possessions addObject:possession];
 }
}

This is also less code, but you’ll notice that we added a check to see whether
_possessions is nil after loading. If the file doesn’t exist, the NSKeyedUnarchiver
object will return nil, and in that case, we create an empty array so that we can
still add to it. If you run the app now and you had previously saved data, it’ll

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 103

crash, since what existed before in possessions.plist isn’t what
NSKeyedUnarchiver expects. This is a good lesson for your app in general:
between versions, if you switch file names, be sure to anticipate the old file
names existing and potentially being in a different format. To get around this,
let’s switch from using the plist file extension to the archive file extension. In
PossessionListViewController.m, remove the struck-out line and add the line in
bold to the possessionsArchivePath method:

- (NSString *)possessionsArchivePath
{
 NSString *documentsPath =
 [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask,
 YES) objectAtIndex:0];
 return [documentsPath stringByAppendingPathComponent:@"possessions.plist"];
 return [documentsPath
stringByAppendingPathComponent:@"possessions.archive"];
}

Technically, what NSKeyedArchiver saves is a property list, but it isn’t one that
you’d ever want to modify by hand. Figure 4-2 displays the property list as
opened in Xcode.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 104

Figure 4-2. A property list as saved by an NSKeyedArchiver

Even if you were able to figure out the format Apple’s using for this property list,
there’s no guarantee that it won’t change drastically in the next version of Mac
OS X or iOS, so trying to parse it on your own is probably a fruitless endeavor.

The process of saving a file to disk in this manner is called serialization. The idea
is that an object that’s been serialized to disk should be indistinguishable from
an object that’s deserialized from disk. This is usually the case with objects that
implement NSCoding, unless you don’t encode key information when encoding it.
It’s also how nibs work; a nib is just an XML property list containing serialized
objects. When you load a nib from the disk in your app, the view is simply
deserialized from the file. In effect, when you drag a label onto your view when
using the nib editor in Xcode, you’re creating that object directly and then saving
it into a form from which it can be restored when the app is running.

Manual File Handling
Using NSCoding or property list objects to save your data to disk has some
important advantages. First, the code is very well-tested. Because Apple relies

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 105

on it for implementations of iOS frameworks, it has unit tests around it and a
whole team of engineers capable of fixing it. Second, it’s portable, which means
that instead of saving the binary data of your objects to a file, it saves a
representation of the data that’s independent of the processor architecture of
the computer it’s running on. The details are a fairly advanced topics, but it
should suffice to know that different processors store data in memory
differently, and if you tried to save that data to disk directly as the processor
stores it or transmit that data to another computer as the processor stores it,
you might wind up trying to open data that isn’t saved in the format your
computer expects it to be. Code that gets around this is called portable, and
using NSCoding methods to save your data does this for you.

Sometimes, perhaps for performance reasons, to save disk space, or to work
with a proprietary file format, you may want to read from and write to files on
disk directly, without using higher-level helper objects like NSKeyedArchiver and
the like. To do that, you can use the NSFileHandle object, which will allow you to
read and write bytes directly to the file. While using higher-level APIs to save
data is usually recommended, there are other options if you can’t.

SQLite Databases
There are several important drawbacks to the way we’ve approached saving
content in our app so far. One of the more serious problems you’ll encounter as
your app gets more complex is that your model objects will begin to eat up a lot
of memory. While our possessions array is miniscule with a handful of objects, a
user who has a lot o f t hings-----say, in the order of millions-----will present a
problem. When we reach this point, we need to implement a solution that saves
our objects to disk and also allows us to load a portion of them at a time without
loading the entire array. We also need to be able to save our array of
possessions without loading the entire array into memory.

One way you might solve this problem would be to save each possession to its
own file and then use a directory containing them as a container instead of an
array. A better implementation, however, would be to use a database
technology to store the data instead of flat files. iOS supports SQLite out of the
box, so if you’re familiar with SQL databases, you can apply that technology to
your iOS apps with very little effort. We won’t go into it here, but it would be
trivial to use a SQLite database in MyStuff, enabling us to persist data using the
database instead of property lists, which would allow the app to store much
more data. SQLite is also very good performance-wise, which will be important
when your app reaches a point where you need to add SQLite for scaling
reasons.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 106

File Locations on iOS
We’ve talked a lot about files but not really about where those files go. You may
have seen a bit of the filesystem hierarchy of your app while poking around in
the Finder and inspecting the iPhone Simulator’s files. Let’s take a step back
and talk about how your iOS app will interact with files. One important concept
to understand is that your app is sandboxed: it can’t access the files,
passwords, preferences, or images of any other app. There are well-defined
places where your app is allowed to save files, with different implications and
conventions for saving files in each. Files included with your app are in the app
bundle.

The App Bundle
The app bundle is a directory that contains everything your app includes when
users download it from the App Store: images, videos, the executable file, and
so on. The app bundle is strictly read-only, and its integrity is verified with code
signing. Because of the code-signing requirement, changing anything in the app
bundle would invalidate the code signature, rendering your app unusable. To get
a file out of the app bundle, you can use the NSBundle class. Here’s some code
you would write to get the path to the file Catalog.pdf from the bundle:

NSString *path = [[NSBundle mainBundle] pathForResource:@"Catalog"
 ofType:@"pdf"];

Loading files from the bundle will obviously work only if you’ve included the file
in the app. If you have many files or if they’re especially large, you may not want
to include them in your application bundle. There are two other main locations to
store files: the Documents directory and the Caches directory.

The Documents Directory
The Documents directory on iOS is the main place where you’ll store user-
generated files. Files that are placed in the Documents directory are backed up
when the device is backed up using iCloud or iTunes, so it’s important to store
files that can’t easily be re-created in Documents to avoid losing them. To get the
path to the Documents directory, use the NSSearchPathForDirectoriesInDomains
function:

NSArray *documentsDirectories =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask,
 YES);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 107

NSSearchPathForDirectoriesInDomains returns an array of paths, so to get the
path, just get the first object from the array. The first argument is the most
important to specify; in this case, it specifies that you’re looking for the
Documents directory.

The Caches Directory
The Caches directory is different from the Documents directory in a few key ways.
First, it isn’t backed up. Files that you place in Caches will be deleted if the user
gets a new phone and transfers their information to it. With that restriction, it’s
important to only put files in the Caches directory that you can either re-create or
re-download, since at any time they may cease to exist. iOS 5 added a feature
that automatically cleans caches when the device runs short on memory, much
to the chagrin of apps that were relying on those files persisting, though Apple
has since added a way to mark a file in Caches as one that the system should
not automatically purge, which will be covered later in this book. Getting the
Caches directory is just like getting the Documents directory:

NSArray *cacheDirectories =
NSSearchPathForDirectoriesInDomains(NSCachesDirectory,
 NSUserDomainMask,
 YES);

Like with the Documents directory, this returns an array of directories, of which
there will be one.

Core Data
Managing files across the filesystem, a database in SQLite, and moving objects
in and out of memory is a lot of work, and it’s hard to get right. You may be
removing objects from memory too aggressively (or not aggressively enough),
your database code may not be optimized, and your filesystem access might be
a huge, unorganized mess. Data persistence is also a common problem. Nearly
every app needs to manage objects, store them, and find them. Apple’s answer
to this problem is Core Data, a framework available on Mac OS X and iOS that
manages your data persistence for you. Core Data can save your app’s data in a
SQLite database, which is the default, in XML or binary formats, or simply save
it in memory; Core Data can also automatically save large files such as images
and videos in external files to improve database performance. The centerpiece
of Core Data is the managed object model, which is a document that describes
your data. Using a visual layout in Xcode, you can define classes and the
relationships between them. For instance, an app that tracks books might have

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Saving Content in Your App 108

a Book class and an Author class. Using Core Data, you would create an object
diagram that looks like Figure 4-3.

Figure 4-3. Editing Book and Author classes in Core Data

This configuration would create the two classes. The Book class would have
pageCount, synopsis, and title properties, as well as an NSSet of Authors. The
Author class would have a firstName and lastName properties, as well as an
NSSet of Books. This alone makes Core Data a convenient tool, just for object
modeling. Core Data also manages the object life cycle for you, from creating an
object to saving it to disk. Finally, Core Data can search for objects for you, even
automating the management of table views to display your search results. It’s a
powerful tool. For more information, there are excellent books that cover Core
Data: More iOS 5 Development and Pro Core Data for iOS, Second Edition.

Summary
In this chapter, we talked about what to do with your data. Whether you’re
moving it around in your app with Key-Value Observing or sending
NSNotifications, there are several ways to get a pointer to an object from point
A to point B. We’ve also talked about using NSUserDefaults to store preferences
and simple key-value pairs to persist data. For larger amounts of data, we
covered creating property lists, as well as using the NSCoding protocol to store
archived data. Now that we’ve covered what to do with your data, in the next
chapter we’ll cover how to let the user interact with it.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Chapter

Handling User Touches
The iPhone was a drastic change from every computing platform that came
before it in many ways, but none more so than its lack of a mouse or keyboard.
Instead of responding to keyboard key presses, mouse clicks, and mouseover
events, the iPhone responds to touch. Designing a user interface around touch
is more than converting from clicks to taps. The iPhone offers direct
manipulation: when you place your finger on a message in Mail and move it
down an inch, the contents of the message move down an inch as well. Direct
manipulation effectively removes a layer of abstraction between the user and the
content dating back to the very first graphical user interfaces (GUIs): the scroll
bar. As a result, iOS and other touchscreen operating systems are easier to use
and more intuitive than their desktop predecessors. This chapter will show you
how you can use touch in your apps, transforming a stale user experience into a
rich, immersive app that users will love. We’ll talk about various ways you can
make your application respond to user touches, including custom views and
gesture recognizers, as well as update our MyStuff example app with some new
user interface elements.

The Responder Chain
If you look at the UIView documentation, you’ll see that UIView inherits from
UIResponder. To find the documentation, open the Organizer window in Xcode
by pressing ⌘+Option+2 or by selecting Window ➤ Organizer. Select the
Documentation icon on the toolbar, and you’ll be in the documentation browser.
To find the UIView documentation, we’ll search the documentation library for it.
To open the search panel, click the magnifying glass icon in the left pane, press
⌘+Option+2, or select Help ➤ Documentation and API Reference. Type UIView
in the search box to start searching. If you don’t find any results, you might not

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 110

be searching the iOS library; click the hourglass icon in the search field text box,
and then select Show Find Options. Ensure that an iOS library is enabled in the
drop-down list that appears next to Doc Sets.

A responder is simply any object that responds to user input. Since UIView
inherits from UIResponder, we know that it can receive user input. In Cocoa
Touch, user touches are a kind of UIEvent that get passed to a UIResponder
object to be dealt with. UIEvents can be more than just touches, too: they’re
generated when the user shakes the device or when the user uses a remote
control, like the volume controls on Apple-branded earbuds.

When the user taps the screen, the system figures out what the topmost view is
at that location and sends it a UIEvent object containing one or more UITouch
objects. Most of the time, the user inputs only one touch at a time but
occasionally (more so on iPad, with its larger screen) may be using two or more
fingers to touch simultaneously. Once the event has been sent to the topmost
UIView object, it has entered what’s known as the responder chain. Each object
in the responder chain is responsible for either handling the event, therefore
consuming it, or sending it to the next object in the chain. Every object in the
chain inherits from UIResponder, giving them all a common set of methods to
use in evaluating the touch(es). UIResponder also declares the nextResponder
method, which returns the next responder in the responder chain.

Let’s follow the user’s tap up the responder chain to see where it goes. First, the
user taps the screen, creating UITouch and UIEvent objects. The system
analyzes the current view hierarchy on the screen, determines the topmost view
that contains the coordinates at which the user touched, and sends it a
message with the touch and the event as arguments (we’ll get into the specifics
of this message later). If the view does not respond to the touch, it calls
nextResponder on itself. The UIView implementation of nextResponder returns the
view’s view controller i f i t has one-----UIViewController also inherits from
UIResponder. If not, it returns its superview, which is the view it’s contained in. If
the view controller doesn’t consume the touches, it returns the view’s superview
in its nextResponder implementation. So, a touch many levels deep in the view
hierarchy could pass through a view, a few levels of superviews, a view
controller, back to another view, and so on. Eventually, the nextResponder
method of UIView will return the topmost view in any application, the UIWindow. If
the window doesn’t consume the view, its next responder is the UIApplication
object that represents the foreground application. While it’s possible to subclass
UIApplication to do custom event handling, the practice is very rare and best
avoided. Instead, beginning in iOS 5, your application delegate can inherit from
UIResponder instead of NSObject, giving you a better place to respond to events
at an application level.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 111

For touch events, it’s easy for the application to determine which view a user
probably meant to tap, since it knows the location of the touch. For other
events, it’s not so clear. When the user shakes the device or taps the on-screen
keyboard, this generates an event with no obvious way to determine which
object should receive it. The answer in Cocoa Touch is called the first
responder. When an object becomes the first responder, it becomes the starting
point for events such as these. In fact, to get the on-screen keyboard to appear,
you can call the becomeFirstResponder method on a UITextField object, and
you can force it to disappear by calling resignFirstResponder on the text field.
The first responder can also be useful if, say, you want to implement a view that
changes color when you shake the device.

Custom Views
The most direct route to handling user input is to create your own custom
UIView subclass. While this is the most direct route, it’s also the most involved.
In a subclass of UIResponder, you can implement the touch methods directly.
The touch methods, which correspond to four phases of the touch, are as
follows:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;

It’s important to implement all four of these methods, because the UIKit
framework expects a UIView to handle the entire set of touch events. Each
method has in common an NSSet of touches and a UIEvent object to which they
belong. An NSSet is a collection class like an NSArray but is unordered. An
important difference between a set and an array is that an object can be in a set
only once but can be in an array at multiple locations. Attempting to add an
object to a set it’s already in will have no effect. There’s also the NSOrderedSet
class, introduced in iOS 5, which is ordered like an array but enforces unique
objects like a set. Let’s look at an example implementation for a view. To call the
method didReceiveTap when the user taps the view, you would need to put
code only in the touchesEnded:withEvent: method, though you would
implement all four methods:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 112

{
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self didReceiveTap];
}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
}

The fourth method in this list, touchesCancelled:withEvent:, is called when the
system interrupts the touch. If you were creating a painting app, for instance,
and the user received a phone call while painting, this method would be called.
The key difference between it and touchesEnded:withEvent: is that the former is
triggered by the system while the latter is triggered by the user.

While implementing a tap is easy, more advanced touch patterns require
significant effort to code. To implement a swipe to the right, you have to track all
touches, measure the distance between them, and decide how close to a
horizontal line to allow the user to draw and still trigger a swipe gesture. To
implement a pinch, you need to track two or more lines of movement. A
common problem with these is that since you’re implementing all of this code
yourself, what one developer does will differ from what another does. My code
may be more forgiving than yours on calling a crooked swipe a horizontal one,
while yours may allow for slower double-taps than mine. What’s worse, we both
had to spend the time writing touch-handling code! Luckily, beginning in iOS 3.2
with the introduction of the iPad, Apple introduced the UIGestureRecognizer
class, which delivers a solution to touch-handling woes.

UIGestureRecognizer
A UIGestureRecognizer is a helper object designed to take the guesswork and
manual coding out of touch recognition. There are several premade subclasses
available to use, and together they form a powerful suite. You can create as
many gesture recognizers as you want and even use multiple gesture
recognizers with a single view. You can subclass UIGestureRecognizer to
implement custom gestures in an efficient and reusable manner, or even mix
them with your own manual touch-handling code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 113

More Target-Action Methods
Like the UIControl subclasses we looked at earlier, UIGestureRecognizers
operate using the target-action paradigm. Unlike UIControl, there are not
multiple control events or different actions to send; a gesture recognizer
performs the action on the target only when it has successfully recognized its
gesture. You can use the addTarget:action: method to add multiple objects as
targets for a single gesture recognizer.

Gesture Recognizer Life Cycle
Gesture recognizers are created like any object and initialized with the
initWithTarget:action: method. Since it doesn’t make any sense to recognize
a gesture and do nothing with it, you can’t create a gesture recognizer without
specifying at least one target-action pair. Once you create it, you add it to a
view using the UIView method addGestureRecognizer:. Gesture recognizers
operate on a specific view, so while you can’t add one gesture recognizer to two
views, you can add it to a superview they have in common.

Once the gesture recognizer has been added to a view, it transitions through a
series of states (accessible through its state property). At the beginning, the
state is possible. When the gesture is finished, the state is either recognized or
failed, depending on whether the received touches matched the gesture. If the
state is recognized, then the gesture recognizer calls the action method of its
target.

Some gesture recognizers are continuous, which means that instead of
detecting one discrete gesture, they send constant updates when they receive
touches. If you wanted to track touches in a painting app, for instance, you
could use a continuous gesture recognizer to get immediate updates while the
user moves a finger. For a continuous gesture recognizer, there are additional
states: began, called when the touches start, changed, called every time they
change, and ended, which is equivalent to recognized on a noncontinuous
gesture recognizer.

Built-in Gesture Recognizers
Apple provides six built-in gesture recognizers with iOS 5, all of them
subclasses of UIGestureRecognizer. In order of increasing complexity, they are
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 114

 UITapGestureRecognizer: A tap gesture recognizer recognizes
taps. You can customize it by modifying the
numberOfTapsRequired property to enforce multiple taps, as
well as the numberOfTouchesRequired property to enforce
multiple fingers doing the touching.

 UILongPressGestureRecognizer: A long press is a tap that isn’t
released immediately. The long press gesture recognizer
shares the numberOfTapsRequired and
numberOfTouchesRequired properties with
UITapGestureRecognizer but also has the
minimumPressDuration property, allowing you to specify the
amount of time that qualifies as a long press, and has the
allowableMovement property that defines the maximum
distance a touch can move before canceling the long press.
One advantage of the long press gesture recognizer is that
these two values are set to sensible defaults, making apps that
use them consistent with one another.

 UISwipeGestureRecognizer: A swipe gesture recognizer
recognizes when the user swipes up, left, right, or down,
exposed in the direction property, and allows you to specify
the numberOfTouchesRequired property. A swipe gesture
recognizer is not continuous, so you won’t receive any
messages from it until the user has completed the swipe.

 UIPanGestureRecognizer: A pan gesture recognizer also
recognizes the motion of the user’s finger but in a continuous
manner. You can specify the maximumNumberOfTouches and
minimumNumberOfTouches properties to customize its behavior,
and there are two methods to query its values:
translationInView: and velocityInView:. The translation
allows you to reposition a view based on the user dragging
their finger, for instance, while the velocity (measured in points
per second) allows you to add cool features like throwing a
view with inertia.

 UIPinchGestureRecognizer: A pinch gesture recognizer
measures continuous finger movement toward and away from
the center of all touches. It uses the relative change in location
to adjust its scale property, which you could use, for instance,
to resize the view. The pinch gesture recognizer also provides
the velocity property.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 115

 UIRotationGestureRecognizer: Like the pinch gesture
recognizer, the rotate gesture recognizer measures two
touches continuously, but instead of scale, gives you rotation
in radians, allowing you to rotate the view based on user input.

These classes allow for significant customization of your UI’s behavior. By
combining gesture recognizers, you can implement complicated user interfaces
and patterns without writing a line of code that directly handles user touches.
Add that to the consistent behavior users expect that you gain when using
system-provided gesture recognizers, and you get a recipe for UI success.

Custom UIGestureRecognizers
Despite the depth of the built-in gesture recognizers’ support for most of the
gestures you’ll want to use in your apps, occasionally you’ll need one that does
something that’s just a bit different. In that situation, you can create your own
subclass of UIGestureRecognizer to recognize it for you. If, for instance, you
wanted a gesture recognizer that recognized a downward gesture in the shape
of a greater-than sign (>), you could implement it yourself.

NOTE: To create a subclass of UIGestureRecognizer, you must import an extra
header in your implementation file: UIGestureRecognizerSubclass.h. This file
contains redefinitions of some of the regular header’s properties, allowing you to set
them.

We’ll call the example UIGestureRecognizer subclass
LCTGreaterThanGestureRecognizer. The header doesn’t need any modification:

//
// LCTGreaterThanGestureRecognizer.h
// GreaterThanGesture
//
// Created by Jeff Kelley on 2/2/12.
// Copyright (c) 2012 Jeff Kelley. All rights reserved.
//

#import <UIKit/UIKit.h>

#import <UIKit/UIGestureRecognizerSubclass.h>

@interface LCTGreaterThanGestureRecognizer : UIGestureRecognizer

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 116

In the implementation, we’ll track the user’s touches and maintain some state to
determine where in the gesture they are. To that end, we’ll define some instance
variables in the implementation file:

@implementation LCTGreaterThanGestureRecognizer {
 CGPoint _beginningPoint;
 CGPoint _midPoint;
 BOOL _receivedDownRightSwipe;
 BOOL _receivedDownLeftSwipe;
 }

_beginningPoint refers to the point the user began touching at. We’ll save it so
we can compare against it later:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];

 _beginningPoint = [touch locationInView:[self view]];
}

Since NSSets are unordered, there is no first or last object, so we use the first
one it returns. Once we have the beginning point, we compare future points
against it. To match our gesture, we need to track two motions: moving down
and to the right and then down and to the left. Once we’ve traveled a minimum
distance down and to the right, we mark _receivedDownRightSwipe as YES and
store the location to _midPoint. The user might keep going in this direction,
though, so as they continue moving down and to the right, we continue to set
_midPoint until they reverse direction. Once that occurs, we can begin tracking
down and to the left until they complete the gesture. If any of these things fail to
happen, we set the gesture recognizer’s state to Failed, ending the tracking of
touches:

#define CGPointDistanceFromPoint(p1, p2) (sqrtf(powf((p2.x - p1.x), 2.0f) +
powf((p2.y - p1.y), 2.0f)))

// The minimum amount a user's finger must move to trigger one half of the
swipe.
static const CGFloat kMinimumSwipeDistance = 50.0f;

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];

 CGPoint newPoint = [touch locationInView:[self view]];

 if (_receivedDownRightSwipe == NO) {
 if (newPoint.x >= _beginningPoint.x &&
 newPoint.y >= _beginningPoint.y) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 117

 CGFloat distance = CGPointDistanceFromPoint(newPoint,
_beginningPoint);

 if (distance >= kMinimumSwipeDistance) {
 _midPoint = newPoint;
 _receivedDownRightSwipe = YES;
 }
 }
 else {
 [self setState:UIGestureRecognizerStateFailed];
 }
 }
 else if (newPoint.x >= _midPoint.x &&
 newPoint.y >= _midPoint.y) {
 // Still going in the original direction, don't start looking
for new distance.
 _midPoint = newPoint;
 }
 else if (newPoint.x <= _midPoint.x &&
 newPoint.y >= _midPoint.y) {
 CGFloat distance = CGPointDistanceFromPoint(newPoint,
_midPoint);

 if (distance >= kMinimumSwipeDistance) {
 _receivedDownLeftSwipe = YES;
 }
 }
 else {
 [self setState:UIGestureRecognizerStateFailed];
 }
}

There are a few more things to do before finishing this implementation. First, if
_receivedDownRightSwipe and _receivedDownLeftSwipe are both YES when
touches end, we mark the gesture as recognized; otherwise, we mark it as
failed:

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 if (_receivedDownRightSwipe && _receivedDownRightSwipe) {
 [self setState:UIGestureRecognizerStateRecognized];
 }
 else {
 [self setState:UIGestureRecognizerStateFailed];
 }
}

If touches are canceled, then the gesture fails:

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 118

 [self setState:UIGestureRecognizerStateFailed];
}

Finally, the gesture recognizer will reset itself using the reset method. We’ll
reset our state there, being sure to call super’s implementation:

- (void)reset
{
 [super reset];

 _beginningPoint = CGPointZero;
 _midPoint = CGPointZero;
 _receivedDownRightSwipe = NO;
}

And there you have it: a fully functional gesture recognizer to capture your
custom gesture. While this may not seem like it has much use, gestures can
actually be quite handy for giving power users shortcuts or even as part of a
game! For most cases, however, you’ll want to use built-in user interface
components with built-in gesture recognizers. One of the more common
components you’ll use for interactivity is UIScrollView.

Scroll Views
UIScrollView is a common type of UIView that scrolls content inside itself. Both
UITableView, which we’ve covered before, and UIWebView, use UIScrollView to
move their contents around. To use UIScrollView, do two things: first, add the
content you’d like to scroll as subviews of the scroll view. Second, set the
contentSize property on the scroll view to reflect the size of the content. Now,
when the user moves their finger around on the scroll view, its contents will
automatically shift to match the finger’s movements. The scroll view’s
contentOffset property tells you how much the scroll view has moved from its
starting location; you can also set it to scroll the scroll view programmatically.
See Figure 5-1 for how UIScrollView works. If you’ve ever done view
programming on Mac OS X, you may notice a key difference between Mac OS X
and iOS: in iOS, the origin of the coordinate system is at the top left of the view,
but in Mac OS X, the origin is at the bottom left of the view.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 119

Figure 5-1. A typical scroll view. The contentOffset of the scroll view is { x, y }, and the visible
portion is the darker checkerboard pattern inside the scroll view.

One convenient feature of UIScrollView is its pagingEnabled property
(accessible via the isPagingEnabled method). When this is set to YES, the scroll
view snaps to even multiples of its width as you scroll left and right and of its
height as you scroll up and down. If you’re using a scroll view to display multiple
pieces of content that are all the same size, you can use this to achieve a page-
scrolling effect. For instance, if you have an array of images called images, this is
how you could create a scroll view to pan between them:

UIScrollView *scrollView = [[UIScrollView alloc] initWithFrame:CGRectMake(0.0f,
0.0f, 320.0f, 480.0f)];
[scrollView setPagingEnabled:YES];

CGFloat xValue = 0.0f;

for (UIImage *image in images) {
 UIImageView *imageView = [[UIImageView alloc]
initWithFrame:CGRectMake(xValue, 0.0f, 320.0f, 480.0f)];
 [imageView setImage:image];
 [scrollView addSubview:imageView];
 xValue += 320.0f;
}

[scrollView setContentSize:CGSizeMake([images count] * 320.0f, 480.0f)];

This code sample will allow you to scroll horizontally, paging between images.
It’s a very typical use of UIScrollView, one that allows you to quickly make a
very interactive layout for pictures, text, or any other content your app displays.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 120

Implementing UI Changes
Let’s use this newfound user interface knowledge in MyStuff. Right now our UI
is very vanilla, and for iOS apps, users expect something that pops a bit more. It
isn’t enough to be a useful app; instead, we should try to make a useful app that
also looks good. First we should support pictures of our items.

Adding Pictures to Possessions
Let’s add a property to Possession for the image. Open Possession.h and add
the line in bold:

@interface Possession : NSObject <NSCoding>

@property (strong) UIImage *image;
@property (copy) NSString *name;
@property (strong) NSNumber *value;

@end

Next, we’ll have to modify how it saves itself to disk. UIImage, a UIKit class to
represent images of many formats, did not conform to the NSCoding protocol
before iOS 5. To save it to disk on iOS 4, we can’t encode it directly. Luckily, we
can convert it to an NSData object, which we can then save to disk directly. A
first pass at saving it will encode it directly as data. Open Possession.m and edit
the NSCoding methods, adding the lines in bold:

@synthesize image;
@synthesize name;
@synthesize value;

- (id)initWithCoder:(NSCoder *)aDecoder
{
 self = [self init];

 if (self) {
 [self setImage:[UIImage imageWithData:[aDecoder
decodeObjectForKey:@"image"]]];
 [self setName:[aDecoder decodeObjectForKey:@"name"]];
 [self setValue:[aDecoder decodeObjectForKey:@"value"]];
 }

 return self;
}

- (void)encodeWithCoder:(NSCoder *)aCoder
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 121

 [aCoder encodeObject:UIImagePNGRepresentation([self image])
 forKey:@"image"];
 [aCoder encodeObject:[self name]
 forKey:@"name"];
 [aCoder encodeObject:[self value]
 forKey:@"value"];
}

The key function that we use here is UIImagePNGRepresentation(). It returns an
NSData object from an image, converting it to a PNG representation. You can
also use UIImageJPEGRepresentation(), which takes the image as the first
argument and a floating-point value for the second argument for the
compression quality: 0.0 represents the highest compression (and therefore the
lowest quality), while 1.0 represents the lowest compression (and therefore the
highest quality).

If you’re supporting only iOS 5 and newer, you can encode and decode the
UIImage object directly without converting it to an NSData object first.

Now we’re ready to add images to our Possession objects. When we get an
image, we’ll want to display it in the list view. Open
PossessionListTableViewCell.m, and add the lines in bold to receive Key-Value
Observing notifications when the image is changed:

static NSString * const kPossessionImageKeyPath = @"image";
static NSString * const kPossessionNameKeyPath = @"name";
static NSString * const kPossessionValueKeyPath = @"value";

- (void)dealloc
{
 if (isObservingPossession == YES) {
 [_possession removeObserver:self
forKeyPath:kPossessionImageKeyPath];
 [_possession removeObserver:self forKeyPath:kPossessionNameKeyPath];
 [_possession removeObserver:self forKeyPath:kPossessionValueKeyPath];
 isObservingPossession = NO;
 }
}

- (void)setPossession:(Possession *)possession
{
 if (isObservingPossession == YES) {
 [_possession removeObserver:self
forKeyPath:kPossessionImageKeyPath];
 [_possession removeObserver:self forKeyPath:kPossessionNameKeyPath];
 [_possession removeObserver:self forKeyPath:kPossessionValueKeyPath];
 isObservingPossession = NO;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 122

 _possession = possession;

 if (_possession != nil) {
 [_possession addObserver:self
 forKeyPath:kPossessionImageKeyPath
 options:(NSKeyValueObservingOptionInitial |
 NSKeyValueObservingOptionNew)
 context:NULL];

 [_possession addObserver:self
 forKeyPath:kPossessionNameKeyPath
 options:(NSKeyValueObservingOptionInitial |
 NSKeyValueObservingOptionNew)
 context:NULL];

 [_possession addObserver:self
 forKeyPath:kPossessionValueKeyPath
 options:(NSKeyValueObservingOptionInitial |
 NSKeyValueObservingOptionNew)
 context:NULL];

 isObservingPossession = YES;
 }
}

Next, we’ll add a line in the observation method to put the image in the table
view cell:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 if (object == [self possession]) {
 if ([keyPath isEqualToString:kPossessionImageKeyPath]) {
 [[self imageView] setImage:[change
objectForKey:NSKeyValueChangeNewKey]];
 }
 else if ([keyPath isEqualToString:kPossessionNameKeyPath]) {
 [[self textLabel] setText:[change
objectForKey:NSKeyValueChangeNewKey]];
 }
 else if ([keyPath isEqualToString:kPossessionValueKeyPath]) {
 [[self detailTextLabel] setText:[[change
objectForKey:NSKeyValueChangeNewKey] stringValue]];
 }
 }
}

Now that we’ve added these methods, images will display in our table view and
save to our a rchive when they’re set-----we just need a way to add images to our

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 123

objects. We’ll do this in our detail view controller. Open
PossessionDetailViewController.h, and add an outlet for an image view we’ll
use to show the image:

@interface PossessionDetailViewController : UIViewController

@property (weak) IBOutlet UIImageView *imageView;
@property (weak) IBOutlet UITextField *nameField;
@property (weak) IBOutlet UITextField *valueField;
@property (strong) Possession *possession;
@property (getter = isModal) BOOL modal;
@property (weak) id <PossessionDetailViewControllerDelegate> delegate;

@end

Next, you’ll need to synthesize setter and getter methods for the imageView
property. Open PossessionDetailViewController.m, and add the line in bold:

@implementation PossessionDetailViewController

@synthesize imageView;
@synthesize nameField;
@synthesize valueField;
@synthesize possession;
@synthesize modal;
@synthesize delegate;

Save your work, and open the nib file, PossessionDetailViewController.xib.
Open the Object Library on the right side of the screen (if it isn’t there, you can
open that pane by pressing ⌘+Option+0). Find the Image View object, and drag
one into your view. Control+click from the File’s Owner on the left, and drag to
the image view; then connect it to the imageView property when the choice pops
up. Now rearrange the UI objects as shown in Figure 5-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 124

Figure 5-2. Our new detail view controller nib

Let’s see what this looks like. Build and run the app. If you had saved objects
from before or try to add an item, you’ll notice that it crashes. The crash is
because of our KVO method observing the image value of a Possession object.
When we load the possession from disk, it doesn’t have an image, so its image
property is nil. The Key-Value Observing methods, however, put the values in
an NSDictionary to pass to your method, and nil cannot be placed in a
dictionary, because it is not an object. To get around this, the Key-Value
Observing methods will put an instance of the NSNull class in its place. Our app,
as written, will try to place that value in the image view, which will crash. To fix
this, we’ll make a temporary variable for the new value of the change dictionary
and then set that to nil if it’s an NSNull instance. Open
PossessionListTableViewCell.m, and modify the lines in bold:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 id newObject = [change objectForKey:NSKeyValueChangeNewKey];

 if ([newObject isKindOfClass:[NSNull class]]) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 125

 newObject = nil;
 }

 if (object == [self possession]) {
 if ([keyPath isEqualToString:kPossessionImageKeyPath]) {
 [[self imageView] setImage:[change
objectForKey:NSKeyValueChangeNewKey]];
 [[self imageView] setImage:newObject];
 }
 else if ([keyPath isEqualToString:kPossessionNameKeyPath]) {
 [[self textLabel] setText:[change
objectForKey:NSKeyValueChangeNewKey]];
 [[self textLabel] setText:newObject];
 }
 else if ([keyPath isEqualToString:kPossessionValueKeyPath]) {
 [[self detailTextLabel] setText:[[change
objectForKey:NSKeyValueChangeNewKey] stringValue]];
 [[self detailTextLabel] setText:[newObject stringValue]];
 }
 }
}

This code will be more resilient against crashes. Let’s build and run again and
then look at the detail view controller for a possession. You’ll notice that there’s
no image. This isn’t entirely unexpected; we never added an image in the first
place! We’ll want to enable the user to tap the image view to add an image, but,
as you can see in Figure 5-3, it doesn’t appear if there is no image in the
Possession object. To let the user know that they can add an image, we can add
a label underneath the image view. Reopen the nib,
PossessionDetailViewController.xib, and add a label. Place the label on top of
the image view and resize it so that its frame matches the image view’s. Open
the Attributes Inspector in the right pane, which can be accessed by pressing
Option+⌘+4. The attributes of the label should now be listed down the right
side of the window. With the label selected, set the Text property to Tap to Add
Image. Next, set the Number of Lines property to 0, which will allow it to wrap
the text to multiple lines. Under Alignment, click the middle button, which will
center the text. The font size is a little large, so click the down arrow to the right
of Font until the size is 13.0. Finally, we need to move this label behind the
image view, so that it won’t display when there is an image. With the label
selected, select Editor ➤ Arrange ➤ Send to Back, which will move the label
behind the image view.

The next step is to configure the detail view controller to show the possession’s
image when it appears. Open PossessionDetailViewController.m, and modify
its viewWillAppear: method as follows by adding the following code in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 126

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [[self imageView] setImage:[[self possession] image]];
 [[self nameField] setText:[[self possession] name]];
 [[self valueField] setText:[[[self possession] value] stringValue]];
}

Build and run, add an item, and the app should look like Figure 5-3.

Figure 5-3. Our new detail view controller

Unfortunately, tapping the label doesn’t yet do anything. To do that, we’ll add a
tap gesture recognizer to the image view. We’ll do this in the detail view
controller’s viewDidLoad method. In more recent versions of Xcode, you can also
create gesture recognizers in Interface Builder by dragging them onto a view

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 127

and then connecting them to actions. For now, we’ll create them in code. Open
PossessionDetailViewController.m, and add the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];

 UITapGestureRecognizer *tapGestureRecognizer =
 [[UITapGestureRecognizer alloc] initWithTarget:self

action:@selector(imageViewTapped:)];

 [[self imageView] addGestureRecognizer:tapGestureRecognizer];
 [[self imageView] setUserInteractionEnabled:YES];
}

We have to set the userInteractionEnabled: property of imageView to YES,
because it’s turned off by default for image views, which don’t usually receive
taps directly. Next we have to add the imageViewTapped: method. Add a
declaration for the method to the class extension:

@interface PossessionDetailViewController()

- (void)doneButtonPressed:(id)sender;
- (void)imageViewTapped:(UITapGestureRecognizer *)tapGestureRecognizer;

@end

When we write the method, we’ll use a UIKit class called
UIImagePickerController to take a picture of the object. The
UIImagePickerController class inherits from UIViewController, so we can
create one and present it as a modal view controller. Write the method as
follows:

- (void)imageViewTapped:(UITapGestureRecognizer *)tapGestureRecognizer
{
 UIImagePickerController *imagePickerController =
 [[UIImagePickerController alloc] init];

 if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
 [imagePickerController
setSourceType:UIImagePickerControllerSourceTypeCamera];
 }
 else {
 [imagePickerController
setSourceType:UIImagePickerControllerSourceTypeSavedPhotosAlbum];
 }

 [imagePickerController setDelegate:self];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 128

 [self presentModalViewController:imagePickerController animated:YES];
}

You may notice a compiler warning in this code where you call setDelegate: on
imagePickerController. We’ll fix this shortly, so for now, you can ignore it.
The image picker controller can be used to take pictures with the device’s
camera (if it has one) or to get pictures from the user’s photo library. In this
case, we’ll use the camera if it’s available but fall back to the user’s saved
photos album if it isn’t. Once we’ve created it and set its source type, we’ll set
the detail view controller (self in this method) as its delegate in order to receive
the image the user selects. Finally, we present it modally. From there the image
picker controller takes over, returning control to our code once the user selects
(or takes) an image.

NOTE: For testing on the iPhone Simulator, you can’t use the camera, but you can
use the Saved Photos album. The simplest way to add an image to the iPhone
Simulator’s Saved Photos album is through Safari; click and hold on an image to save
it to the album.

Before we go testing this code, we need to add a delegate to the image picker
controller. Interestingly, the delegate property of UIImagePickerController is
defined as conforming to two protocols: UINavigationControllerDelegate and
UIImagePickerControllerDelegate. In Apple’s source code, they declare it with
the following line (from UIImagePickerController.h in the iOS system
frameworks):

@property(nonatomic,assign) id <UINavigationControllerDelegate,
UIImagePickerControllerDelegate> delegate;

Therefore, to prevent the compiler warning our code generated earlier, we’ll
need to make PossessionDetailViewController conform to both the
UINavigationControllerDelegate and UIImagePickerControllerDelegate
protocols, even though we won’t be implementing any methods defined in
UINavigationControllerDelegate. Open the header file
(PossessionDetailViewController.h), and adjust the class declaration
accordingly:

@interface PossessionDetailViewController : UIViewController
<UIImagePickerControllerDelegate, UINavigationControllerDelegate>

The methods we will implement come from UIImagePickerControllerDelegate.
Add these two methods to your implementation of
PossesionDetailViewController:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 129

#pragma mark – UIImagePickerControllerDelegate Protocol Methods

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // We can't save the image to our possession if our possession is nil.
Create one if
 // it does not yet exist and fill in the values the user has already
entered.
 if ([self possession] == nil) {
 [self setPossession:[[Possession alloc] init]];
 [[self possession] setName:[[self nameField] text]];
 [[self possession] setValue:[NSNumber numberWithInt:[[[self
valueField] text] intValue]]];
 }

 UIImage *image = [info
objectForKey:UIImagePickerControllerOriginalImage];

 [[self possession] setImage:image];

 [self dismissModalViewControllerAnimated:YES];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissModalViewControllerAnimated:YES];
}

#pragma mark -

To help organize our code, we’re using the #pragma mark compiler directive.
Using it allows us to label sections of our code, similar to a comment. You can
see these sections in the drop-down list of methods that appears in the editor,
as in Figure 5-4. #pragma mark - places a horizontal line in the list, while #pragma
mark - followed by a text label places that label in the list. If you use a class
name or, as we did earlier, a protocol name, you can jump right to the
documentation for that symbol by holding Option while clicking it and then
clicking the book icon at the top right of the pop-up window that appears. You
can also jump right to where a protocol is defined by holding ⌘ and clicking its
name in the #pragma mark - note.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 130

Figure 5-4. The drop-down list in Xcode’s editor (note that my Xcode preferences include a dark
background instead of the default white background)

The second of these methods is called only if the user cancels the image picker,
and implementing it merely involves dismissing the modal view controller. The
first one is more interesting. First, it ensures that there’s a Possession object to
store an image into, and if there is not but the user has already entered text, it
saves that text to the newly created object. It takes the image the user has
selected from the info dictionary passed to it, setting it as the image property of
the current Possession object. Once we set the image property, the KVO
methods we set up earlier take care of displaying it in both the detail view
controller and the list view controller. The NSCoding methods we set up in
Possession now save this image to disk, as well, so the next time we run the
app, any images you’ve set will still be there. Build and run the app, setting
some images in your items. Once you do, you should see them displayed in
both locations, as in Figure 5-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 131

Figure 5-5. MyStuff with images set for its products

Awesome! Now we have an app people can use to track their belongings,
including pictures of each item. We aren’t done yet, however. When we created
the image picker controller, we assumed that users would want to use their
camera (if available) to take a picture. This doesn’t support people who want to
take pictures of some items but have saved photos of other items. Leave
something like this out, and you’re sure to get some one-star reviews on the
App Store. Let’s instead give the user a prompt to select whether they want to
use a picture from the camera or from their Photos library. We’ll use a UIKit
object called UIActionSheet, which shows a modal dialog asking the user to
select one of several options.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 132

NOTE: On devices with cameras that shoot high-resolution photos, you may notice a
delay when creating a new possession with an image. This delay occurs as the image
is saved to disk. In a later chapter, we’ll learn about performance and multithreading
on iOS. Until then, the delay is normal.

Using UIActionSheet
An instance of UIActionSheet is created with an optional title, a delegate to
receive taps, and some button titles. We’ll need to make our
PossesionDetailViewController class the delegate, which means another
protocol to conform to. Open its header, and add the new declaration:

@interface PossessionDetailViewController : UIViewController
<UIActionSheetDelegate, UIImagePickerControllerDelegate,
UINavigationControllerDelegate>

Now we’re ready to add the action sheet. First, though, let’s consider the
imageViewTapped: method. Right now, it creates and displays a
UIImagePickerController, which we still want to do, but we want to do at a
different point in our code. We also want the user to specify which source type
to use (camera or photo library). To that end, let’s declare a new method in the
class extension:

-
(void)showImagePickerControllerWithSourceType:(UIImagePickerControllerSourceType
)sourceType;

In the implementation, we’ll do most of the same thing as we did in
imageViewTapped:, only using the passed-in source type. Enter this for the
method implementation:

-
(void)showImagePickerControllerWithSourceType:(UIImagePickerControllerSourceType
)sourceType
{
 UIImagePickerController *imagePickerController =
 [[UIImagePickerController alloc] init];

 [imagePickerController setSourceType:sourceType];

 [imagePickerController setDelegate:self];

 [self presentModalViewController:imagePickerController animated:YES];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 133

Perfect. Now we can call this whenever we want. Return to the implementation
for imageViewTapped: and remove its contents, replacing them with this:

- (void)imageViewTapped:(UITapGestureRecognizer *)tapGestureRecognizer
{
 if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera] &&
 [UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary]) {
 UIActionSheet *actionSheet =
 [[UIActionSheet alloc] initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Take Photo", @"Choose From
Library", nil];

 [actionSheet showInView:[self view]];
 }
 else if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary]) {
 [self
showImagePickerControllerWithSourceType:UIImagePickerControllerSourceTypePh
otoLibrary];
 }
}

In this method, we’ll create an action sheet only if multiple source types are
available for the UIImagePickerController. If we’re on an early-model iPod
Touch or the iPhone Simulator, where there is no camera, then we’ll skip straight
to the method we just created for displaying the image picker controller,
because there is no choice for the user to make. If neither is available, then we
do nothing.

Next, we have to write the code that responds to the action sheet. Our buttons
are displayed as in Figure 5-6: Take Photo, then Choose From Library and finally
Cancel.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 134

Figure 5-6. Adding some UI polish with an action sheet

Let’s implement the delegate method for UIActionSheet,
actionSheet:clickedButtonAtIndex:. The index passed to the delegate will
correspond to the position the button is in, beginning at 0. Therefore, 0 will
correspond to Take Photo, 1 will correspond to Choose From Library, and 2 will
correspond to Cancel. The cancel button index is also a property of
UIActionSheet, cancelButtonIndex. We’ll take advantage of that in our method
to exit early if the user pressed Cancel. Implement the delegate method in
PossessionDetailViewController.m:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == [actionSheet cancelButtonIndex]) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 135

 return;
 }
 else {
 UIImagePickerControllerSourceType sourceType;

 if (buttonIndex == 0) {
 sourceType = UIImagePickerControllerSourceTypeCamera;
 }
 else {
 sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 }

 [self showImagePickerControllerWithSourceType:sourceType];
 }
}

By inspecting the value of the selected index, we can determine which type of
image picker controller to show, which we do by calling our helper method we
wrote earlier. This action sheet provides a bit of UI polish and friendliness, giving
the user a choice instead of deciding for them. It’s important to do things like
this to let the user feel like they’re in control, but we’re still not done with our
app yet.

Implementing “Edit” for Table Views
We’ve made MyStuff useful, and we’ve added a smidge of polish, but we don’t
do something that’s extremely important: letting the user recover from their own
mistakes. If they accidentally add a possession or get rid of it later, we have no
way to display that! Fortunately, UITableView supports an ‘‘editing’’ mode that
adds a delete control next in every row. To enable editing mode, we can add an
Edit button on the left of the navigation bar when we’re in the list view controller.
Open PossessionListViewController.m, and edit initWithNibName:bundle: with
the lines in bold:

- (id)initWithNibName:(NSString *)nibNameOrNil
 bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil];

 if (self) {
 [self loadPossessionsFromDisk];

 [self setTitle:@"My Stuff"];

 UIBarButtonItem *addItemButton =

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 136

 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self

action:@selector(addItemButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:addItemButton];

 [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];
 }

 return self;
}

Not much new code at all, huh? editButtonItem is a convenience method of
UIViewController that creates a button for you. Figure 5-7 shows you what the
view controller will look like when it’s in editing mode:

Figure 5-7. Our list view controller in Editing mode

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 137

Entering Editing mode animates a few changes for us automatically:

 The disclosure indicator on the right side of the table view
slides off the screen to the right.

 The text of the cell moves to the right.

 A delete control fades in and from the left.

Pressing the Delete button pushes the cell’s content aside to make room for a
red Delete button, but pressing it won’t do us much good yet. To respond to
that button, we need to implement the table view data source method
tableView:commitEditingStyle:forRowAtIndexPath:. Add it to the list view
controller (PossessionListViewController.m) with the following implementation:

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [_possessions removeObjectAtIndex:[indexPath row]];

 NSArray *indexPaths = [NSArray arrayWithObject:indexPath];
 [tableView deleteRowsAtIndexPaths:indexPaths

withRowAnimation:UITableViewRowAnimationAutomatic];

 [self savePossessionsToDisk];
 }
}

Removing the item is a three-step process. First, we remove it from our model,
which in this case is the _possessions array. Next, we tell the table view to
delete the cell at that index path. Finally, we save our possessions to disk, which
will update the archive to remove that item. Build and run, and try deleting a
possession. You should see the row it’s in animate away as the others move
around. This is another quick bit of polish we can add to the app that gives it a
better user experience. The ability to delete an item allows the user to recover
from their mistakes, as well as adjust their data set over time. Next, we’ll give
them more control over how their data is displayed by allowing them to reorder
content in the list.

Implementing Table View Reordering
Always remember that the data in the app is not yours, it’s your user’s. To that
end, they may want to change how their data is sorted and displayed. Currently,
MyStuff doesn’t sort the data in any meaningful way; it’s just displayed in the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 138

order it was entered. We could sort it ourselves, either alphabetically or by
value, but instead let’s allow the user to sort their own data. We’ll do that
through another provided mechanism from UITableView: the reordering control.
Figure 5-8 shows what our table view will look like with reordering controls.

Figure 5-8. Our list table view with reordering controls, in and out of editing mode

As you can see, the reordering control is a box made up of three lines. When we
enter editing mode, it replaces the disclosure indicator as the table view cell’s
accessory view on the right. To enable the reordering control, we don’t set a
property on the table view, call a method, or anything like that. Instead, we
simply implement the method that gets called when the user moves the row; the
table view determines that we’ve implemented that method and displays the
control. Open PossessionListViewController.m, and add the following table
view data source method:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Handling User Touches 139

- (void)tableView:(UITableView *)tableView
moveRowAtIndexPath:(NSIndexPath *)sourceIndexPath
 toIndexPath:(NSIndexPath *)destinationIndexPath
{
 id movingObject = [_possessions objectAtIndex:[sourceIndexPath row]];

 [_possessions removeObjectAtIndex:[sourceIndexPath row]];
 [_possessions insertObject:movingObject atIndex:[destinationIndexPath row]];

 [self savePossessionsToDisk];
}

In this method, we simply modify the _possessions array to match the change
that the user made and then save it to disk to persist their changes. The table
view handles all of the UI updates for us automatically.

NOTE: you have a table view where some rows cannot be moved or some
destinations are not valid, implement the data source method
tableView:canMoveRowAtIndexPath: to disable the reorder controls on a row-
by-row basis, and implement the long-winded delegate method
tableView:targetIndexPathForMoveFromRowAtIndexPath:toProposedIn

dexPath: to adjust the destination row as the user drags.

Now that they can reorder their content, our users are in full control of their data,
so we’re well on our way to having a good app that people will like. MyStuff still
has a long way to go in the look-and-feel department, but its functionality is
solid.

Summary
In this chapter we covered a lot of ways to make your app more responsive to
user touch. From implementing your own UIView subclasses to handle touches
to using UIGestureRecognizers, there are plenty of options for you to create
great user experiences. We also covered several built-in user experiences that
you can use to provide the user with functionality that’s consistent across their
applications, giving you the benefit of users who already know how to use your
app. We’ll put this to good work in our next chapter, wherein we’ll use the
device’s network connectivity to create the next great Twitter client.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Chapter

Integrating Networking
and Web Services
The iPhone ushered in a new era of always-connected apps. Nearly every iOS
app in the App Store uses the network connection in some way, whether it’s to
load graphics, post high scores to a Game Center leaderboard, or just report
analytics data to its developer. At the same time, however, as developers, we
must be judicious about how much data we use, what we send, and how we
send i t. Many customers a re not on expensive, unlimited-data p lans-----especially
those outside o f the United S tates-----and therefore won’t appreciate an app that
downloads a few hundred megabytes of images at launch. Understanding how
to use the networking functionality of these devices is a fundamental
requirement of a Cocoa Touch developer.

Hand in hand with learning how to use networking services is the knowledge of
how to integrate with web services. It isn’t enough to simply read data from the
Internet; that data must also be parsed, and the app must run accordingly. Data
on the Web is in various formats, from XML to JSON to custom formats, and
comes from various places, from static files to complex web applications.
Invariably, these web services will also require you to send data back to them,
which itself is a series of challenges, from text encoding to image
representations. This chapter will walk you through all of these scenarios, from
loading simple data from the network to uploading files and data to web
services. Along the way, we’ll use our newfound skills to create a Twitter client.

We’ll start with something easy: getting some simple data from the network into
our app.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 142

Loading Data from the Network
Whole categories of apps wouldn’t be very useful without being able to read
data from the network. Weather apps, movie ticket apps, and news-reading
apps would be impossible to make useful. Fortunately, we can use the network
on iOS devices. Let’s look at a quick example of using the NSURLConnection
class to get weather data from a web service. To get the weather data, we first
need to identify the web service we’ll use. There are various weather services
out there, each with its own license agreement and terms of use. For this book,
I’ll use the Yahoo! Weather service. You can read more about it at
http://developer.yahoo.com/weather/. The actual URL we’ll use to get weather
data is http://weather.yahooapis.com/forecastrss?p=48226. In this case,
‘‘48226’’ is the ZIP code for Detroit, Michigan, passed as a parameter to the
URL. There are three steps to this process. First, we have to make a URL
request.

Creating a URL Request
The NSURLRequest object encapsulates everything that the NSURLConnection
object will need to make the request: the URL we’re connecting to, the cache
settings for the request, and any HTTP headers that need to be sent along with
the request. To create the NSURLRequest object, we first need to create an NSURL
object to represent the URL. Creating the request looks like this:

NSURL *weatherURL = [NSURL
URLWithString:@"http://weather.yahooapis.com/forecastrss?p=48226"];
NSURLRequest *urlRequest = [NSURLRequest requestWithURL:weatherURL];

The default settings for the URL request are good enough for this simple task,
so we won’t do any further configuration.

Creating a URL Connection
Once we’ve created the request, we’re almost ready to create the connection
and get data. We’ll be using the NSURLConnection class method
sendSynchronousRequest:returningResponse:error:, which synchronously
loads data from the network. The first parameter is the request we just created,
but the second two need to be created beforehand.

www.it-ebooks.info

http://developer.yahoo.com/weather/
http://weather.yahooapis.com/forecastrss?p=48226
http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

143

NOTE: In practice, it’s generally a bad idea to use synchronous URL connections.
They stop execution while waiting for the connection to finish. If you have a slow
connection or are loading a large amount of data, using synchronous requests can
cause your app to hang until the connection is complete. Later in this chapter we’ll
cover asynchronous requests, which are a much better way to handle loading data,
and in Chapter 7 we’ll cover performance issues like this in a more general manner.

This method is declared in the system header NSURLConnection.h:

+ (NSData *)sendSynchronousRequest:(NSURLRequest *)request
returningResponse:(NSURLResponse **)response error:(NSError **)error;

As you can see, the second two parameters are not regular pointers to objects
but instead pointers to pointers to objects, which is why they have the two
asterisks. This can be confusing at first, but in reality it’s just a way for this
method to give you a pointer. You’ll create a pointer for each and initialize it to
point to nil:

NSURLResponse *urlResponse = nil;
NSError *error = nil;

With these two pointers created, you can call the method and create the
connection:

NSData *receivedData = [NSURLConnection sendSynchronousRequest:urlRequest
 returningResponse:&urlResponse
 error:&error];

Prepending an ampersand (&) before urlResponse and error passes a pointer to
the pointer instead of the pointer itself. When this method finishes, these
pointers will point to the appropriate objects. By passing pointers this way, we
can receive multiple return values from one method.

Interpreting the Response
When this method returns, the receivedData object will contain the data we got
back from the server in an NSData object. As it is, a plain NSData object isn’t too
useful. Since we know that this service returns text, not other data like an image,
let’s convert it to an NSString object:

NSString *receivedText = [[NSString alloc] initWithData:receievedData
 encoding:NSUTF8StringEncoding];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 144

NOTE: You may have noticed that we used NSUTF8StringEncoding as the second
parameter. The string encoding of the data you receive will depend on the server
you’re connecting to. Most services use either UTF8 or ASCII text encoding. For more
information on different encoding types and when to use them, check out Joel
Spolsky’s article on the topic at
www.joelonsoftware.com/articles/Unicode.html.

Now we have a string containing the server’s response to our request. This isn’t
immediately useful to us, because it’s in XML, but it’s a start. Once you have the
data from the server, it’s just a matter of parsing it. We can also glean some
information from our urlResponse object. Since this is an HTTP connection (our
URL began with http://), the response object is actually an instance of
NSHTTPURLResponse, which is a subclass of NSURLResponse. The HTTP-specific
subclass gives you additional data, such as the status code of the response. If,
for instance, you were writing an iOS app to interface with a network-enabled
coffee pot over HTTP-----a well-defined use o f the protocol-----and you wanted to
respond appropriately to HTTP status code 418 (‘‘I’m a teapot,’’ which you
would get if you accidentally connected to a teapot, not a coffee pot), the code
might look like this:

if ([urlResponse isKindOfClass:[NSHTTPURLResponse class]]) {
 NSInteger statusCode = [(NSHTTPURLResponse *)urlResponse statusCode];

 if (statusCode == 418) {
 // Oops, it's a teapot!
 NSLog(@"Accidentally messaged a teapot.");
 }
}

While this example seems pretty trivial, it offers an opportunity to discuss how
we handle a tricky situation in Objective-C. We want to use the status code of
the response, but it’s available only if the response is an NSHTTPURLResponse
object; any other NSURLResponse object won’t do. We use the isKindOfClass:
method to check the class of urlResponse. If it is an NSHTTPURLResponse, then we
know we can check the status code. To call the statusCode method on it, we
first cast it to an NSHTTPURLResponse object using parentheses. This lets the
compiler know our assumption and will enable code completion in Xcode.

Generally speaking, an HTTP status code that’s above or equal to 200 and
below 300 is considered ‘‘successful,’’ with some common errors in the 400-
and 500-level range. Some web services require the status code to return 200
on success, which you can use to your advantage when programming against

www.it-ebooks.info

http://www.joelonsoftware.com/articles/Unicode.html
http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

145

them. Another useful method on NSHTTPURLResponse is allHeaderFields, which
returns the headers sent with the response. This can be useful if, for instance,
the headers specify caching information for the returned data.

If there was a problem with your connection, often the error object will be set to
an NSError upon returning from
sendSynchronousRequest:returningResponse:error:. The NSError class defines
a number of useful methods you can use to get more information about the
error. The localizedDescription method returns text that’s localized for
displaying to the user. The code method returns an error code, specific to the
domain returned by the domain method. Finally, there may be more information
in the NSDictionary returned by the userInfo method. These errors can be
invaluable when trying to troubleshoot the network connection.

Using Received Data
Once you receive a response from the server you’ve connected to, you’ll have
an NSData object containing the response body. Depending on the service
you’re connecting to, this might be text, an image, a video, or a proprietary
binary format. If it’s text, it might be plain text, comma- or tab-delimited text
databases, JSON- or XML-formatted data, or a proprietary textual format.
Whatever format it’s in, your app should handle it appropriately. We’ll cover
images, JSON, and XML later in this chapter. For now, instead of parsing the
data, we’ll just use the NSLog() macro to display it in the console. First, let’s
make an actual app to put this code we’ve just covered in. Open Xcode and
make a new project by selecting File  New  Project…. Select Application
under iOS on the left side of the dialog and then Empty Application from the list
of templates. For Product Name, enter SimpleWeather. Fill in the Company
Identifier and Class Prefix fields, select iPhone from the Device Family drop-
down box, uncheck Use Core Data and Include Unit Tests, and leave Use
Automatic Reference Counting checked. When you’re done, the settings should
match Figure 6-1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 146

Figure 6-1. Xcode settings for creating the SimpleWeather app

NOTE: When you use the Empty Application template, you’ll see the following line in
the console when you run the app:

Application windows are expected to have a root view controller

at the end of application launch

By the time we’re done with this app, our window will have a root view controller, so
you won’t see this message anymore.

Click Next, and save your project to disk. Open your app delegate
implementation file (LCTAppDelegate.m for my class prefix, LCT). Add our
networking code in bold to the application:didFinishLaunchingWithOptions:
method:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

147

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 NSURL *weatherURL =
 [NSURL
URLWithString:@"http://weather.yahooapis.com/forecastrss?p=48226"];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:weatherURL];

 NSURLResponse *urlResponse = nil;
 NSError *error = nil;

 NSData *receivedData = [NSURLConnection
sendSynchronousRequest:urlRequest

returningResponse:&urlResponse
 error:&error];

 NSString *receivedText = [[NSString alloc] initWithData:receivedData

encoding:NSUTF8StringEncoding];

 NSLog(@"%@", receivedText);

 return YES;
}

Run the app. You won’t see much in the iPhone Simulator window, but the
Xcode window should show you the data it received. If you don’t see the debug
area, select View  Debug Area  Activate Console, or press Shift+⌘+C. The
debug area appears at the bottom of the screen and contains log messages
sent from your app. Figure 6-2 shows an Xcode window with the debug area
open to the console on the bottom and some response data from Yahoo!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 148

displayed. \

Figure 6-2. Xcode’s Console open in the debug area. My Xcode editor window has a dark background;
yours (if you haven’t changed it) will have a white background.

If the network connection succeeded, you should see the response data in the
console now. It’s XML-formatted data that contains a weather forecast for
Detroit, Michigan. The next step is to take that XML data, turn it into a useful
format, and display it to the user. Before we do that, however, there’s a problem
with the way we’ve done things. By using the
sendSynchronousRequest:returningResponse:error: method of
NSURLConnection, we’re preventing the app from finishing its launch until we
receive a response from the server. This doesn’t provide a good experience for
the user, and more importantly, if the app takes too long to start, it’ll be
terminated by the operating system. Let’s change that before we deal with the
data.

Asynchronous Operation
The method we used earlier is a typical synchronous method that returns three
objects: the data, the response, and an error (if one is encountered).
NSURLConnection also supports using a delegate to receive these objects, which

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

149

allows you to continue execution before the response is received. Let’s modify
the code to run asynchronously. Open your app delegate’s implementation file
(LCTAppDelegate.m for me), and modify the
application:didFinishLaunchingWithOptions: method by deleting the struck-
out lines and adding the lines in bold:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 NSURL *weatherURL =
 [NSURL URLWithString:@"http://weather.yahooapis.com/forecastrss?p=48226"];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:weatherURL];

 NSURLResponse *urlResponse = nil;
 NSError *error = nil;

 NSData *receievedData = [NSURLConnection sendSynchronousRequest:urlRequest
 returningResponse:&urlResponse
 error:&error];

 NSString *receivedText = [[NSString alloc] initWithData:receievedData

encoding:NSUTF8StringEncoding];

 NSLog(@"%@", receivedText);

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:urlRequest

delegate:self];

 [connection start];

 return YES;
}

URL Connection Delegate Methods
You may have noticed that we never opened the app delegate’s header to
declare our conformance to a protocol. While there is a delegate protocol called
NSURLConnectionDelegate in Cocoa Touch, the delegate property of

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 150

NSURLConnection isn’t declared as conforming to it. Historically, the URL
connection delegate methods have always been an informal protocol, and the
important ones still are. There are four methods you’ll want to implement almost
every time you use NSURLConnection:

 connection:didReceiveResponse:

 connection:didReceiveData:

 connection:didFailWithError:

 connectionDidFinishLoading:

Similar to the UITableView delegate and data source methods, the first
parameter to all of these methods is a pointer to the URL connection. The
objects that were a ll returned f rom the single synchronous method-----the data
from the body o f the response, the response i tself, and an e rror, i f p resent-----are
all returned in separate methods, with an extra method that’s called when the
connection is done. One consequence of this separation is that we need a place
to store these values before the connection is done loading. Modify your app
delegate’s implementation file (LCTAppDelegate.m) with the lines in bold to add
private instance variables for these values:

#import "LCTAppDelegate.h"

@implementation LCTAppDelegate {
 NSMutableData *_receivedData;
 NSURLResponse *_receivedResponse;
 NSError *_connectionError;
}

@synthesize window = _window;

…

You might notice that instead of an NSData object, we’re using an NSMutableData
object. This is because the URL connection will call
connection:didReceiveData: multiple times, so we need to keep track of all the
data it’s received over its lifetime. With that in mind, in your app delegate
implementation file (LCTAppDelegate.m), modify the code with the lines in bold:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

151

 NSURL *weatherURL =
 [NSURL URLWithString:@"http://weather.yahooapis.com/forecastrss?p=48226"];

 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:weatherURL];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:urlRequest

delegate:self];

 _receivedData = [[NSMutableData alloc] init];

 [connection start];

 return YES;
}

- (void)connection:(NSURLConnection *)connection
didReceiveResponse:(NSURLResponse *)response
{
 _receivedResponse = response;
}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData
*)data
{
 [_receivedData appendData:data];
}

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError
*)error
{
 _connectionError = error;
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"Response: %@", _receivedResponse);

 NSString *receivedString = [[NSString alloc] initWithData:_receivedData

encoding:NSUTF8StringEncoding];

 NSLog(@"Body: %@", receivedString);
}

Run your application, and you should see similar console output as you saw
before. The difference now is that the rest of the application was allowed to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 152

continue before the connection finished. Had the connection taken 30 seconds
to load, your users would have appreciated not having to wait for it.

Asynchronous Networking Concerns
Before we continue, there are some caveats to using NSURLConnection
asynchronously that you should know about. First, there is no built-in queuing
mechanism for NSURLConnection operations. If you were to create 50 objects
that each fired off an NSURLConnection asynchronously, you would quickly find
performance issues as the app tried to open 50 connections. While iOS devices
are more than capable from a hardware perspective of maintaining multiple
simultaneous connections, any more than a handful can become an issue. A
good rule of thumb is to have no more than three simultaneous connections,
especially when the user is connected to a cell network.

A second concern with asynchronous networking is that each active connection
is given the same priority. If you have an absolutely critical data upload in your
app, it may be competing with other code in your app that’s downloading an
image or content, or even with the Mail app in the background on the device.
While this is rarely a serious issue, it’s important to think about as you design
your app.

Finally, it’s difficult to coordinate delegate messages for multiple URL
connections. It’s certainly possible; each delegate method has a pointer to the
URL connection as its first parameter, so you could reference that value before
continuing, but this would quickly become tedious, and managing the state of
the connections would be tricky.

Fortunately, I’m not giving you all of this bad news without some good news.
Other developers have encountered this problem before and created open
source solutions around them. Most of them use the built-in queuing
mechanism in NSOperationQueue, which we’ll discuss in a later chapter. They
each have their own uses and advantages, so instead of backing a single
project, I’ll name three that I have found useful: ASIHTTPRequest,
AFNetworking, and MKNetworkKit. When you’re building a real application,
search the Internet for these solutions and consider leveraging them to help with
your asynchronous networking.

Back in our weather-parsing example app, we have received the data from the
server and done so in a suitably asynchronous fashion, so let’s work on parsing
the data into a useful form.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

153

Parsing JSON and XML from Web Services
JSON and XML are two different approaches to the same kind of problem: how
do we encapsulate data in a meaningful way to send to another computer?
When you connect to the weather service for a ten-day forecast, for instance, it
returns a list of high and low temperatures for those days. For your app to be
able to use that data, the format that the web service uses to send that data
back must be documented somewhere so that you can parse it. What does that
all mean, though? Put simply, you have to translate between native Objective-C
objects and the data from the server.

To explain, let’s look at some data in XML. This data, from Yahoo!’s web
service, shows a two-day forecast:

<yweather:forecast day="Wed" date="22 Feb 2012" low="31" high="39"
text="Rain/Snow Showers Early" code="5" />
<yweather:forecast day="Thu" date="23 Feb 2012" low="32" high="40" text="PM Snow
Showers" code="14" />

As you can see, there are two yweather:forecast objects, with the properties
day, date, low, high, text, and code. Let’s look at what that might look like in
JSON:

{
 "forecast": [
 {
 "day": "Wed",
 "date": "22 Feb 2012",
 "low": 31,
 "high": 39,
 "text": "Rain/Snow Showers Early",
 "code": 5
 },
 {
 "day": "Thu",
 "date": "23 Feb 2012",
 "low": 32,
 "high": 40,
 "text": "PM Snow Showers",
 "code": 14
 }
]
}

When JSON is received from a server, it’s compacted without line breaks, so it
would look like this:

{"forecast":[{"day":"Wed","date":"22 Feb
2012","low":31,"high":39,"text":"Rain/Snow Showers

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 154

Early","code":5},{"day":"Thu","date":"23 Feb 2012","low":32,"high":40,"text":"PM
Snow Showers","code":14}]}

While these two forms are functionally identical, the first is much more human-
readable. It has an array of elements called forecast, each with the same
properties as in the XML. We’ll learn more about the syntax of each format as
we go into parsing it.

Parsing XML
There are two distinct types of XML parsers: streaming and tree-based.
Streaming parsers, also called sequential parsers, read one element at a time,
processing the element’s data as it reads. Tree-based parsers read the entire
document at once, organizing elements into a hierarchy of objects. Tree parsers
can be dangerous to use on iOS devices, because keeping the entire document
in memory for the life span of your application can run up against memory limits.
For that reason, the built-in parser, NSXMLParser, is something closer to a
streaming processor, though it’s not considered to be a true streaming parser.
While this can be a verbose way to parse your data, it’s safer in memory-
constrained environments. Let’s implement NSXMLParser in our weather
example. Open your app delegate’s header file (LCTAppDelegate.h using my
class prefix) and declare that it conforms to the NSXMLParserDelegate protocol
by adding the text in bold:

#import <UIKit/UIKit.h>

@interface LCTAppDelegate : UIResponder <NSXMLParserDelegate,
UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

To understand how NSXMLParser works, consider the structure of an XML
element. An element with the name element and the content content is
structured like so:

<element>content</element>

As the XML parser reads the file, when it reads the <element> tag, it marks off
the beginning of the element by sending a message to its delegate. It continues
to read the text until it finds the </element> tag, at which point it sends another
message to its delegate. It saves the text it encounters between the two tags,
sending it in another delegate method. There are, therefore, three main delegate
methods defined in NSXMLParserDelegate for each element, as well as one to
catch errors and two to demarcate the beginning and end of the document:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

155

 parserDidStartDocument:

 parserDidEndDocument:

 parser:didStartElement:namespaceURI:qualifiedName:attrib
utes:

 parser:didEndElement:namespaceURI:qualifiedName:

 parser:foundCharacters:

 parser:parseErrorOccurred:

Like a good delegate protocol, the first parameter to each is a pointer to the
NSXMLParser object. The third and fourth have additional parameters for
namespaces and qualified names, but for simple XML parsing we won’t need to
use them. If you do advanced XML processing, there are other methods as well
to deal with topics such as XML entity declarations and the like. For now, this
collection of methods is enough for us to parse the response from Yahoo!. Open
your app delegate’s implementation file (LCTAppDelegate.m), and modify the
connectionDidFinishLoading: method by adding the lines in bold and deleting
those that have been stuck out:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"Response: %@", _receivedResponse);

 NSString *receivedString = [[NSString alloc] initWithData:_receivedData

encoding:NSUTF8StringEncoding];

 NSLog(@"Body: %@", receivedString);

 NSXMLParser *parser = [[NSXMLParser alloc] initWithData:_receivedData];
 [parser setDelegate:self];

 [parser parse];
}

In this method, we’ll simply create an instance of NSXMLParser, give it a pointer
to the data we received from the URL connection, set its delegate to self (here,
the app delegate object), and tell it to begin parsing. This hands control of the
parsing logic to the XML parser, which will in turn call our delegate methods.
The data we’re looking for is the yweather:forecast element, which doesn’t
have any text content. Instead, it uses attributes, and a sample forecast element
is as follows:

<yweather:forecast day="Fri" date="24 Feb 2012" low="27" high="35" text="Few
Snow Showers" code="14" />

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 156

The attributes will be passed as the final parameter to
parser:didStartElement:namespaceURI:qualifiedName:attributes:, so we can
use that method to parse the data. First, let’s create a mutable array to pass
data into. At the top of the file, add a mutable array to the class’s private
instance variable declarations:

@implementation LCTAppDelegate {
 NSMutableData *_receivedData;
 NSURLResponse *_receivedResponse;
 NSError *_connectionError;
 NSMutableArray *_forecasts;
}

We’ll store the attributes we receive in this array. Next, add an implementation
for parser:didStartElement:namespaceURI:qualifiedName:attributes: before
the @end compiler directive at the end of the file. Because all of the data is in the
attributes, we can just add the dictionary to our array:

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqualToString:@"yweather:forecast"]) {
 [_forecasts addObject:attributeDict];
 }
}

We’ll also need to implement parserDidStartDocument: to create our array. Add
this method after the previous one but still before the @end compiler directive:

- (void)parserDidStartDocument:(NSXMLParser *)parser
{
 _forecasts = [NSMutableArray array];
}

Now, when the XML parser encounters a yweather:forecast element, our
delegate methods will save the attribute dictionaries to the _forecasts array.
Implement parserDidEndDocument: after parserDidStartDocument:, and output
the array to the console:

- (void)parserDidEndDocument:(NSXMLParser *)parser
{
 NSLog(@"%@", _forecasts);
}

Build and run the app. You should see the array’s description in the console.
The output should look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

157

2012-02-24 23:45:50.078 SimpleWeather[1235:f803] (
 {
 code = 14;
 date = "24 Feb 2012";
 day = Fri;
 high = 35;
 low = 27;
 text = "Few Snow Showers";
 },
 {
 code = 14;
 date = "25 Feb 2012";
 day = Sat;
 high = 33;
 low = 21;
 text = "Few Snow Showers";
 }
)

As you can see, the array has two forecasts, each with code, date, day, high,
low, and text keys.

NOTE: Although the console output looks similar to JSON, which you’ll see in more
detail later in the chapter, it isn’t. This is just a human-readable output format for
logging.

We’ve successfully parsed the XML data into Foundation objects. The next
steps for this application would probably include creating a user interface
around these results, maybe displaying the forecasts in a table view or in some
custom view. While the streaming XML parser can be complicated, it works
quite well for simple tasks such as this. Most new web services, however, use
JSON or at least offer JSON as an option. For iOS development with Cocoa
Touch, you’ll typically use JSON before XML. With that in mind, let’s dive into
parsing JSON data.

Parsing JSON
JSON is an acronym for JavaScript Object Notation. It comes from the
JavaScript language and has emerged as the go-to format for transmitting
objects across the network. There are two main structures you’ll encounter in
JSON: arrays and dictionaries. An array starts with the [character, with
elements inside separated by commas, and ends with the] character. In JSON,
data objects are simply strings and numbers, so a JSON array of numbers can
be defined as such:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 158

[1,2,3]

Dictionaries start with the { character and end with the } character. Key-value
pairs are denoted with the key first, a : character, and then the value, with
commas separating the pairs. A simple dictionary can be defined as such:

{"value1":10,"value2":42}

This dictionary has two keys, value1 and value2, with the values of 10 and 42,
respectively. As you can see, JSON notation is as simple as possible, with very
few characters defining a simple syntax. You may already be thinking of how
you would write a parser for JSON, which would be no small effort. Fortunately,
Cocoa Touch supports parsing JSON natively as of iOS 5, so you don’t have to!
Simply use the NSJSONSerialization class to parse the JSON into NSArray,
NSDictionary, NSString, and NSNumber objects. Here’s an example of parsing
data returned from a web service in a URL connection delegate’s
connectionDidFinishLoading: method:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 NSLog(@"Response: %@", _receivedResponse);

 // _receivedData is the NSData object received from the connection

 NSError *parseError = nil;
 id responseObject = [NSJSONSerialization JSONObjectWithData:_receivedData
 options:0
 error:&parseError];

 // Handle responseObject here
}

As you can see, we use an NSData object with data we’ve received from the
connection to create the responseObject object. The responseObject object will
be either an NSArray or NSDictionary, depending on what’s in the JSON. There
are also some options that can be passed as the second argument to
JSONObjectWithData:options:error:, allowing you to create NSMutableArray
and NSMutableDictionary objects instead of their immutable counterparts, to
create NSMutableString objects instead of NSString objects, or to allow top-
level objects that aren’t arrays or dictionaries.

Creating JSON Representations
If you need to create your own JSON, it’s similarly built-in. The following code
snippet creates an array of strings and then creates a JSON string to represent
it:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

159

NSArray *fruits = [NSArray arrayWithObjects:@"orange", @"apple", @"cherry",
@"pear", nil];

NSError *encodingError = nil;
NSData *jsonData = [NSJSONSerialization dataWithJSONObject:fruits
 options:0
 error:&encodingError];
NSString *jsonString = [[NSString alloc] initWithData:jsonData
 encoding:NSUTF8StringEncoding];
NSLog(@"%@", jsonString);

The output of the NSLog() line in this code is as follows:

["orange","apple","cherry","pear"]

As you can see, it’s an array with our four strings in it. This is ideal for uploading
your own data to a web service. JSON isn’t perfect, however; for instance, there
is no built-in type for binary data, so if you want to upload an image to a web
service, you’ll either have to encode it in a string or find another method of
uploading the data.

Parsing Foundation Objects into Model Objects
With both XML and JSON, we’ve learned how to take the data from the web
service and parse it into NSArray and NSDictionary objects containing NSString
and NSNumber objects. With Objective-C, however, it’s often more desirable to
work with native objects. In our Yahoo! Weather example, for instance, we’d
ideally create an LCTForecast object to work with. Let’s go ahead and create it
now, giving it the properties we’d like to use. In Xcode, select File  New 
File… or press ⌘+N. Select Cocoa Touch in the left column and Objective-C
Class on the right. Click Next, and name the class LCTForecast, as a subclass of
NSObject. Click Next and save the file to disk with the Create button. Open the
newly created header, LCTForecast.h, and add the properties shown here in
bold:

#import <Foundation/Foundation.h>

@interface LCTForecast : NSObject

@property (copy) NSString *date;
@property (strong) NSNumber *low;
@property (strong) NSNumber *high;
@property (copy) NSString *text;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 160

Next, switch to the implementation file (LCTForecast.m), and add @synthesize
directives for the properties after the @implementation directive:

@implementation LCTForecast

@synthesize date = _date;
@synthesize low = _low;
@synthesize high = _high;
@synthesize text = _text;

@end

Now, all we need is a way to get data into the object. To do this, we’re going to
create a method called initWithDictionary:, into which we’ll pass the
dictionary we’ve parsed from the data we received from the web server. Open
the header again (LCTForecast.h), and add a line to declare the method:

@interface LCTForecast : NSObject

@property (copy) NSString *date;
@property (strong) NSNumber *low;
@property (strong) NSNumber *high;
@property (copy) NSString *text;

- (id)initWithDictionary:(NSDictionary *)dictionary;

@end

Now, switch back to the implementation file (LCTForecast.m) and implement the
method. Since the XML data returns strings for every attribute, we’ll have to
convert low and high to NSNumber objects. We’ll do that by using their intValue
methods to get an int type and then creating an NSNumber object from the int.
Create the method as follows in bold:

@implementation LCTForecast

@synthesize date = _date;
@synthesize low = _low;
@synthesize high = _high;
@synthesize text = _text;

- (id)initWithDictionary:(NSDictionary *)dictionary
{
 self = [super init];

 if (self) {
 _date = [[dictionary objectForKey:@"date"] copy];
 _text = [[dictionary objectForKey:@"text"] copy];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

161

 _low = [[NSNumber alloc] initWithInt:[[dictionary
objectForKey:@"low"] intValue]];
 _high = [[NSNumber alloc] initWithInt:[[dictionary
objectForKey:@"high"] intValue]];
 }

 return self;
}

@end

This method will extract the values we want to store from the parsed
NSDictionary, allowing us to turn the output from the web service into native
objects. Let’s return to our app delegate and create these objects. Open your
app delegate’s implementation file (LCTAppDelegate.m), and import the
LCTForecast header at the top with the line in bold:

#import "LCTAppDelegate.h"
#import "LCTForecast.h"
…

Next, modify the
parser:didStartElement:namespaceURI:qualifiedName:attributes: method to
create LCTForecast objects and place them in the _forecasts array by adding
the code in bold and removing the code that’s been struck out:

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqualToString:@"yweather:forecast"]) {
 [_forecasts addObject:attributeDict];

 LCTForecast *forecast = [[LCTForecast alloc]
initWithDictionary:attributeDict];
 [_forecasts addObject:forecast];
 }
}

Build and run the app again, and the console output should look like this:

2012-02-25 00:55:09.876 SimpleWeather[2043:f803] (
 "<LCTForecast: 0x688be90>",
 "<LCTForecast: 0x688c0b0>"
)

As you can see, the array has two LCTForecast objects in it, which have been
created by our parser. Now the app is ready to use native Objective-C

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 162

paradigms for managing these objects and constructing a useful user interface
around them.

NOTE: The debug text printed for the LCTForecast object is a little sparse. You can
control what gets printed in the console by implementing the description method,
which returns a string, in any class that inherits from NSObject. Here’s an example
implementation of description for LCTForecast:

- (NSString *)description

{

 return [NSString stringWithFormat:@"%@, date: <%@>, text:

<%@>, low: <%@>, high: <%@>",

 [super description],

 [self date],

 [self text],

 [self low],

 [self high]];

}

Downloading Files
So far, we’ve covered what to do with text data coming from a server, but what
about other kinds of data? Your app might download images, music, videos, or
documents from a server. In those cases, it’s best to save the file to the device’s
disk. One obvious solution would be to write the data received from the server
to a file when the connection is done loading:

// Download the Apple favicon image
NSURL *faviconImageURL = [NSURL
URLWithString:@"http://www.apple.com/favicon.ico"];

NSURLRequest *urlRequest = [NSURLRequest requestWithURL:faviconImageURL];
NSURLResponse *urlResponse = nil;
NSError *error = nil;

NSData *imageData = [NSURLConnection sendSynchronousRequest:urlRequest

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

163

 returningResponse:&urlResponse
 error:&error];

[imageData writeToFile:@"favicon.ico" atomically:YES];

This code snippet downloads the small browser icon for Apple’s website and
saves it to the file favicon.ico. This works well for small images and f iles-----the
icon i s only 9KB as o f this writing-----but what if the app had to download a file,
perhaps a movie that the app would play back offline, that was larger than the
memory capacity of the device? This method wouldn’t work, because the
imageData variable would be too large to store in memory. In those cases, you
would implement the URL connection delegate methods and use them to work
with just the data that comes in:

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 NSFileHandle *fileHandle = [NSFileHandle
fileHandleForWritingAtPath:@"favicon.ico"];
 [fileHandle seekToEndOfFile];
 [fileHandle writeData:data];
}

Here, we use an NSFileHandle to manage writing data at the end of a file. This
allows us to keep just the amount of data we need in memory. For large files,
however, there is the danger of the connection being interrupted, the user
entering a tunnel and losing their connection to the cell tower, and so on. For
that reason, you may want to do this atomically, writing the data to a secondary
location on disk, and then moving the file to the final location when the
connection finishes error-free. The previous code sample could be written as
follows to be atomic:

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
{
 NSString *filePath = @"favicon.ico";
 NSURL *fileURL = [NSURL fileURLWithPath:filePath];

 NSString *tmpFilePath = @"favicon.ico.tmp";
 NSURL *tmpFileURL = [NSURL fileURLWithPath:tmpFilePath];

 NSError *copyError = nil;
 BOOL copySuccess = [[NSFileManager defaultManager] copyItemAtURL:fileURL
 toURL:tmpFileURL

error:©Error];

 if (copySuccess == YES) {
 NSFileHandle *fileHandle = [NSFileHandle
fileHandleForWritingAtPath:tmpFilePath];
 [fileHandle seekToEndOfFile];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 164

 [fileHandle writeData:data];

 NSError *moveError = nil;

 BOOL moveSuccess =
 [[NSFileManager defaultManager] replaceItemAtURL:fileURL
 withItemAtURL:tmpFileURL
 backupItemName:@"favicon.bak"
 options:0
 resultingItemURL:NULL
 error:&moveError];

 if (moveSuccess == NO) {
 NSLog(@"Error moving item at URL %@ to URL at %@: %@",
 tmpFileURL,
 fileURL,
 [moveError localizedDescription]);
 }
 }
 else {
 NSLog(@"Error copying item at URL %@ to URL at %@: %@",
 fileURL,
 tmpFileURL,
 [copyError localizedDescription]);
 }
}

When to Cache Files
When you’re saving content to disk, there are two main locations that you’ll use:
the Documents directory and the Caches directory. The key difference between
the two is that the contents of the Caches directory are not backed up and, on
iOS 5 and greater, may be emptied by the operating system as the device runs
low on free space. For that reason, any file that you can’t easily re-create, such
as user-generated content, should be saved in the Documents folder to prevent
losing it forever. Data that you know you’ll be able to redownload easily, such as
images and content served from a web service that you maintain, can be saved
in the Caches directory. One in-between gray area is content that you can easily
redownload but that you don’t want the system to purge yet. This could include
content the user has saved for offline viewing or large files that the user is
currently using. For those, Apple updated iOS 5.0.1 to include a flag that you
can set on a file in the Documents directory to prevent it from being backed up.
This prevents large, easily redownloaded files from taking up valuable space in
the user’s iCloud backups, while also preventing iOS from deleting those files
when the device is low on disk space. Starting in iOS 5.1, Apple offers NSURL-
level APIs for setting this value. Assuming an NSString object currently set to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

165

file’s path, you would use the following code to prevent a file from being backed
up:

NSURL *fileURL = [NSURL fileURLWithPath:pathString];
NSError *error = nil;
[fileURL setResourceValue:[NSNumber numberWithBool:YES]
 forKey:NSURLIsExcludedFromBackupKey
 error:&error];

Downloading Images
Special care should be taken when you’re downloading images to display to the
user. An app that displays image galleries can grow very quickly, especially as
the cameras in Apple devices grow in resolution. For that reason, it’s good
practice to keep track of how large your set of downloaded images has grown
and removing cached images yourself before they grow too large. You can use
the removeItemAtURL:error: or removeItemAtPath:error: method of the
NSFileManager class to delete locally saved images before the cache grows too
large.

Another thing to consider when downloading images is that often, such as when
you’re displaying a thumbnail of a larger image, you’ll be displaying the image in
a smaller size than the original downloaded size. While a UIImageView object can
automatically scale images to display them, the quality of the resized images is
less than what you can get if you manually resize them on the device before
displaying them. Also, placing the original image in a UIImageView keeps the
entire original image in memory. If your app were to display 100 8-megapixel
images as 10x10 thumbnails, you would be using a mere 0.00125 percent of the
images’ pixels to display on the screen, yet keeping 100 percent of them in
memory! This is an extreme example, to be sure, but there are real performance
gains to be had by resizing images to just the size you need before displaying
them. Fortunately, a number of open source libraries exist to do this exact thing;
a quick Google search for ‘‘resize UIImage’’ should turn up a suitable library.

Sending Data Across the Network
So far, all of the networking code we’ve seen has involved loading data from a
server into the app. Just as important, however, is sending data back to the
server; any app that consists of user-generated content relies on this
functionality. Sending data is akin to receiving it: create an NSURLRequest, set
some of its properties, and use an NSURLConnection to perform the request. In
fact, the URL connection still returns an NSURLResponse, NSError, and some
NSData to represent the server’s response, so from that perspective, the process

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 166

is the same. The key differences is in preparing the URL request. Instead of
NSURLRequest, you’ll use its mutable subclass, NSMutableURLRequest, which
allows you to set the HTTP method, HTTP body, and any HTTP header fields
you need to set. The following code sample sends the string ‘‘Hello, World!’’ to a
URL at www.example.com/service using the PUT HTTP method:

NSString *message = @"Hello, World!";
NSData *bodyData = [message dataUsingEncoding:NSUTF8StringEncoding];
NSString *contentLength = [NSString stringWithFormat:@"%d", [bodyData length]];

NSURL *serviceURL = [NSURL URLWithString:@"http://www.example.com/service"];

NSMutableURLRequest *request = [NSURLRequest requestWithURL:serviceURL];
[request setHTTPMethod:@"PUT"];
[request setHTTPBody:bodyData];
[request setValue:contentLength forHTTPHeaderField:@"Content-Length"];

NSURLResponse *response = nil;
NSError *error = nil;

NSData *responseData = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:&error];

We’ll be sending plenty of data in our next example app: a fully functioning
Twitter client.

Creating a Twitter Client
Twitter’s explosive growth in popularity has brought with it a smorgasbord of
Twitter clients for iOS. Search for ‘‘Twitter’’ in the App Store, and you’ll get more
results than you can easily sift through, official Twitter client notwithstanding.
Creating a Twitter client, therefore, is something of a rite of passage for today’s
Cocoa Touch developer. This makes a certain amount of text, because an API
for sending 140-character messages can be only so complex.

NOTE: The documentation for Twitter’s API, as of this writing, is available at
http://dev.twitter.com.

A successful Twitter client needs to have some basic functionality:

 Displaying the user’s timeline

 Displaying images from a user’s timeline

www.it-ebooks.info

http://www.example.com/service
http://dev.twitter.com
http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

167

 Posting a new tweet

 Searching Twitter for posts

To do this, naturally, we have to be able to log in to Twitter. Every API except for
search requires that the user is authenticated. Historically, this was a huge pain,
because Twitter uses the OAuth standard for authentication. Apps that
authenticate to services that use OAuth don’t store the user’s password directly;
instead, they save an ‘‘authorization token’’ that can serve as proof that the user
has logged in. The authorization token is just a string that gets passed back to
the server whenever you’re doing something as that user. While this doesn’t
sound too bad at first, the devil is in the details.

To log in to an OAuth service, the app first loads a web view pointed at the
service’s login page. The user types their login and password, and the web view
redirects to a success page. This success page typically does one of two things:
opens a URL that you’ve specified as a callback URL, passing the authorization
token as an argument in the URL string, or displays a second page with a PIN
that the user enters into your app. The PIN is then used to obtain the
authorization token. Implementing these features is time-consuming, inefficient,
and difficult to learn. What’s worse, each service that implements OAuth does
so slightly differently, so learning it once isn’t enough; you have to learn OAuth
as well as each site’s quirks.

Another piece to the OAuth puzzle is creating an API key. For each web service
for which you want to add OAuth authentication to your app, you have to
register with the developers of the service and receive an API key with which
you’ll authenticate your requests. These API keys often tie in to a rate limit for
the service, so your app can’t make too many requests and slow down the
service for everyone using it.

Luckily for Cocoa Touch developers, once again Apple has stepped in on your
behalf. It introduced the Accounts framework in iOS 5, which allows the system
to store information about the user’s accounts in a central location on the
device, rather than having each app store the information. As of iOS 5.0.1, the
only service that takes advantage of the Accounts framework is Twitter, which
has its own Twitter framework in the OS as well. With the Twitter framework,
instead of your app needing to authenticate the user manually, you can use the
account they’ve entered into the system without doing the OAuth dance. Instead
of a login screen, the user will have a single alert view to click that gives your
app permission to access their Twitter account. If they have multiple Twitter
accounts, you’ll need to ask which one they want to use, but that’s the extent of
how you gain Twitter authorization in iOS 5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 168

Let’s get started with our Twitter app. Open Xcode, and select File  New 
New Project… or press ⌘+Shift+N. With Application under iOS selected on the
left, select Empty Application from the right. Click Next, and then fill in your
company identifier and class prefix (I’ll use com.learncocoatouch and LCT,
respectively). Choose iPhone for Device Family, uncheck Use Core Data, check
Use Automatic Reference Counting, and uncheck Include Unit Tests. When
you’re done, it should look like Figure 6-3. Click Next once more and save the
project to disk.

Figure 6-3. The configuration options for creating our Twitter client

Now that we’ve created the project, we need to do some additional
configuration. We’ll be using the Accounts and Twitter frameworks, so we need
to tell Xcode to link our app with them at compile time. Open the file browser by
selecting View  Navigators  Show Project Navigator or by pressing ⌘+1.
Select the top item, TwitterExample (your project file). Select TwitterExample
from the list of targets on the left side of the editor pane, and open the Summary
tab. Under the Linked Frameworks and Libraries section, you should see some
frameworks already linked: UIKit, Foundation, and CoreGraphics. Click the plus
button (+) to bring up a list of frameworks you can add to the project. Select
Accounts.framework and click Add, and then click the plus button again and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

169

select Twitter.framework. When you’re done, the section should look like
Figure 6-4.

Figure 6-4. The TwitterExample app configured to link to the Accounts and Twitter frameworks

Great. Before we continue, you should enter your Twitter credentials into the
iPhone S imulator for testing. Open the iPhone S imulator------if you don’t have it in
your Dock, build and run this empty app to l aunch i t------and open the Settings
app. Select Twitter and enter your username and password. When you’re done,
it should look like Figure 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 170

Figure 6-5. The Twitter settings page in the Settings app, configured with a Twitter account

Once you have a Twitter account set up, we’re ready to get coding. The first
thing we’re going to do is create a Twitter controller object. This controller,
which we’ll implement as a singleton, will handle all of the methods that require
communication with Twitter’s servers. By putting this in a separate class, we
can encapsulate these methods appropriately. In Xcode, select File  New 
File… or press ⌘+N to create a new file. With Cocoa Touch selected on the left
column, select Objective-C Class. Click Next, and name the class
LCTTwitterController, as a subclass of NSObject. Click Next, and save the file
to disk. Open the header file (LCTTwitterController.h), and add the following
method declarations in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

171

@interface LCTTwitterController : NSObject

+ (id)sharedInstance;

- (void)authorizeAccount;
- (void)getTweetsInUserTimelineWithCompletionHandler:(void(^)(NSArray
*tweets))handler;

@end

We’ll use the sharedInstance method to get a pointer to the singleton object.
The authorizeAccount method will ensure that we have a valid account, which
we’ll need for the other method,
getTweetsInUserTimelineWithCompletionHandler:, which will return a list of
tweets for the user to read. You might be wondering about this odd bit of syntax
in its declaration:

(void(^)(NSArray *tweets))handler

This is a block: a piece of code encapsulated in an object that you can pass to a
method. This particular block returns void and has one parameter, an NSArray
called tweets. We’ll focus on blocks in particular in the next chapter. For now,
just copy the syntax out of the book.

Let’s now add implementations for these methods. In Xcode, switch to the
Twitter controller’s implementation file (LCTTwitterController.m), and add the
lines in bold (this is a large block of text, but we’ll come back to it later):

#import "LCTTwitterController.h"

#import <Accounts/Accounts.h>
#import <Twitter/Twitter.h>

static NSString * const kSavedTwitterAccountKey = @"SavedTwitterAccount";

@implementation LCTTwitterController {
 ACAccountStore *_accountStore;
 ACAccount *_twitterAccount;
}

+ (id)sharedInstance
{
 static id _sharedInstance = nil;

 if (_sharedInstance == nil) {
 _sharedInstance = [[self alloc] init];
 }

 return _sharedInstance;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 172

- (id)init
{
 self = [super init];

 if (self) {
 _accountStore = [[ACAccountStore alloc] init];

 // If we've previously saved the account, load it now.
 NSString *accountId =
 [[NSUserDefaults standardUserDefaults]
stringForKey:kSavedTwitterAccountKey];

 if (accountId) {
 _twitterAccount = [_accountStore
accountWithIdentifier:accountId];
 }

 }

 return self;
}

- (void)authorizeAccount
{
 if (_twitterAccount == nil) {
 ACAccountType *accountType = [_accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierTwitter];

 NSUserDefaults *userDefaults = [NSUserDefaults
standardUserDefaults];

 [_accountStore requestAccessToAccountsWithType:accountType
 withCompletionHandler:^(BOOL granted,
NSError *error) {
 if (granted) {
 NSArray *twitterAccounts =
 [_accountStore
accountsWithAccountType:accountType];

 if ([twitterAccounts count] > 0) {
 _twitterAccount =
 [twitterAccounts
objectAtIndex:0];

 NSString *identifier =
 [_twitterAccount identifier];

 [userDefaults

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

173

setObject:identifier

forKey:kSavedTwitterAccountKey];
 [userDefaults synchronize];
 }
 }
 }];
 }
}

- (void)getTweetsInUserTimelineWithCompletionHandler:(void(^)(NSArray
*tweets))handler
{
 NSString *timelinePath =
@"https://api.twitter.com/1/statuses/home_timeline.json";
 NSURL *timelineURL = [NSURL URLWithString:timelinePath];

 TWRequest *timelineRequest = [[TWRequest alloc] initWithURL:timelineURL
 parameters:nil

requestMethod:TWRequestMethodGET];

 [timelineRequest setAccount:_twitterAccount];
 [timelineRequest performRequestWithHandler:^(NSData *responseData,
NSHTTPURLResponse *urlResponse, NSError *error) {
 if (responseData) {
 id topLevelObject = [NSJSONSerialization
JSONObjectWithData:responseData
 options:0

error:NULL];

 if ([topLevelObject isKindOfClass:[NSArray class]]) {
 if (handler != NULL) {
 handler(topLevelObject);
 }
 }
 }
 }];
}

@end

Now that you’ve written these methods, let’s break them down. First, in
sharedInstance, we keep track of a _sharedInstance pointer. Using the static
qualifier ensures that we have only one pointer; every time sharedInstance is
called, the _sharedInstance pointer is the same pointer, though it will point to a
new memory address after we create the shared instance of TwitterController.
The init method loads a saved account ID from the user defaults database (if

www.it-ebooks.info

https://api.twitter.com/1/statuses/home_timeline.json
http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 174

there is one), which allows us to cache the user’s account to prevent them from
needing to authorize our app every time it runs. Next, the authorizeAccount
method requests authorization for all Twitter accounts. If it receives
authorization, it saves the account information for the first Twitter account it
finds in the user defaults database for future retrieval. In a shipping app, you’ll
want to ask the user which account to use if they have more than one.

The timeline retrieval method performs network connection tasks that should
look somewhat familiar to you. It creates a request with a URL, sets some
parameters, and then executes the request. The difference is that the request is
of type TWRequest, which are specially crafted requests designed to work with
Twitter. The setAccount: method takes a Twitter account as its parameter, and
this enables the TWRequest object to, among other things, handle all of the
authorization code on your behalf, which saves you untold hours of headache
and frustration. This method also uses a block to handle the response from the
network, from which we use the response data to build an NSArray that we’ll
later decode into tweets. For now, we pass this NSArray into another function,
which has been passed as a block as the parameter to this method. Now that
we’ve created a simple controller for our Twitter functionality, let’s create some
UI around it.

In Xcode, select File  New  New File… or press ⌘+N. Select Cocoa Touch
from the left column and then Objective-C class from the right pane. Click Next,
and give this new class the name LCTTimelineViewController, as a subclass of
UITableViewController. Leave both Targeted for iPad and ‘‘With XIB for user
interface’’ unchecked. Click Next and save the files to disk. Open the
implementation file (LCTTimelineViewController.m) and add a line at the top to
import the LCTTwitterController header file:

#import "LCTTimelineViewController.h"
#import "LCTTwitterController.h"

Xcode should have created a class extension for you already underneath the
#import lines. If so, copy the code in bold to add an instance variable for our
array of tweets; otherwise, copy the entire code block and place it directly under
the last #import directive:

@interface LCTTimelineViewController () {
 NSArray *_tweets;
}

@end

Since we used the UITableViewController template, some of the table view
methods should already be present. Find the implementation for
numberOfSectionsInTableView: from the template. If this doesn’t exist, place the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

175

method below in its entirety (save for the crossed-out lines) between the main
@implementation and @end directives (not the class extension); otherwise,
remove the crossed-out code and add the bold code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
#warning Potentially incomplete method implementation.
 // Return the number of sections.
 return 0;
 return 1;
}

We’re going to have one section in this table view, with each tweet in the
timeline represented by a row in the section. Find the existing implementation of
tableView:numberOfRowsInSection: and modify it as shown next or, if it isn’t
present, implement it after numberOfSectionsInTableView:.

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
#warning Incomplete method implementation.
 // Return the number of rows in the section.
 return 0;
 return [_tweets count];
}

Here we use the number of tweets in the _tweets array to determine the number
of rows in the table view. Finally, find the implementation for
tableView:cellForRowAtIndexPath: and modify it as shown next or implement it
after tableView:numberOfRowsInSection:.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...

 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 176

 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

 return cell;
}

This method puts the text of the tweet and the user’s display name in the cell.

NOTE: The text and name keys may change over time as Twitter modifies their API.
Consult the Twitter documentation if they don’t seem to work.

We need to do two more things before testing this: displaying the view controller
and loading tweets into it. First, still in (LCTTimelineViewController.m),
implement the viewWillAppear: method after the methods you just created (but
before the final @end line):

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [[LCTTwitterController sharedInstance]
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 _tweets = tweets;
 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];
 }];
}

Again, though the syntax for the block parameter to
getTweetsInUserTimelineWithCompletionHandler: may be confusing, we’ll
cover it in great detail in the next chapter. Furthermore, we’ll explain the
performSelectorOnMainThread:withObject:waitUntilDone: method in a future
chapter about performance and multithreading. Next, let’s get this view
controller on the screen. Open the app delegate implementation file
(LCTAppDelegate.m), and add a line at the top to import the view controller’s
header:

#import "LCTAppDelegate.h"

#import "LCTTwitterController.h"
#import "LCTTimelineViewController.h"

Next, modify the application:didFinishLaunchingWithOptions: method with
the lines in bold to display the view controller:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

177

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 [[LCTTwitterController sharedInstance] authorizeAccount];

 LCTTimelineViewController *viewController =
 [[LCTTimelineViewController alloc]
initWithStyle:UITableViewStylePlain];

 [[self window] setRootViewController:viewController];

 return YES;
}

Build and run the application. When the app launches, you’ll see a prompt in an
alert view asking you to authorize the app to use your Twitter accounts. Once
you’ve authorized it, you should see a table of recent tweets from accounts you
follow. Congratulations! You’ve just made your first Twitter app. There is one
small issue, however: if the table view controller loads before the user has
authorized the account, it won’t load any tweets. To fix this for now, let’s add a
reload button. In Xcode, return to the method you just modified in the app
delegate’s implementation file (LCTAppDelegate.m), and embed the view
controller in a navigation controller:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 [[LCTTwitterController sharedInstance] authorizeAccount];

 LCTTimelineViewController *viewController =
 [[LCTTimelineViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *navigationController =
 [[UINavigationController alloc]
initWithRootViewController:viewController];

 [[self window] setRootViewController:navigationController];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 178

 return YES;
}

Now, open the view controller’s implementation file
(LCTTimelineViewController.m), and modify the initWithStyle: method:

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];
 }

 return self;
}

Next, declare the reloadButtonPressed: method in the class extension at the
top of this file:

@interface LCTTimelineViewController () {
 NSArray *_tweets;
}

- (void)reloadButtonPressed:(id)sender;

@end

Finally, let’s implement the reloadButtonPressed: method in the main
@implementation block of the object (not the class extension) before the @end
directive:

- (void)reloadButtonPressed:(id)sender
{
 [[LCTTwitterController sharedInstance]
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services

179

 }];
}

Build and run your app again, and you should be able to refresh the list using
this button. A good Twitter client, however, will also allow the user to post
tweets to Twitter. Let’s add that functionality. To do so, we’ll use another class
in the Twitter framework, TWTweetComposeViewController. Remaining in the view
controller’s implementation file, modify the initWithStyle: method once more
to create a button for posting a tweet:

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];

 UIBarButtonItem *tweetButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCompose
 target:self

action:@selector(tweetButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:tweetButton];
 }

 return self;
}

As before, add a line to the class extension to declare the action method that
the button will call:

@interface LCTTimelineViewController () {
 NSArray *_tweets;
}

- (void)reloadButtonPressed:(id)sender;
- (void)tweetButtonPressed:(id)sender;

@end

Next, at the top of the file, add a line to import the Twitter framework header:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Integrating Networking and Web Services 180

#import "LCTTimelineViewController.h"

#import <Twitter/Twitter.h>

#import "LCTTwitterController.h"

And finally, implement tweetButtonPressed: underneath reloadButtonPressed:
but before the @end directive:

- (void)tweetButtonPressed:(id)sender
{
 TWTweetComposeViewController *viewController =
 [[TWTweetComposeViewController alloc] init];

 [self presentModalViewController:viewController animated:YES];
}

And that’s it! Run your app and click the tweet button. You’ll see an entire
Twitter UI that you didn’t have to write, and tweeting from it will actually work!
As you can see, iOS 5’s built-in Twitter support greatly simplified making apps
that work with Twitter. In the next chapter, we’ll look more at blocks and how
they work with modern APIs such as the Twitter integration, improving our little
Twitter client as we go.

Summary
In this chapter, we’ve talked a lot about the networking on iOS. We’ve covered
parsing XML and JSON into meaningful model objects, creating and using URL
connections, and using them asynchronously. Additionally, we’ve looked at
downloading images from remote sources and sending data back to web
services. We’ve also created a simple Twitter client, to which we’ll continue to
add features as we progress through this book.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Chapter

Writing Modern Code
with Blocks
If there’s a trend to be picking up on with regards to Apple’s development of the
developer tools and languages surrounding Cocoa Touch’s development, it’s
that Apple is trying to make things as easy as possible for developers to create
engaging, easy-to-use apps. It seems that with every new iOS release, there are
more ways in which your life gets easier as a Cocoa Touch developer. One such
way occurred with iOS 4.0 and Mac OS X Snow Leopard and is actually a new
feature added by Apple to the C language: blocks. C language development in
general moves at a glacial pace, so any new features are news just by being
new features added to C. Blocks are exciting for much more than that; they
allow greater freedom, more logical code grouping, and better encapsulation in
your code. In this chapter, we’ll discuss what blocks are, how they work, and
why you’ll want to use them. We’ll also cover some of Apple’s new APIs that
require you to use blocks, a glimpse of which you’ve already gotten in the
Twitter example from Chapter 6. Finally, we’ll revisit that example to expand on
its features, turning it into a much better app. First, let’s talk about what blocks
even are.

What Are Blocks?
Put simply, a block is a piece of code that’s self-contained. Like a function or
method, blocks take arguments and return values, but unlike functions or
method, they’re anonymous; that is, you can create and execute a block without
it ever having a name. Typically, a block represents a discrete task, whether
that’s comparing two objects, performing an animation, or resizing an image. In

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 182

that regard, blocks play a huge role in bringing multithreaded processing to your
code; we’ll see some of that in this chapter, and even more in the next chapter.
Blocks are also used to delay the execution of code; instead of passing a target-
action pair or an object and a method selector, you can pass a block to be
executed after some other task. This is all convenient and good, but Apple has
also added some memory management magic to blocks that make using them
with Objective-C all the more beneficial. Now that I’ve properly talked them up,
let’s take a look at what a block looks like.

Blocks Are Encapsulated Functions
For our first block, let’s take the traditional path and create a ‘‘Hello, World!’’
block. The block, when executed, will print ‘‘Hello, World!’’ to the console and
nothing more. It takes no arguments and returns no value, so its return type is
void, just like a function or method that returns no value. Creating the block is
as follows:

void (^helloBlock)(void) = ^ void (void){ NSLog(@"Hello, World!"); };

Let’s break that down. First, we have the return type, which in this case is void.
Then, in parentheses, we have a carat to signify that this is a block, followed by
the name of the temporary variable we’re storing the block in, so we have
(^helloBlock). Finally, another set of parentheses contains a comma-separated
list of the arguments the block takes, which in this case is nothing, so it’s simply
(void). The net result of the left side of the expression is a new temporary
variable called helloBlock that contains a block. If you’ve ever used function
pointers in C, you’ll notice that the syntax is nearly identical, with the difference
being that an asterisk (*) is used for a function, and a carat (^) is used for a
block.

The right side of this expression is the block itself. It begins with the carat,
followed by the return type (here, void), and then, in parentheses, the argument
list, which in this case is simply (void). Then, in between braces ({ and }) is the
actual code of the block. Be sure to notice that there are two semicolons here.
One ends the expression inside the block, which is an NSLog() function call, and
the second ends the expression that defines the block. Forgetting one or both of
these semicolons is an incredibly easy way to practice debugging your code. To
save on space, you can omit void return types and argument lists from the right
side; the previous code could be written as follows:

void (^helloBlock)(void) = ^{ NSLog(@"Hello, World!"); };

As you can see, this is much more concise. To recap, this line (and the previous
version of it) creates a block that calls NSLog() when it executes and then stores

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 183

the block in a variable called helloBlock. Now, how do we execute it? Just like a
function, call it:

helloBlock();

Calling helloBlock() will cause the block’s code to immediately execute.
Interestingly enough, it’s not necessary to store the block in a variable before
calling it. The following line of code successfully prints ‘‘Hello, World!’’ to the
console:

^{ NSLog(@"Hello, World!"); }();

The merits of this particular code sample are few, but it’s an interesting example
of blocks’ anonymity.

Readable Block Declarations with Typedefs
The previous example was about as simple as block declarations get. In
practice, block declarations are more complex. Consider a block that returns a
BOOL value and takes two arguments, of types id and NSError*. Declaring a
variable to store this block called resultHandler would be as follows:

BOOL (^resultHandler)(id result, NSError *error);

This isn’t too bad. It’s still readable enough to use as-is. What if, however, it had
a third argument, which itself was another block? Now things get more complex:

BOOL (^resultHandler)(id result, NSError *error, NSString
*(^helperBlock)(void));

As you can see, things could quickly get out of hand. To combat this, one thing
you can do is define common block types using typedefs, a C method of
defining your own types. The first resultHandler block shown earlier might be a
common enough style of block that you want to refer to it as a discrete type
called ResultHandler. This can be accomplished with the following line:

typedef BOOL (^ResultHandler)(id result, NSError *error);

With our newfound type definition, we can declare a variable for this type of
block much more succinctly:

ResultHandler resultHandler;

Pretty simple, eh? Creating the block and storing it in the variable is easy, as
well:

ResultHandler resultHandler = ^ BOOL (id result, NSError *error) {
 [result performSomeTask];
 return YES;
};

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 184

As you can see, the block returns a BOOL, takes two arguments, and we return a
BOOL in our implementation. You can use one typedef inside of another, too; if
we wanted to add a HelperBlock type as a third argument, we could define two
types:

typedef NSString *(^HelperBlock)(void);
typedef BOOL (^ResultHandler)(id result, NSError *error, HelperBlock
helperBlock);

This is a quick and easy way to vastly improve your code’s readability.

Block Memory Management
One unique feature of blocks is their memory management semantics. Blocks
are created on the stack, just like a temporary variable is. When the scope in
which they’re created ends, the block is destroyed along with the rest of the
stack frame. Consider the following example:

if (x == 5) {
 void (^myBlock)(void) = ^{
 [self doSomethingCool];
 };
}

When the if statement in this code is done, myBlock is destroyed. What if we
wanted to use myBlock outside of the if statement? You might think that this
would work:

void (^myBlock)(void) = NULL;

if (x == 5) {
 myBlock = ^{
 [self doSomethingCool];
 };
}
else {
 myBlock = ^{
 [self doSomethingElse];
 };
}

myBlock();

The problem here is that when the block stored in myBlock is created, it’s inside
either the if statement or the else statement, so the block will still be destroyed
when the statement is done. Because of this, the myBlock variable will hold
garbage data when we try to execute it, resulting in a crash. To get around this,
we need to get the block off the stack and onto the heap. This is done with the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 185

Block_copy() function, which copies the block from the stack to the heap. Since
it’s moving the location of the block in memory, the original block’s location is
no longer valid. Once you’ve copied a block, be sure to use only the return value
of Block_copy(), not the original block. The following is the correct version of
the previous code with ARC turned off; we’ll discuss ARC and blocks later:

void (^myBlock)(void) = NULL;

if (x == 5) {
 myBlock = Block_copy(^{
 [self doSomethingCool];
 });
}
else {
 myBlock = Block_copy(^{
 [self doSomethingElse];
 });
}

myBlock();
Block_release(myBlock);

As you can see, we store the returned value from Block_copy() in myBlock,
moving it to the heap and avoiding its destruction. Blocks are reference-
counted, so for every call to Block_copy(), we must also call Block_release();
just like Objective-C objects, blocks will be destroyed when their retain count
reaches 0. You can also call Block_retain() on a block to increment its retain
count, but it’s important to note that calling Block_retain() on a stack-based
block will not copy it to the heap. Similarly, it’s important to note that calling
Block_copy() on a block that’s already been copied to the heap will simply
increment the retain count; it won’t actually make yet another copy of the block.
For that reason, using Block_copy() alone and never using Block_retain()
shouldn’t cause any problems, but using Block_retain() by itself could leave
you spending some time debugging your app when it crashes. Just as it does
with memory management for Objective-C objects, ARC will help with memory
management with blocks. How does it do that? By treating the blocks as
objects.

Blocks Are Objects
You may have noticed some similarities between blocks and Objective-C
objects. The both have similar, reference-counted memory management
environments, and we store blocks into variables much like how we store
objects into pointers. These similarities are not just skin deep, either. While they
aren’t full-fledged objects in the sense that an NSArray is, blocks are compatible

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 186

with the Objective-C runtime thanks to some behind-the-scenes trickery. This
allows you to send a message to a block. The previous code could be written
like this (still with ARC turned off):

void (^myBlock)(void) = NULL;

if (x == 5) {
 myBlock = [^{ [self doSomethingCool]; } copy];
}
else {
 myBlock = [^{ [self doSomethingElse]; } copy];
}

myBlock();
[myBlock release];

As you can see, the block is now a receiver for the copy and release messages,
which do the equivalent of Block_copy() and Block_release(), respectively. We
could also call retain on a block with the expected effects.

The fact that blocks can also be used as objects has much further-reaching
implications than simplifying your memory management code. For one, if you’re
using ARC, the memory management code is written for you by the compiler,
which is smart enough to copy blocks to the heap as appropriate. This alone
leads to fewer crashes by eliminating some developer mistakes. Another useful
way to take advantage of the situation is by putting blocks into collection
classes like NSArray and NSDictionary. This allows for some pretty clever usage
patterns for blocks. You can use an NSArray like a stack, pushing and popping
blocks onto and off of it for execution, or use blocks in an NSDictionary to bind
specific actions to certain keys. If you use a block with an API that isn’t
expecting a block, such as adding a block to an array, be sure to place a copy
of the block in the array, as in the following example:

[myArray addObject:[^{
 [self doSomething];
} copy]];

There’s a lot of power in this flexibility to be taken advantage of, but what’s even
more powerful is a bit of extra magic that Apple has infused into the
implementation of blocks.

Blocks Capture Scope
The blocks we’ve seen so far can get data from only one place: their arguments.
If you want to write a block that processes an image, resizing it to a certain size,
then at the very least you’ll want to give it an image argument and a size

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 187

argument. If that were the only way to get data into a block, then not only would
argument lists get extremely long for complicated procedures, but also blocks
really wouldn’t be that much more useful than methods or functions.
Fortunately, blocks also have the ability to capture their surrounding scope and
use it during their execution! You could create a simple block that pulls in a
string and prints it to the console:

NSString *message = @"Hello, World!";

void (^blockLog)(void) = ^{
 NSLog(@"%@", message);
};

blockLog();

Here, the blockLog block uses the value of the message variable, but not from an
argument! When the block is created, it captures the values from the
surrounding scope that have been referenced, eliminating the need to define all
of them as arguments. The memory management here is not always
straightforward, however; and int created as a temporary variable but then
referenced in a block should remain accessible to the block for the block’s
entire lifetime. If the block is copied to the heap, however, it may outlive the
stack frame in which the int was created, resulting in it having been destroyed.
To get around this issue, when you copy a block to the heap, it will copy stack-
based variables with it. This is entirely automatic, so you don’t need to worry
about keeping a list of stack-based variables you’ve referenced in a block; the
compiler will keep that list for you. This is where the benefits of blocks start to
show, because capturing scope like this just isn’t possible with functions or
methods. You’d have to pass every variable in as an argument.

There is one important caveat to mention with blocks capturing scope. By
default, a block cannot modify a variable that it has pulled in from the
surrounding scope. Allowing the block to modify the variable would require
much more compiler intervention. When a block gets copied to the heap, if it
can modify the variable, then references to the variable must also be changed in
order for that value to remain consistent. The compiler is perfectly capable of
taking care of this for you, so long as you tell it that you need it to. To do so, you
use a storage qualifier, which is an attribute you specify when you create the
variable. To create an int value that a block can write to, prepend __block
(that’s two underscores at the beginning) before int in your declaration:

__block int myInt = 42;

Once you’ve done that, the block can write to the variable at will, whether or not
it gets copied to the heap. Thanks to the __block storage qualifier, writing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 188

blocks that outlive the method in which they were created is easy and useful.
Another useful feature of blocks is how they interact with Objective-C objects.

Blocks Retain Objects
Just like with any other variable, you can reference pointers to Objective-C
objects from a block’s surrounding scope while you’re inside a block. This
works as you would expect, even with self when you’re in an Objective-C
method. Since Objective-C objects, unlike temporary variables like ints, are
created on the heap and reference counted, simply copying the pointer to the
block is not sufficient, especially if the block itself outlives the original reference
to the object. To get around this problem, when you reference an Objective-C
object in a block, it’s automatically sent the retain message, and it’s sent
release when the block is destroyed. This allows you to use objects in your
blocks without worrying that the object will be deallocated before the block is
done using it. You can also combine objects with the __block storage qualifier
to create objects inside of blocks with the expected memory management
implications.

There is one major caveat to the use of objects with blocks, however: retain
cycles. It’s possible to get in a situation where a block references an object,
thus retaining it, but the object also retains the block, thus causing a situation
where neither object will ever be deallocated. Let’s look at how that happens
and then at how to avoid it. Consider an object with one property: a block that
takes no arguments and returns void. We’ll name the class BlockHolder:

typedef void (^SimpleBlock)(void);

@interface BlockHolder : NSObject

@property (copy) SimpleBlock block;

@end

Note that for blocks, we’ll use the copy attribute for the property to ensure that it
gets copied to the heap. Now let’s look at how we might create a retain cycle
with a BlockHolder object:

BlockHolder *holder = [[BlockHolder alloc] init];

[holder setBlock:^{
 NSLog(@"%@", [holder description]);
}];

In this code snippet, we create a new instance of the BlockHolder class and
assign it to the holder variable. Next, we create a block to pass in to it that

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 189

simply prints the object’s description to the console. The devil is in the details:
since we reference holder in the block, it’s retained by the block, and since the
BlockHolder class defines the block property with the copy attribute, it will retain
the block, leading to both objects retaining one another. Because of the retain
cycle, neither of these objects will ever be deallocated. There are two ways to
combat this, one specific and one general. First, since we wrote the BlockHolder
class, we can modify the block. Instead of taking no arguments, we can provide
a pointer to the block holder as an argument to the block. We’ll use self as the
name to emulate how self works in an Objective-C method. The new
SimpleBlock declaration would be as follows:

typedef void (^SimpleBlock)(id self);

When we created the block, we would then replace holder with self:

BlockHolder *holder = [[BlockHolder alloc] init];

[holder setBlock:^(id self){
 NSLog(@"%@", [self description]);
}];

This avoids a retain cycle quite nicely. self might be a little confusing, so you
may want to use a different name for the argument, but this is a good way to
avoid retain cycles entirely. The second way is more useful if you don’t control
the code of the object to which you’re passing the block. What you’ll do is
create a weak reference to the object and refer to that in the block, avoiding the
retain cycle because weak references do not cause an extra retain call. In that
case, the code to create the block might look like this:

typedef void (^SimpleBlock)(void);

BlockHolder *holder = [[BlockHolder alloc] init];

__weak BlockHolder *safeHolder = holder;

[holder setBlock:^{
 NSLog(@"%@", [safeHolder description]);
}];

The __weak qualifier requires iOS 5 and ARC. If you’re using ARC and iOS 4.3,
use __unsafe_unretained instead.

Using Blocks as Parameters to Methods
One final point I’d like to make about blocks is one about style. A coding pattern
that Apple tends to follow is to arrange the parameters to an Objective-C
method such that any arguments that are blocks come last. This helps keep

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 190

things legible, because it’s easy to miss a single parameter between two blocks.
An example of the incorrect style is as follows:

[someObject someMethodWithThisParameter:@"ThisParameter"
 performingThisBlock:^{
 NSLog(@"This Block");
 }
 withThisParameter:YES
 andThisBlock:^{
 NSLog(@"Another Block");
 }];

As you can see, it’s difficult to tell where one parameter ends and the other
begins. This is exacerbated even more when the code inside the blocks is long.
An example of the proper style is shown here:

[someObject someMethodWithThisParameter:@"ThisParameter"
 andThisParameter:YES
 performingThisBlock:^{
 NSLog(@"This Block");
 }
 andThisBlock:^{
 NSLog(@"Another Block");
 }];

By grouping the blocks at the end, the code is much more readable, at least in
my opinion (and Apple’s). Now that we’ve covered what blocks are and how
you’ll use them, let’s cover why you’d want to use them at all.

Why Should We Use Blocks?
To talk about why we should use blocks, let’s examine a few common scenarios
and look at how things were done before blocks existed. We’ll then look at how
these scenarios a re easier o r c leaner-----or both-----when using blocks. While all of
the old ways are still valid and still work, new APIs that Apple is releasing with
each version of iOS and Mac OS X feature blocks heavily, often without
blockless workarounds. Let’s begin this analysis with one of iOS’s most
powerful features: UIView animations.

UIView Animations
The animation system in iOS is extremely powerful. Every view is drawn by an
OpenGL-backed layer, allowing very simple code to create extremely
performant, hardware-accelerated 2D and 3D animations. This was the case
before blocks and is still the case with blocks, but the new, block-based

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 191

animation APIs that arrived with blocks in iOS 4 make it much simpler. Let’s look
at a common example: fading out a view. Using the old method, the code would
look like this (assuming that the view we want to fade out is called myView):

[UIView beginAnimations:@"animationName" context:NULL];
[UIView setAnimationDuration:1.0];

[myView setAlpha:0.0f];

[UIView commitAnimations];

The basic idea behind the animation system is that in between calls to
beginAnimations:context: and commitAnimations, you simply set properties on
your view that you want them to have at the end of the animation; the animation
system will automatically interpolate between the current values and the
destination values over a period of time defined by setAnimationDuration:.
While this is about as simple as animations get, it’s still worth looking at the
block-based alternative:

[UIView animateWithDuration:1.0
 animations:^{
 [myView setAlpha:0.0f];
 }];

As you can see, three UIView class method calls have been replaced by one.
Instead of placing your animation methods between two method calls, you
simply put them in the block that gets passed as the second parameter. Even
this is an improvement in terms of the length of code, but the improvements
start to really shine when we add some options to it. First let’s say that once the
animation is done, we’d like to remove the now-transparent view from its
superview. Using the old method, we add two lines in our animation preamble:

[UIView beginAnimations:@"animationName" context:NULL];
[UIView setAnimationDuration:1.0];
[UIView setAnimationDelegate:self];
[UIView
setAnimationDidStopSelector:@selector(animationDidStop:finished:context:)];

[myView setAlpha:0.0f];

[UIView commitAnimations];

In this code, we call setAnimationDelegate: to give the animation system an
object to which it can send a message when the animation is complete. We then
provide a selector for it to use when sending the message. The first parameter is
a pointer to an NSString with the animation ID (animationName in the previous
sample), the second parameter is a BOOL value that corresponds to whether the
animation finished (in some cases, such as if the view’s superview had been

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 192

removed from its view hierarchy before the animation finished, this will be NO),
and the third argument is a mostly unused context pointer. We aren’t done yet,
however; we need to implement this new method:

- (void)animationDidStop:(NSString *)animationID
 finished:(BOOL)finsihed
 context:(void *)context
{
 [myView removeFromSuperview];
}

We should also add a line to the header file or class extension declaration to
declare this method. This is where things start to get pretty verbose. Let’s
compare it with the equivalent block-based code:

[UIView animateWithDuration:1.0
 animations:^{
 [myView setAlpha:0.0f];
 }
 completion:^(BOOL finished) {
 [myView removeFromSuperview];
 }];

That’s already several lines fewer! This method adds one more parameter, a
block that runs when the animation is complete. Its sole argument is a BOOL for
whether or not the animation finished. Since you’re defining the completion
handler right where you define the animation, you don’t need to keep track of an
animation ID.

If that were as complicated as the older-style UIView animations got, the block-
based methods would still be a massive improvement. As your code becomes
more complex, you may have several different animations in a single class. In
that case, without blocks, you’ll handle the completion of these animations in
the same animationDidStop:finished:context: method, which means you’ll
need to use the animation ID to ensure that the right code runs for the right
animation. The real advantage of using blocks here, however, is that it keeps the
completion code right next to the animation code. You don’t have to remember
to put it in the animationDidStop:finished:context: method or go looking in
that method for the right code based on the animation ID. Instead, everything
related to a single animation is in the same place. Six months after you write the
code, if you have to come back and modify it, you’ll be thankful for this code
organization, because it makes troubleshooting things much simpler. This is a
big reason to prefer using blocks in general and is the focus of the next area
we’ll investigate: using blocks as callbacks.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 193

Using Blocks for Asynchronous Callbacks
In an earlier chapter, we discussed using asynchronous NSURLConnection
methods to avoid blocking the main thread, which would in turn make the app
unresponsive. This is a good thing to do, but one potential symptom of this is
that these callback methods that the URL connection calls are the same for
every connection. If you have code that creates 20 URL connections, they will all
send the same delegate messages, which means that in those methods you’ll
need to figure out which URL connection actually sent the message in order to
act accordingly. Several open source networking libraries get around this by
allowing you to specify a completion handler. Here’s what it might look like:

[MyNetworkingLibrary loadURLWithRequest:aURLRequest
 completionHandler:^(NSData *receivedData,
 NSURLResponse *response,
 NSError *error) {
 // Handle the response here
 }];

Just like the URL loading we did before, this takes a URL request and sends it
along, receiving some data, a response, and potentially an error in return. The
exact methods you’ll call vary between networking l ibraries-----
MyNetworkingLibrary i sn’t a real l ibrary name-----but the core idea is the same:
instead of calling a delegate method when the connection is done, the library
simply executes a block provided to it when you made the request.

Like with UIView animations, the main advantage here is code organization. The
code that handles getting the request is right next to the code that made the
request in the first place, which allows you to see at a glance what’s happening
at both steps in the process. Like with animations, the more connections you
have, the more tedious the delegate methods will be, and the harder they’ll get
to maintain and troubleshoot as the project ages. This advantage isn’t just for
URL loading, either; any long-running process that doesn’t need to block the
main thread should be written to take advantage of completion handler blocks.
A single object can have multiple blocks associated with it, as well; some of the
URL libraries allow you to define a block that’s called multiple times to report
download progress.

Much like URL loading, another place where the code to run at a later time can
be placed in a block is when using NSNotificationCenter. Instead of defining a
method to be called when the notification is fired, you can use a block to define
the code that should be executed right where you register for the notification:

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
[nc addObserverForName:UIApplicationDidReceiveMemoryWarningNotification
 object:nil

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 194

 queue:nil
 usingBlock:^(NSNotification *note) {
 NSLog(@"Received memory warning!");
 }];

We’ll elaborate more on the queue parameter later, but this once again allows
you to arrange your code in a much more readable fashion. Instead of finding
the method that gets called when the notification fires, you can find the code
that will be executed in the supplied block. This results in you having to write
less code and, ideally, fewer bugs. As useful as blocks are for callbacks, they
have even more utility when enumerating collections, which we’ll discuss next.

Using Blocks for Enumeration
Enumerating items from a collection is a task that exists in nearly every
programming language produced in the past few decades. The general idea is
simple: given a collection of items, obtain a reference to each one in succession,
perform some code with it, and then obtain the next, repeating until you’ve
exhausted all of the items. Before we talk about using blocks for this goal, let’s
look at some tools at your disposal in Cocoa Touch to enumerate objects from
collection classes (arrays, dictionaries, and sets).

NOTE: iOS 5 added a new collection class, NSOrderedSet, which has features of an
array (its members are ordered) and a set (its members are unique). We won’t look at
ordered sets specifically here, but you can usually assume that accessing their
members works as it does for an array.

For Loops
The most traditional way to enumerate items from a collection, expressed here
in Objective-C, is to use a for loop:

NSUInteger count = [myArray count];
for (NSUInteger i = 0; i < count; i++) {
 id object = [myArray objectAtIndex:i];

 [object performSomeTask];
}

In this example, we obtain the number of objects in the array and process them
from first to last, sending a message to them and then moving to the next
object. This code has the advantage of being near-universal; people coming

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 195

from other programming languages are almost always going to know what this
code does and how to modify it to get it to behave as desired. For any given
object, it’s easy to obtain the current index in the array, because that’s stored in
the i variable. A disadvantage is that the NSArray method objectAtIndex:
returns id, so we don’t know the class of the objects contained therein, but
that’s easy to figure out through introspection.

For dictionaries, a for loop isn’t quite as easy. This code enumerates all of a
dictionary’s objects and sends them a message:

NSArray *keys = [myDictionary allKeys];
NSUInteger count = [keys count];
for (NSUInteger i = 0; i < count; i++) {
 id key = [keys objectAtIndex:i];
 id object = [myDictionary objectForKey:key];

 [object performSomeTask];
}

As you can see, it isn’t too different, but it does require obtaining a key from the
dictionary’s array of keys and using that key to obtain an object. If you have an
NSSet, which has no order and therefore no objectAtIndex: method, you’ll have
to use its allObjects methods to get an array of its objects and then enumerate
through the returned array.

NSEnumerator
Instead of going through a collection manually using a for loop, it’s also
possible to use the Objective-C class NSEnumerator to enumerate the objects.
An instance of NSEnumerator continues to return objects from its nextObject
method until it’s exhausted the collection’s objects. For dictionaries, there are
two enumerators, one for objects and one for keys. Using an NSEnumerator is as
follows:

NSEnumerator *objectEnumerator = [myArray objectEnumerator];
id object;

while ((object = [objectEnumerator nextObject])) {
 [object performSomeTask];
}

In this code, we obtain an NSEnumerator from the array. The NSArray class
defines the objectEnumerator and reverseObjectEnumerator methods, the latter
simply traversing the array from its last item to its first. Next, we create a pointer
to an object called object. We continue to store the returned value from the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 196

nextObject method of the enumerator into object, and if it isn’t nil, the while
expression will evaluate to true, and we’ll call performSomeTask on object.

NOTE: Because using a single equal sign (=) instead of a two (==) for equality in
expressions, such as if (a = 42) …, is such a common programming mistake, we
use two sets of parentheses around the while statement as a sign to the compiler
that we know what we’re doing, preventing some compiler versions from warning us
about potentially unsafe code.

With an NSEnumerator, there are some trade-offs compared to using a for loop.
You don’t need to obtain the total count of elements in the collection, but you
also need to do some extra work if you want to obtain the index of the current
element.

One thing you can’t do while using NSEnumerator is to enumerate a mutable
collection, such as NSMutableArray, NSMutableDictionary, or NSMutableSet, and
change the collection while you’re enumerating. If you need to do that, you
should either make an immutable copy of the original data and enumerate
through the copy or save a list of the changes you need to make and execute
them after you’re done enumerating. If, for instance, you wanted to remove
every odd NSNumber object from a mutable array called myMutableArray, you
would do it as follows:

NSArray *myArray = [NSArray arrayWithArray:myMutableArray];
NSEnumerator *objectEnumerator = [myArray objectEnumerator];
NSNumber *number;

while ((number = [objectEnumerator nextObject])) {
 if ([number intValue] % 2) {
 [myMutableArray removeObject:number];
 }
}

We can’t remove an object from myMutableArray while enumerating it, so we
enumerate myArray and remove objects from myMutableArray.

Fast Enumeration
Fast Enumeration, added in Mac OS X 10.5 and available in iOS from the
beginning, is actually a protocol that the collection classes conform to named
NSFastEnumeration. It allows you to use a special syntax for enumerating
objects:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 197

for (NSString *string in myArray) {
 [string performSomeTask];
}

Fast Enumeration is typed, so here we’re casting the objects in myArray to
NSString objects. This doesn’t guarantee that the returned objects will be
NSString instances, just that the variable string will be considered by the
compiler to be of type NSString *. You should still query the object for its class
to ensure that it is, in fact, what you expect.

When using Fast Enumeration with an array or a set, it iterates over the objects
in the collection; when using it with a dictionary, it iterates over all of the
dictionary’s keys. Fast Enumeration, aside from being more efficient than
NSEnumerator, is also less code and much more readable. It’s similar enough to
a foreach loop that programmers coming from other languages are fairly likely to
understand what the code does. Inside the loop, you don’t have the count of the
array or the index of the current object, but you can get those easily if you need
them. Before blocks were on the scene, Fast Enumeration was the preferred
way of enumerating through Cocoa Touch collection classes, and it’s still a
pretty good option.

Just as with NSEnumerator, you can’t change mutable collections while using
Fast Enumeration on them; if you do, the collection will raise an exception, and
your app will crash.

Performing Selectors on Members
So far, our rather contrived example use of enumeration has been to send a
single message, performSomeTask, to the objects in the collection. If that’s all
you need to do and you have an NSArray or NSSet of objects, you can use the
instance method makeObjectsPerformSelector:. This sends a single message to
every member of the collection. There’s also a variation that takes an object and
sends its as a parameter to the method, called
makeObjectsPerformSelector:withObject:. This is useful if you only need to call
a method that has one or zero parameters and only if the parameter is an
Objective-C object. If you need to do anything more complex, you’ll need to use
one of the enumeration techniques described here.

Enumerating with Blocks
Introduced in Mac OS X and iOS 4 along with blocks were some methods on the
collection classes that you can use to enumerate their objects using blocks. Our
example from earlier would be written thusly:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 198

[myArray enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj performSomeTask];
}];

As far as line count goes, this is on par with Fast Enumeration for simplicity. The
method takes one parameter, a block, which has three arguments: a pointer to
the object, its index in the array, and a pointer to a BOOL value. The third one is
interesting. It’s actually meant for you to modify if you’d like to stop
enumerating. Where you would call break in a for loop to stop enumeration,
when using a block, you would set it as follows:

*stop = YES;

This would fill in the appropriate value and stop enumerating.

On the surface, enumerating through collection classes doesn’t appear to be
much better or easier than using any of the previous methods. The NSDictionary
equivalent, enumerateKeysAndObjectsUsingBlock:, is rather nice, because it
passes both the key and the object to the block, but otherwise the methods are
not much different. Where the block-based methods shine, however, is in the
expanded version of these methods,
enumerateObjectsWithOptions:usingBlock:. The first argument is a bit mask of
options, chief among with is NSEnumerationConcurrent. This tells the array to
enumerate through your items concurrently, which is a huge gain on devices
whose processors have multiple cores (though it can also significantly boost
performance in some situations on single-core devices). The following code
would execute performSomeTask on every object in myArray in a concurrent
fashion:

[myArray enumerateObjectsWithOptions:NSEnumerationConcurrent
 usingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj performSomeTask];
 }];

Just like that, you can take advantage of iOS’s advanced multithreading
performance without writing a single line of threading code. The method won’t
return until all of the objects have been enumerated, but it will expand the
enumeration to run as many concurrent instances as is practical. As more and
more devices have multiple cores, this method of enumeration should be your
default, because it’s an easy way to increase the performance of your app
without increasing the level of effort required on your part. We’ll discuss
multicore processing in much greater detail in the next chapter, but this is a
good start. For now, use it as a tool to get performance out of your app when
enumerating through collection classes. That concludes our tour of why blocks
are good for enumeration. A closely related topic that blocks also help with is
sorting an array of items.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 199

Using Blocks to Sort Arrays
Much like enumeration, sorting an array is a common task to many
programming languages. The basic concept is similar in every language: walk
the array in one of many patterns based on the kind of sort you’re performing,
comparing values and acting accordingly. Which type of sort you use is a matter
of great debate, but the need to sort values is something almost every
programming language needs to address at some time. Objective-C is no
different, and there are a few ways to sort an array.

Sorting Arrays with Comparison Selectors
The most straightforward method to sort an array is to use a comparison
method on each object. This is supported with the NSArray instance method
sortedArrayUsingSelector:, which takes a comparison selector as its
parameter and returns a new NSArray, sorted by calling the selector on each
object in the array with another object in the array as its parameter. To sort an
array of strings case-insensitively, the code would be as follows:

NSArray *sortedArray = [myArray
sortedArrayUsingSelector:@selector(caseInsensitiveCompare:)];

Each object in the array will be sent the caseInsensitiveCompare: message with
another object as the parameter. This is fairly straightforward, if not very
customizable; it will sort an array based on only one method, and for it to work
properly, every object in the array must implement that same method.

There is a similar family of sorting methods such as
sortedArrayUsingFunction:context: that use C functions to sort the array.
While they don’t rely on the member objects to implement any functionality,
you’re still limited to one path of execution for comparison. If you want to sort an
array based on multiple criteria, you’re better off using sort descriptors.

Sorting Arrays with Sort Descriptors
A sort descriptor is an object that encapsulates the way in which your data is
sorted. A single descriptor focuses on one attribute of each object and sorts
based on that attribute. To use sort descriptors, you use an array of them to
arrange a hierarchy of sort descriptors that will be used to sort your objects.
Given an Objective-C class called Person with name and age properties, the
following code sorts people first by age, oldest to youngest, and then
alphabetically by name:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 200

NSSortDescriptor *ageDescriptor = [[NSSortDescriptor alloc] initWithKey:@"age"
ascending:NO];
NSSortDescriptor *nameDescriptor = [[NSSortDescriptor alloc] initWithKey:@"name"
ascending:YES];
NSArray *sortDescriptors = [NSArray arrayWithObjects:ageDescriptor,
nameDescriptor, nil];

NSArray *sortedArray = [myArray sortedArrayUsingDescriptors:sortDescriptors];

By default, the sort descriptors will use the compare: method to compare two
items, but there is a method you can use while creating them to modify the
selector it uses. If you wanted to sort an array of strings with the
localizedCaseInsensitiveCompare: method, you could do it as follows:

NSSortDescriptor *sortDescriptor =
[NSSortDescriptor sortDescriptorWithKey:nil
 ascending:YES

selector:@selector(localizedCaseInsensitiveCompare:)];

NSArray *sortDescriptors = [NSArray arrayWithObject:sortDescriptor];

NSArray *sortedArray = [myArray sortedArrayUsingDescriptors:sortDescriptors];

Sort descriptors are useful when your data has lots of identical values,
prompting you to need a secondary, tertiary, or further sort methods. When you
add blocks to the equation, they become even more useful.

Sorting Arrays with Blocks
To use blocks when sorting arrays, you will most often use a defined type of
block called NSComparator. The definition of NSComparator is in a system header
files as follows:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

The block returns an NSComparisonResult and takes two arguments, one for
each object to compare. There are three possible return values:
NSOrderedAscending, for when obj1 is lower than obj2; NSOrderedDescending, for
when obj1 is higher than obj2; and NSOrderedSame for when they are equal. The
block’s implementation can use obj1 and obj2 however you desire, and using an
NSComparator to sort an array is straightforward:

NSArray *sortedArray = [myArray
sortedArrayUsingComparator:^NSComparisonResult(id obj1, id obj2) {
 return [obj1 caseInsensitiveCompare:obj2];
}];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 201

In this case, we simply call the caseInsensitiveCompare: method, but you can
use whatever logic is appropriate to compare values. You can also create
NSSortDescriptor objects with comparator blocks:

NSSortDescriptor *nameSortDescriptor =
[[NSSortDescriptor alloc] initWithKey:@"name"
 ascending:YES
 comparator:^NSComparisonResult(id obj1, id obj2) {
 return [obj1 caseInsensitiveCompare:obj2];
 }];

NSArray *sortDescriptors = [NSArray arrayWithObject:nameSortDescriptor];

NSArray *sortedArray = [myArray sortedArrayUsingDescriptors:sortDescriptors];

Here the block is the same, but we can combine it with NSSortDescriptor to
take advantage of the ability to have multiple sort criteria.

Just as with enumerating through collections, sorting arrays has an ace up its
sleeve when you use blocks. We can automatically sort an array concurrently
with the sortedArrayWithOptions:usingComparator: method. The following
sorts our array of strings concurrently:

NSArray *sortedArray = [myArray sortedArrayWithOptions:NSSortConcurrent
 usingComparator:^NSComparisonResult(id
obj1, id obj2) {
 return [obj1
caseInsensitiveCompare:obj2];
 }];

Depending on the size of your array, using this method to concurrently sort its
contents can offer huge performance gains. As is the case with enumeration, the
more processor cores a device has, the faster this will go, so writing your array-
sorting code like this now will ensure maximum performance on any future iOS
devices, regardless of the number of cores they have.

To recap, blocks allow you to write better code. You can use them to replace
callbacks in some situations, keeping the callback code near other related code,
to enumerate and sort arrays, and in new APIs that require blocks. Now that I’ve
argued for the use of blocks, let’s look at how you can add blocks to your own
APIs.

Using Blocks in Your Code
There are two main ways you can use blocks in your own code, and the
difference lies in the lifetime of the block. The first, and easiest, way is to simply
accept a block as a method parameter and call it at some point in the method:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 202

- (void)expensiveOperationWithCompletionHandler:(void(^)(void))handler
{
 [self performExpensiveOperation];

 if (handler != NULL) {
 handler();
 }
}

In this method, we use the handler parameter to store a block that gets called
after the method’s main operation. Note that we must check to see whether the
block is NULL, because it’s perfectly legal to call this method like this:

[self expensiveOperationWithCompletionHandler:NULL];

If we didn’t check for NULL, the app would crash.

NOTE: There has been some debate on whether it’s more appropriate to use NULL or
nil when talking about a block that points to nothing. In this book I’ll stick to NULL,
but if you see nil in other code, that’s also acceptable.

The reason this method is so simple is that the stack frame never exits while
handler is in it. Even if the block was created on the stack and never moved to
the heap, it would still be valid here. The second method for calling blocks in
your own APIs gets around this problem.

For the second method, you’ll first create a property for the block, using the
copy attribute to ensure that it gets copied to the heap:

@property (copy) void(^completionHandler)(void);

The expensiveOperation method might then be as follows:

- (void)expensiveOperation
{
 [self performExpensiveOperation];

 if ([self completionHandler] != NULL) {
 [self completionHandler]();
 }
}

Even when the block is a property, we’ll check it against NULL to ensure there’s
no breakage. Storing the block in a property not only allows you to store it in the
heap and call it when necessary, but it also allows you to call the same block
from multiple methods, as well as multiple times. One common example is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 203

found in several open source networking libraries; when you create a request to
load a URL, you can specify a block to run when the progress is updated.

Now that we’ve covered these methods, let’s look at improving our Twitter client
from Chapter 6 to take advantage of blocks.

Updating TwitterExample with Blocks
In our TwitterExample code from earlier, there are some optimizations we can
make with blocks to clean up the code a little. In our Twitter controller class, we
have an authorizeAccount method that signs the user in to Twitter and
authorizes our app to use their Twitter account. As it currently stands, that
method simply returns once it calls the
requestAccessToAccountsWithType:completionHandler: method of
ACAccountStore, but it doesn’t do anything special once that method is finished.
As a result, we attempt to authorize the app while it’s loading and hope that it
finishes before our view controller loads the tweets. You may have noticed the
app loading a blank list of tweets at startup but loading perfectly fine when the
user clicks the Reload button; this is why. Let’s change that method to take a
completion handler of its own so that we can take advantage of blocks to run
code when the accounts are authorized.

Adding a Completion Handler
Fire up Xcode and open the TwitterExample project. Open the Twitter
controller’s header file, LCTTwitterController.h (remember, if your class prefix
is not LCT, the file name will be different), and modify the declaration for
authorizeAccount by removing the struck-out lines and adding the lines in bold:

@interface LCTTwitterController : NSObject

+ (id)sharedInstance;

- (void)authorizeAccount;
- (void)authorizeAccountWithCompletionHandler:(void(^)(void))handler;
- (void)getTweetsInUserTimelineWithCompletionHandler:(void(^)(NSArray
*tweets))handler;

@end

Now, open the corresponding implementation file (LCTTwitterController.m),
and modify the authorizeAccount method by removing the struck-out lines and
adding the lines in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 204

- (void)authorizeAccount
- (void)authorizeAccountWithCompletionHandler:(void (^)(void))handler
{
 if (_twitterAccount == nil) {
 ACAccountType *accountType = [_accountStore
accountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierTwitter];

 NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

 [_accountStore requestAccessToAccountsWithType:accountType
 withCompletionHandler:^(BOOL granted, NSError
*error) {
 if (granted) {
 NSArray *twitterAccounts =
 [_accountStore
accountsWithAccountType:accountType];

 if ([twitterAccounts count] > 0) {
 _twitterAccount =
 [twitterAccounts objectAtIndex:0];

 NSString *identifier =
 [_twitterAccount identifier];

 [userDefaults setObject:identifier

forKey:kSavedTwitterAccountKey];
 [userDefaults synchronize];
 }
 }

 if (handler != NULL) {
 handler();
 }
 }];
 }
 else {
 if (handler != NULL) {
 handler();
 }
 }
}

One important thing to note is that we must check the value of handler before
calling it. If we pass NULL in when we call the method but the method doesn’t
check to ensure that the value of handler isn’t NULL, we’ll crash the app when
we try to execute the block. This is a simple change, but it allows us to execute
arbitrary code once the account is authorized. If we already have an account,
then the method will call the completion handler and do nothing else, allowing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 205

saved logins to continue to work as before. Before we put it into action, we need
to remove the existing call to authorizeAccount, because that method no longer
exists. Open the app delegate’s implementation file (LCTAppDelegate.m) and
remove the line that authorizes the account in the
application:didFinishLaunchingWithOptions: method by removing the struck-
out line:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 [[LCTTwitterController sharedInstance] authorizeAccount];

 LCTTimelineViewController *viewController =
 [[LCTTimelineViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *navigationController =
 [[UINavigationController alloc] initWithRootViewController:viewController];

 [[self window] setRootViewController:navigationController];

 return YES;
}

Helpfully, Xcode should already have alerted you to an issue with this line. Now
that we aren’t using LCTTwitterController in the app delegate, we can remove
the #import directive for it. At the top of the file, remove the struck-out line like
so:

#import "LCTAppDelegate.h"

#import "LCTTwitterController.h"
#import "LCTTimelineViewController.h"

Now would be a good time to save your work. Next up, we’ll add a step to the
view controller life cycle of LCTTimelineViewController to authorize the account
before loading tweets. Open LCTTimelineViewController.m, and modify the
viewWillAppear: method by adding the lines in bold:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 206

 [LCTTwitterController sharedInstance]
authorizeAccountWithCompletionHandler:^{
 [[LCTTwitterController sharedInstance]
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];
 }];
 }];
}

Here we have a block nested in another block. Once the first method’s
completion handler fires, the second method is called, and finally when its
completion handler fires, we reload the table view. Run the app in Xcode; it
should load tweets at startup after authorizing the account. This is pretty good,
but there’s no feedback while it’s loading, just an empty table view. Let’s add
some visual indications that the app is working.

Adding Activity Indicators
One way you can indicate that your app is in the middle of a network call is to
use the network activity indicator on the device’s status bar. This is accessed
through the UIApplication class by modifying the
networkActivityIndicatorVisible property. Let’s do this while we’re loading
tweets. Open LCTTwitterController.m in Xcode, and modify the
getTweetsInUserTimelineWithCompletionHandler: method to use the network
activity indicator by adding the lines in bold:

- (void)getTweetsInUserTimelineWithCompletionHandler:(void(^)(NSArray
*tweets))handler
{
 NSString *timelinePath =
@"https://api.twitter.com/1/statuses/home_timeline.json";
 NSURL *timelineURL = [NSURL URLWithString:timelinePath];

 TWRequest *timelineRequest = [[TWRequest alloc] initWithURL:timelineURL
 parameters:nil

requestMethod:TWRequestMethodGET];

 [timelineRequest setAccount:_twitterAccount];

 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:YES];

www.it-ebooks.info

https://api.twitter.com/1/statuses/home_timeline.json
http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 207

 [timelineRequest performRequestWithHandler:^(NSData *responseData,
NSHTTPURLResponse *urlResponse, NSError *error) {
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];

 if (responseData) {
 id topLevelObject = [NSJSONSerialization
JSONObjectWithData:responseData
 options:0
 error:NULL];

 if ([topLevelObject isKindOfClass:[NSArray class]]) {
 if (handler != NULL) {
 handler(topLevelObject);
 }
 }
 }
 }];
}

Build and run the app, and you should notice the network activity indicator in the
status bar. This is a near-universal construct in iOS apps that allows you to
inform the user that the app is performing network operations. It’s not too
noticeable if you’re looking at the table view, however. Let’s fix that by updating
the title of the view controller while we’re loading tweets. In Xcode, open
LCTTimelineViewController.m, and modify the viewWillAppear: method by
adding the lines in bold:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 NSString *title = [self title];

 [self setTitle:@"Authorizing…"];
 [twitterController authorizeAccountWithCompletionHandler:^{
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:@"Loading Tweets…"
 waitUntilDone:NO];

 [twitterController
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:title
 waitUntilDone:NO];

 _tweets = tweets;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Writing Modern Code with Blocks 208

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];
 }];
 }];
}

The first thing we do is save the view controller’s current title to the title
variable. This allows us to change the title we set for the view controller in
initWithStyle: without also modifying it in this method. Next we change the
title to ‘‘Authorizing…’’ while we authorize the account, to ‘‘Loading Tweets…’’
while we load the tweets, and finally back to whatever it was at the beginning
once the tweets are loaded. For the second two, we use
performSelectorOnMainThread:withObject:waitUntilDone: to ensure that the
title is only ever changed on the main thread, because calling UI methods from
other threads can cause problems on iOS, including crashes and unintended
user interface settings. We’ll learn more about threads in the next chapter, so it
you’re not sure what that means, don’t worry. Build and run your app, and you
should see the title changing along with the network activity indicator. Our
Twitter client still has a long way to go before it’s complete; in the next chapter,
we’ll add some more features to it as we talk about performance and
concurrency in code.

Summary
This chapter has been a tour of blocks, a new feature added by Apple to the C
programming language (and thus, by extension, to the Objective-C
programming language). After reading this chapter, you should be comfortable
creating and using blocks as well as creating and using APIs that use blocks.
You should understand why we use blocks and what their advantages are.
Blocks will feature heavily in the next chapter, in which we’ll talk about writing
code that performs well on devices with multicore processors.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Chapter

Managing What
Happens When
So far in this book, you’ve made things happen in a fairly regular manner. You
send a message to an object, the method corresponding to that message
selector runs and then returns, and your code continues. This only scratches the
surface of what’s possible with Objective-C and Cocoa Touch; you can run
code later, run two pieces of code at the same time, or run nothing at all until
something else happens. In this chapter, we’ll discuss the specifics of how you
manage when your code runs, as well as delving into why it matters. We’ll cover
writing code to take advantage of the latest multicore processors, using timers
to repeat the execution of code over time, and run loops, Apple’s efficient way
to wait for events. Along the way, we’ll cover topics such as thread safety and
how to optimize your code for speed. First let’s discuss what we’ve done so far
in the context of this larger discussion.

Sending Messages
When you send a message to an object, you’re running a method. We’ve been
sending messages since Chapter 1, but we haven’t really looked at the
underpinnings of what makes that work. Let’s look at that now; knowing this will
help contextualize later discussions. When you send a message, the name of
the method is called a selector. Selectors, represented by the SEL data type, are
just strings that correspond to the method name. Consider the following
message, sent to an NSArray object called myArray:

[myArray count]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 210

The selector in this case is count. When this code executes, the Objective-C
runtime looks up the method in a table to find its address. When it finds the
address, it executes the method. This is heavily cached to improve
performance, but the first time you call a particular method on a class, it will look
up the method’s address and cache it for later.

Messages Under the Hood
The method’s implementation is actually implemented as a C function. This
particular method of NSArray, count, returns an unsigned integer, so you might
think the representative C function would be declared like this:

NSUInteger count();

Interestingly, when Objective-C code is compiled, these C functions are created
with two extra arguments stuck at the beginning: self and _cmd. self is what
you’ve been using to refer to the object that’s executing the method, and _cmd is
the selector that was executed, which is helpful for debugging. The count
method as a C function would be declared thusly:

NSUInteger count(id self, SEL _cmd);

When the method is first called, the address of that function is looked up and
cached.

Why does this matter? In discussions of programming languages and their
various merits when compared with one another, a common claim is that
Objective-C is slow compared to C or C++. The fact is, since every Objective-C
method is implemented by the compiler as a C function, Objective-C code is
actually quite fast. That being said, the cost of looking up the function’s address
is more than zero. Consider the following if statements:

for (NSUInteger i = 0; i < [myArray count]; i++) {
 NSLog(@"%@", [[myArray objectAtIndex:i] description]);
}

NSUInteger count = [myArray count];
for (NSUInteger i = 0; i < count; i++) {
 NSLog(@"%@", [[myArray objectAtIndex:i] description]);
}

In the first example, every time the loop repeats, it calls the count method of
myArray to check that i is less than the count. In the second example, we store
the value returned by count into a temporary variable and then compare against
that in the loop. This second example has the potential to be much faster,
because it isn’t calling a method every trip through the loop. As you write real
Objective-C code, be sure to consider cases like this. Much of this chapter will

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 211

focus on the performance of your app, but no matter how many tricks there are
to manage when your code is executed, slow code is still slow code.

Performing Selectors Manually
One of the earliest ways most Cocoa Touch developers learn to manage when
their code is called is the target-action paradigm of the UIControl class. When
you pass a target and an action to an instance of UIButton and assign it to the
UIControlEventTouchUpInside event, it’s pretty clear what will happen. You can
call methods yourself in this fashion using the performSelector: family of
methods on NSObject. The following example calls the reloadData method on a
UITableView instance called myTableView:

[myTableView performSelector:@selector(reloadData)];

Now, this itself has no real advantage of simply calling the reloadData method
of myTableView. Some of the variants of performSelector:, however, begin to
give this real power. One of the tenets of UIKit classes is that all UI code should
run on the main thread of the application; that is, you shouldn’t update the UI
when you’re running on a background thread (if you’re not sure what a thread is,
don’t worry; we’ll discuss them in depth later in this chapter). The following line
of code sets the text of a label but does so on the main thread:

[myLabel performSelectorOnMainThread:@selector(setText:)
 withObject:@"Hello, World!"
 waitUntilDone:NO];

This is equivalent to calling this line of code while already on the main thread:

[myLabel setText:@"Hello, World!"];

The waitUntilDone parameter, when set to NO, causes the method to return
immediately, which is useful if the selector you’re passing corresponds to a very
long-running method.

The variants of performSelector: that include an object parameter will only
allow you to perform selectors that take one parameter. If the method you’re
looking to call takes multiple parameters, you won’t be able to call it with this
method. For those methods, we’ll see better ways to call them later in this
chapter.

Calling Selectors in the Background
The inverse of calling something on the main thread is to call it on a background
thread. If you have some long-running task and you call it on the main thread,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 212

your application’s UI will hang while the task processes. Not only is this a bad
user experience, but if your application’s UI is hung for too long, the system will
terminate it. This automatic termination forces your hand if you have long tasks.
We’ll discuss different approaches to running code in the background later in
this chapter, but the easiest is another variation of the performSelector:
method:

[myObject performSelectorInBackground:@selector(longRunningTask:)
 withObject:@"foo"];

This line will call the longRunningTask: method of myObject in the background.
While we’ll cover thread safety in more detail in the portion of this chapter on
threads, be sure that any UI updates in a method you call on the background
happen on the main thread, using
performSelectorOnMainThread:withObject:waitUntilDone: as needed.

Calling Selectors Later
So far, everything we’ve done has run whatever code we specify immediately.
This isn’t always what you want; perhaps you want to present something to the
user for a specific amount of time, or you want to refresh information displayed
after some interval. The performSelector: family of methods has a method to
perform a selector after some delay:

[myObject performSelector:@selector(update) withObject:nil afterDelay:5.0];

This line will call the update method of myObject with no parameter after a five-
second delay. When you use performSelector:withObject:afterDelay:, the
method is called on the current thread, so if you call this in a method that you’ve
called in the background, it will also run in the background.

If you need to cancel a selector that you’ve scheduled to call using the previous
method, you can use the NSObject class method
cancelPreviousPerformRequestsWithTarget:selector:object: with the same
parameters as you gave when scheduling the selector. To cancel the previous
update selector scheduling, you would use this method as such:

[NSObject cancelPreviousPerformRequestsWithTarget:myObject
 selector:@selector(update)
 object:nil];

It’s important to ensure that the three arguments match, or your scheduled
selector won’t be canceled.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 213

Example: Scheduling Selectors in TwitterExample
One feature of Twitter apps in general is that if you leave them open, they’ll
refresh their data automatically. Let’s add that feature to the TwitterExample app
using selectors. Open the TwitterExample project in Xcode, and navigate to the
timeline view controller’s implementation file (LCTTimelineViewController.m).
Add a method declaration for methods called reloadTweets and
scheduleTweetRefresh to the class extension as shown in bold:

@interface LCTTimelineViewController () {
 NSArray *_tweets;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets;
- (void)scheduleTweetRefresh;
- (void)tweetButtonPressed:(id)sender;

@end

Add the implementation code for these methods in the implementation section
of this file, between the implementations of reloadButtonPressed: and
tweetButtonPressed: as follows:

- (void)reloadTweets
{
 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 [twitterController
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

 [self performSelectorOnMainThread:@selector(scheduleTweetRefresh)
 withObject:nil
 waitUntilDone:NO];
 }];
}

- (void)scheduleTweetRefresh
{
 [self performSelector:@selector(reloadTweets)
 withObject:nil
 afterDelay:15.0];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 214

The scheduleTweetRefresh method causes the reloadTweets method to run 15
seconds after it gets called. When the reloadTweets method is complete, it itself
calls scheduleTweetRefresh, causing this to cycle every 15 seconds or so,
depending on how long it takes to fetch the tweets from Twitter. To get this to
run after our initial load of tweets, add the line in bold in the viewWillAppear:
method:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 NSString *title = [self title];

 [self setTitle:@"Authorizing…"];
 [twitterController authorizeAccountWithCompletionHandler:^{
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:@"Loading Tweets…"
 waitUntilDone:NO];

 [twitterController
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:title
 waitUntilDone:NO];

 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

 [self
performSelectorOnMainThread:@selector(scheduleTweetRefresh)
 withObject:nil
 waitUntilDone:NO];
 }];
 }];
}

Now, we need to cancel the automatic refresh if the user navigates away from
this screen. Add an implementation for the viewWillDisappear: method after the
viewWillAppear: method and before the viewDidUnload method:

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 215

 [NSObject cancelPreviousPerformRequestsWithTarget:self

selector:@selector(reloadTweets)
 object:nil];
}

This method will make sure we don’t reload the timeline while the timeline isn’t
visible.

Now, build and run the app. Every 15 seconds or so, it should update your
Twitter timeline, without the need to refresh. Now that we’ve covered using the
performSelector: family of method to control when your code runs, let’s look at
an easier way to accomplish automatic reloading: using the NSTimer class.

Scheduling Code with Timers
One downside of using performSelector:withObject:afterDelay: is that you
need to call that method every time you want the selector performed. In our
TwitterExample app, for every call to reloadTweets, we also called
scheduleTweetRefresh to enqueue another call to reloadTweets. Not only is this
tedious, but it causes the refresh interval to be slightly longer than every 15
seconds. For a Twitter app, precise timing is not important, but in some cases it
is important to run your code at a specific interval. The NSTimer class allows you
to schedule code to run, much like the performSelector: family of methods, but
with the advantage that it can take care of repeating the method at whatever
interval you like. You can create a timer using the class method
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:, which
creates a timer and also schedules it for you. To call a method called update: on
an object every 30 seconds, the timer creation code would be as follows:

NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:30.0
 target:myObject
 selector:@selector(update:)
 userInfo:nil
 repeats:YES];

The first three parameters are fairly self-explanatory: how often to repeat the
selector (in seconds), the target to call the selector on, and the selector itself.
The parameter of this method is a pointer to the NSTimer object that fired. The
userInfo parameter allows you to pass an arbitrary NSDictionary along with the
timer object, which is useful if you need to pass additional data with your timer.
The repeats parameter specifies whether the timer should continue to repeat
once it fires. While this method is not the only way to create a timer, it does
most of the work for you. When we discuss run loops later in this chapter, we’ll

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 216

also cover some additional ways you can create NSTimers. If we wanted to
include a string with the timer, we could use the userInfo dictionary as follows:

NSDictionary *userInfo = [NSDictionary dictionaryWithObject:@"foo"
forKey:@"myString"];

NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:30.0
 target:myObject
 selector:@selector(update:)
 userInfo:userInfo
 repeats:YES];

The corresponding update: method would be able to access the userInfo
dictionary as follows:

- (void)update:(NSTimer *)timer
{
 NSString *myString = [[timer userInfo] objectForKey:@"myString"];

 ...
}

You can add as many objects to the userInfo dictionary as you need, allowing
you to pass complex data through your timers.

If you create a timer that repeats, it will continue until receiving the invalidate
message, like so:

[timer invalidate];

If you create a timer that does not repeat, it will invalidate itself immediately
following the first time it fires. The first parameter of the method that gets called
by the timer must be a pointer to an NSTimer, because the timer will pass itself
as the first parameter. Let’s modify our TwitterExample project to utilize an
NSTimer to facilitate automatic timeline refreshing. We’ll create a timer in the
viewWillAppear: method, after our timeline is populated with an initial list of
tweets. This will remove the need for the scheduleTweetRefresh method and
also require that we add an NSTimer parameter to the reloadTweets method.
We’ll also need an instance variable to store a pointer to the timer. To facilitate
this, modify the class extension in LCTTimelineViewController.m as follows:

@interface LCTTimelineViewController () {
 NSTimer *_reloadTimer;
 NSArray *_tweets;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets:(NSTimer *)reloadTimer;
- (void)scheduleTweetRefresh;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 217

- (void)tweetButtonPressed:(id)sender;

@end

NOTE: We’ve defined two private instance variables in the class extension:
_reloadTimer and _tweets. We could also have defined these as properties, and
you’ll hear this approach recommended over accessing instance variables. This
recommendation comes from before ARC was available, where direct instance
variable access could lead to memory management issues. With ARC, however, the
compiler will ensure that you don’t under-retain your objects, so direct instance
variable access is much safer.

You can remove the scheduleTweetRefresh method in its entirety now. Next,
modify the reloadTweets method to add its parameter and remove the call to
scheduleTweetRefresh:

- (void)reloadTweets:(NSTimer *)reloadTimer
{
 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 [twitterController getTweetsInUserTimelineWithCompletionHandler:^(NSArray
*tweets) {
 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

 [self performSelectorOnMainThread:@selector(scheduleTweetRefresh)
 withObject:nil
 waitUntilDone:NO];
 }];
}

We don’t need to re-schedule the update, because the timer we’re about to
create will take care of all scheduling for us. We’ll create it in the
viewWillAppear: method, as well as removing the old code that called
scheduleTweetRefresh. Modify the method as follows:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 218

 NSString *title = [self title];

 [self setTitle:@"Authorizing…"];
 [twitterController authorizeAccountWithCompletionHandler:^{
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:@"Loading Tweets…"
 waitUntilDone:NO];

 [twitterController
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:title
 waitUntilDone:NO];

 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

 [self performSelectorOnMainThread:@selector(scheduleTweetRefresh)
 withObject:nil
 waitUntilDone:NO];

 _reloadTimer = [NSTimer scheduledTimerWithTimeInterval:15.0
 target:self

selector:@selector(reloadTweets:)
 userInfo:nil
 repeats:YES];
 }];
 }];
}

Finally, we need to invalidate the update timer when our view disappears. At that
time, we’ll set it to nil, because an invalidated timer cannot be reused. We also
need to remove the old code that canceled the selectors we had previously
scheduled. Modify viewWillDisappear: as follows:

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(reloadTweets)
 object:nil];

 [_reloadTimer invalidate];

4
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 219

 _reloadTimer = nil;
}

Build and run the app. Just like before, it should refresh automatically, but this
time it will be nearly exactly every 15 seconds.

Timers are incredibly useful in Cocoa Touch apps. If you have a label that’s
counting down remaining time, for instance, you would use a timer to update the
label’s value periodically. Timers are performant enough that you can schedule
them to update at very high frequencies. For a UI update, for instance, you
could set the time interval to 1/60th of a second, which would cause your UI to
update at 60 frames per second; anything faster than that is probably overkill.

One important thing to note about repeating timers is that they don’t stack up.
The timer schedules code to run, but if it’s already scheduled and hasn’t yet
executed, it won’t re-schedule itself; a timer can be scheduled to run next no
more than once. For that reason, timers aren’t useful for high-performance uses
where you need to be absolutely sure that your code runs a certain number of
times. We’ll discuss this in more detail next, as we cover run loops.

Run Loops
A Cocoa Touch application is a good example of an event-driven application.
For the most part, the app will start up, performing any actions it needs to
initialize itself, and then…do nothing------that is, until the user interacts with it.
Without user interaction, the app sits there, waiting, with some exceptions, such
as if any NSTimer objects fire. How does it do this? Well, if you were writing a
system that waited for an event, you might write it like this:

BOOL stop = NO;

while (stop == NO) {
 BOOL result = [self eventHappened];

 if (result == YES) {
 [self processEvent];
 stop = YES;
 }
}

This code continuously calls the eventHappened method to check to see whether
the event happened. If it has, it calls some other code, and if not, it repeats the
loop. While this code works, it’s horribly inefficient. It will spend 100 percent of
its time busy, either calling eventHappened repeatedly or processing an event. A
faster processor will simply call eventHappened more times. What’s worse, this
code will completely block any future execution until stop is set to YES, so we

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 220

couldn’t readily chain multiple loops together. iOS and Mac OS X solve this
problem by using a run loop, which processes events in a much more efficient
manner. The run loop’s actions are roughly explained in Figure 8-1.

Figure 8-1. The basic cycle of a run loop

The run loop loops through these tasks continuously but in a much more
efficient way than a simple while loop. When it encounters user input or a timer
that needs to fire, it will run the code associated with that event and then return
to the beginning of the loop. Any autoreleased objects are deallocated at the
end of the run loop, and it returns to the beginning.

This diagram covers the important pieces, but other things happen on the run
loop, such as network connections receiving data and ports receiving data. For
the most part, however, you will only deal with the run loop behavior directly by
either adding code to handle events, such as when a button is pressed, or by
creating a timer.

You can always get the current run loop by calling [NSRunLoop currentRunLoop].
Even if one doesn’t yet exist for the current thread, this method will create one.
This is useful when creating timers. So far, we’ve seen convenience methods
that automatically schedule timers on the current run loop, but you can do so
yourself. Here’s how you would create a timer and schedule it on a run loop:

NSTimer *timer = [[NSTimer alloc] initWithFireDate:[[NSDate date]
dateByAddingTimeInterval:60.0]
 interval:60.0
 target:self
 selector:@selector(reload:)
 userInfo:nil
 repeats:YES];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 221

[[NSRunLoop currentRunLoop] addTimer:timer
 forMode:NSDefaultRunLoopMode];

There are a few new things go over here. First is the use of the NSDate object. An
NSDate is simply a representation of a particular time in an object. [NSDate date]
returns an NSDate object representing the current time. We used that in the
previous example to get the current date and then send it the
dateByAddingTimeInterval: method to get a new date that’s 60 seconds ahead
of the current date. By setting this as the fire date of the timer, we can control
when it will first go off.

Next, we get the current run loop with the NSRunLoop class method
currentRunLoop and add the timer to it. The mode parameter defines the run loop
mode for which we want to add the timer. The run loop always has a mode,
which is usually NSDefaultRunLoopMode, but sometimes it will change modes,
such as when it’s actively processing user input. Usually, you’ll want to use
NSDefaultRunLoopMode.

A useful method to know on NSRunLoop is the runUntilDate: method. Suppose
you’re doing a long, complex calculation on the main thread. Doing so will cause
the UI to hang, but you don’t want that. Since you know that user interactions
are processed in the main run loop, you can force it to process those events
before continuing. If you needed to do something 1,000 times but wanted your
user interface to remain responsive, you could do it like this:

for (NSUInteger i = 0; i < 1000; i++) {
 [self performSomeTask];
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate date]];
}

For every trip through this loop, the performSomeTask method is called, and then
the run loop runs. At first, passing [NSDate date], which returns the current
time, might seem like the run loop will immediately exit, but that isn’t the case;
rather, it will run through the loop and process everything that happened before
the current time. If the user tapped a button or a timer fired during
performSomeTask, those events will be processed before the runUntilDate:
method returns.

Run loops depend on having either an input source, such as the screen of your
iOS device, or the keyboard and mouse on a Mac, to stay alive. If a run loop has
no input source(s) or timers, it will exit.

There’s a lot more to what makes a run loop, but this is enough for our needs.
When you’re using Cocoa Touch, run loops will be created and destroyed for
you, so as long as you know how to interact with them, that will be enough. A

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 222

final interesting tidbit is to look at the implementation of main in an iOS program.
For any iOS app, you’ll find a main.m file that goes something like this:

int main(int argc, char *argv[])
{
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
NSStringFromClass([LCTAppDelegate class]));
 }
}

The UIApplicationMain function is what begins running your app. It creates a
run loop, which starts processing events, and continues until your application
exits.

Now that we’ve talked about run loops, we’ve covered most of how to control
how code runs when one thing is happening at a time. On many devices today,
however, there are multiple processor cores, which means you can run multiple
pieces of code at the same time! Next, we’ll discuss how multithreaded code
works, how to write it, and how to do it safely.

Multithreaded Code
When personal computers were first gaining popularity, processor speeds would
increase at a fairly predictable rate. Commonly referred to as Moore’s law, the
speed would typically double every 18 months. As time went on, however, the
amount of speed that we could gain from processor advances started to slow
down. To make things faster, processor manufacturers began making
processors with multiple cores, allowing them to run more than one thing at a
time. Instead of simply getting faster, processors now increase the number of
cores to allow you to get more done. Beginning with the iPhone 4S and second-
generation iPad, even mobile devices offer dual-core processing in iOS, allowing
your app to effectively utilize multiple pieces of code concurrently. This ability
doesn’t come for free, however; in order to take advantage of multiple processor
cores, you must write your apps to do so. Otherwise, your app will run on one
core, the other sitting idle, unused. You can guess yourself which option
provides the best user experience.

Running Code on Another Thread
All Cocoa Touch apps start with one thread: the main thread. This is the thread
that UIApplicationMain() is called on, the thread that UI callbacks (e.g., table
view data source methods) are called on, and the thread you’ll use to configure

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 223

your app’s UI. You’ll probably even use the main thread for the majority of your
app’s code; some things don’t benefit much from multithreading.

In cases where you have a long-running task, running on the main thread is not
recommended, and in some cases it might get your app killed by the system.
The easiest way to avoid that is to call your long-running task on a new thread:

[NSThread detachNewThreadSelector:@selector(longRunningTask)
 toTarget:self
 withObject:nil];

This is the equivalent of calling [self longRunningTask], with the exception that
it creates a new thread and runs the longRunningTask method on it. It’s
important to note that when you create a new thread, a new run loop is created
for the thread, because each thread has its own run loop (the main run loop in
the application is just the main thread’s run loop). As a result, you’ll need to
create your own autorelease pool before using any methods that autorelease an
object. Since you don’t know for sure if the system frameworks will ever
autorelease an object, it’s best to do this immediately. longRunningTask should
be implemented like this:

- (void)longRunningTask
{
 @autoreleasepool {
 // Task code goes here.
 }
}

By wrapping the method’s code with the @autoreleasepool directive, we’ll catch
any autoreleased objects for this thread and deal with them appropriately.

As you can see, creating a new thread is pretty easy. Doing it right takes some
work.

Thread Safety
Running code on multiple threads can be dangerous if you don’t do it right. If
you’re writing to an integer on one thread and reading it on another, the read
might return the old value, the new value, or a garbage value that is neither and
might wind up crashing your app or displaying the wrong value. The concept of
writing your code to account for these issues is called thread safety. One of the
easiest things you can do for thread safety is to declare a property as atomic
when you declare it. When you do so, by omitting the nonatomic keyword (there
is no atomic keyword), you ensure that property access will be thread-safe; if
you try to read and write at the same time, one will wait for the other to finish.
This isn’t enough for true thread safety, but it will prevent you from overwriting a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 224

property as you try to read it. You will often see people using nonatomic
properties by default, because there is a slight performance gain, but if you’re
doing anything on multiple threads, you’ll want to start by using atomic
properties.

One side effect of a writable atomic property is that you can’t define your own
setter method if you’re using a synthesized getter; doing so would undermine
the built-in mechanism that provides thread safety. If you need to run code
when you set the property, you have two options: use Key-Value Observing
(KVO) to observe changes to the code or write the thread-safe code yourself.
You can synthesize the accessor methods and use KVO to avoid writing the
code yourself. If you need to do write it yourself, however, you can use the
NSLock class to create locks that you can use to enforce the proper
synchronicity you need for thread safety. Let’s consider the hypothetical class
ThreadSafeObject with the property name. We want to write our own custom
implementation of setName:, so we’ll use a lock to restrict access to it. The
interface would look like this:

@interface ThreadSafeObject : NSObject {
 NSLock *_nameLock;
 NSString *_name;
}

@property (atomic, copy) NSString *name;

@end

Before setting or retrieving the value of name, we’ll use _nameLock to ensure that
we’re being thread-safe. Let’s walk through the implementation of our
ThreadSafeObject class, beginning with the init method:

@implementation ThreadSafeObject

- (id)init
{
 self = [super init];

 if (self) {
 _nameLock = [[NSLock alloc] init];
 }

 return self;
}

As you can see, creating the _nameLock object is straightforward and needs no
special methods; it’s just a regular initialization. Next up is the setName: method:

- (void)setName:(NSString *)newName
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 225

 [_nameLock lock];

 _name = [newName copy];

 [_nameLock unlock];
}

When we call the lock method of our lock, the lock method either returns
immediately if the lock is unlocked or, if the lock is already locked, waits until it’s
unlocked and then locks it and returns. If more than one method tries to lock an
already-locked lock, they will lock it in a first-come, first-served manner. The
upshot i s that a lock can be locked a t only one point in the code-----so be sure to
unlock it when you’re done, or you won’t be able to use it again. Next up is our
final method, name:

- (NSString *)name
{
 NSString *nameToReturn;

 [_nameLock lock];

 nameToReturn = _name;

 [_nameLock unlock];

 return nameToReturn;
}

@end

Notice that we don’t want to return before we unlock the lock, so we store the
value of _name in a temporary variable, nameToReturn. Using a lock here as well
completes our thread safety for the name property, because any combination of
calls to name and setName: will succeed without overwriting one another. Thread
safety is a complex subject, but locks and atomic properties are a quick and
efficient way to get started with it.

Running Lots of Tasks
Spinning off new threads to do something in the background will get you only so
far. Suppose you have 1,000 objects in an array and you want to perform a
long-running task on each of them. You could of course create one background
thread and iterate over the objects in the array on the background thread, but if
you’re using a dual-core device, you’ll want to process two objects at a time to
speed things up. A naïve implementation might detach a thread for each object,
doing something like this:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 226

NSUInteger count = [myArray count];

for (NSUInteger i = 0; i < count; i++) {
 id obj = [myArray objectAtIndex:i];

 [NSThread detachNewThreadSelector:@selector(longRunningTask) toTarget:obj
withObject:nil];
}

The problem with this approach is that we’ll soon wind up with 1,001 threads
running. Each thread carries with it a certain amount of memory cost, so
creating 1,000 extra threads gets expensive. With the iPhone’s limited
resources, your app will get killed before you can spin off that many threads, so
that isn’t an option.

A slightly less naïve implementation would obtain the count of processor cores
in the device, then keep that many threads open, processing the next object in
the array each time the task finished. This avoids the too-many-threads problem
and ensures that there’s always work being done. It doesn’t, however, take into
account how busy the processors actually are. The device might be running
some code in the background-----checking mail, p laying music, and so on-----and
simply filling the processor with work will hinder those efforts.

When you have individual tasks like this, instead of writing this code yourself,
you can use the built-in class NSOperationQueue to enqueue operations,
performing them automatically. You could do the previous code using an
NSOperationQueue as follows:

NSOperationQueue *queue = [[NSOperationQueue alloc] init];
NSUInteger count = [myArray count];

for (NSUInteger i = 0; i < count; i++) {
 id obj = [myArray objectAtIndex:i];

 [queue addOperationWithBlock:^{
 [obj performLongTask];
 }];
}

Using an NSOperationQueue will allow the operations to proceed concurrently but
while respecting the system and its current tasks. It will automatically scale the
operations for the processor, which is less code you need to write.

Example: Twitter Profile Images
Let’s take our newfound knowledge and use it in our Twitter example. Our goal
will be to load the profile images of users in our timeline. First we’ll do it the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 227

completely naïve way, loading the images synchronously. Once we’ve done
that, we’ll do it with a background thread and then finally an operation queue.
Open LCTTimeLineViewController.m, and modify the
tableView:cellForRowAtIndexPath: method as follows:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];
 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

 NSString *profileImageURI = [[tweet objectForKey:@"user"]
objectForKey:@"profile_image_url"];
 NSURL *profileImageURL = [NSURL URLWithString:profileImageURI];

 NSURLRequest *profileImageURLRequest = [NSURLRequest
requestWithURL:profileImageURL];

 NSURLResponse *response = nil;
 NSError *error = nil;

 NSData *imageData = [NSURLConnection
sendSynchronousRequest:profileImageURLRequest
 returningResponse:&response
 error:&error];

 UIImage *image = [UIImage imageWithData:imageData];

 [[cell imageView] setImage:image];

 return cell;
}

Build and run the app. If you’re on a fast connection, you might not even notice
the slowdown as the app loads a picture for every row, but if you’re on a slow
connection, you’ll definitely notice the hit. Instead of blocking the UI while we

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 228

wait for the image to download, let’s use an NSOperationQueue to queue up the
images for downloading. In LCTTimelineViewController.m, add an instance
variable for the queue in the class extension at the top of the file:

@interface LCTTimelineViewController () {
 NSTimer *_reloadTimer;
 NSArray *_tweets;
 NSOperationQueue *_profileImageQueue;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets:(NSTimer *)reloadTimer;
- (void)tweetButtonPressed:(id)sender;

@end

Next, let’s initialize the queue in the initWithStyle: method:

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];

 UIBarButtonItem *tweetButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCompose
 target:self

action:@selector(tweetButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:tweetButton];

 _profileImageQueue = [[NSOperationQueue alloc] init];
 }

 return self;
}

As you can see, there really isn’t too much setup code here. Next, let’s use the
operation queue to download the images. In
tableView:cellForRowAtIndexPath:, modify the method as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 229

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];
 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

 NSString *profileImageURI = [[tweet objectForKey:@"user"]
objectForKey:@"profile_image_url"];
 NSURL *profileImageURL = [NSURL URLWithString:profileImageURI];

 NSURLRequest *profileImageURLRequest = [NSURLRequest
requestWithURL:profileImageURL];

 [_profileImageQueue addOperationWithBlock:^{
 NSURLResponse *response = nil;
 NSError *error = nil;

 NSData *imageData = [NSURLConnection
sendSynchronousRequest:profileImageURLRequest
 returningResponse:&response
 error:&error];

 UIImage *image = [UIImage imageWithData:imageData];
 [[cell imageView] setImage:image];

 [[cell imageView] performSelectorOnMainThread:@selector(setImage:)
 withObject:image
 waitUntilDone:NO];

 [cell performSelectorOnMainThread:@selector(setNeedsLayout)
 withObject:nil
 waitUntilDone:NO];
 }];

 return cell;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 230

As you can see, we simply wrap the lines that perform the network requests in a
block that we pass to our operation queue. Since this isn’t going to run on the
main thread, we then set the image in the cell’s image view on the main thread,
since that is a UI operation. Next, we call setNeedsLayout on the cell from the
main thread. When the cell is returned from tableView:cellForRowAtIndexPath:,
its image view won’t have an image, so we need to call setNeedsLayout to force
the cell to adjust its subviews to account for the image.

Build and run the app, and you’ll notice your table view cells’ content loading
asynchronously. This is especially nice for users on a slow connection, because
they’ll still be able to scroll the table view as they wait for the images to load.
Now, as simple as creating your own threads and using operation queues can
be, the truth is that it’s not the easiest, and it’s not the best method for running
code concurrently. In Mac OS X Snow Leopard and iOS 4.0, Apple introduced a
new low-level framework for managing concurrency called Grand Central
Dispatch, which improves on concurrent code in nearly every way imaginable.

NOTE: If you’d like to simulate poor network conditions, Apple provides a tool called
the Network Link Conditioner. It isn’t part of a default Xcode installation but is an
optional developer tool you can use to simulate poor networks on your Mac.

Grand Central Dispatch
Generally speaking, the code you write can be broken down into discrete tasks:
download an image from a server, parse a JSON response into model objects,
calculate values based on user input, and so on. By breaking down pieces of
code into smaller chunks, it’s easier to manage them, easier to write good code,
and easier to change one piece of how the code works. Apple’s Grand Central
Dispatch framework helps you manage when your code executes by
automatically running your individual tasks based on how busy the system is.
Just like with NSOperationQueue, you add an individual task to a queue, which
then executes its tasks until they’re all done. With Grand Central Dispatch, you
have much more flexibility than with an operation queue. Instead of manually
creating a queue and adding items to it, you can add items to a shared global
queue based on priority, as well as a queue that runs its tasks on the main
thread. Let’s look at the latter case first.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 231

Dispatching Code
In the previous example, when we received an image from Twitter, we had to
put it in the table view cell’s image view on the main thread and then call
setNeedsLayout on the cell, as follows:

[[cell imageView] performSelectorOnMainThread:@selector(setImage:)
 withObject:image
 waitUntilDone:NO];

[cell performSelectorOnMainThread:@selector(setNeedsLayout)
 withObject:nil
 waitUntilDone:NO];

With Grand Central Dispatch, we can create a block and schedule it on the main
queue, doing the same thing in a much simpler way:

dispatch_async(dispatch_get_main_queue(), ^{
 [[cell imageView] setImage:image];
 [cell setNeedsLayout];
});

The dispatch_async() function takes a dispatch queue for the first argument
and the block to be executed for the second. We’ll cover dispatch queues in
more detail later, but for now the macro dispatch_get_main_queue() is enough
to return the main queue here. In the block, we call these two methods normally,
knowing that they’ll execute on the main thread.

When you dispatch a task to a queue, there are two ways to do so:
synchronously and asynchronously. The asynchronous functions, such as
dispatch_async(), return immediately after scheduling the task, while the
synchronous functions, such as the corresponding dispatch_sync() function,
wait for the task to finish before returning.

NOTE: Take great care with the synchronous functions of Grand Central Dispatch. If
you dispatch a task to the main queue synchronously while you’re already on the
main queue, the task will never begin, because the main queue is waiting for the task
to finish.

You don’t have to use blocks with Grand Central Dispatch. If you’d rather pass a
function pointer than a block, the alternative methods dispatch_async_f() and
dispatch_sync_f() do the same as their block-based counterparts, albeit with
an extra argument: a context pointer that’s passed to the function as its first
argument. When you’re writing new code, you’ll usually use blocks, but if you
have a lot of compatible C functions, this allows you to use those instead.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 232

There are a couple more locations in the TwitterExample code where we can
replace performSelector: methods with Grand Central Dispatch. In
LCTTimelineViewController.m, modify the viewWillAppear: method as follows:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 NSString *title = [self title];

 [self setTitle:@"Authorizing…"];
 [twitterController authorizeAccountWithCompletionHandler:^{
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:@"Loading Tweets…"
 waitUntilDone:NO];

 dispatch_async(dispatch_get_main_queue(), ^{
 [self setTitle:@"Loading Tweets…"];
 });

 [twitterController
getTweetsInUserTimelineWithCompletionHandler:^(NSArray *tweets) {
 [self performSelectorOnMainThread:@selector(setTitle:)
 withObject:title
 waitUntilDone:NO];

 _tweets = tweets;

 [[self tableView] performSelectorOnMainThread:@selector(reloadData)
 withObject:nil
 waitUntilDone:NO];

 dispatch_async(dispatch_get_main_queue(), ^{
 [self setTitle:title];
 [[self tableView] reloadData];
 });
 }];
 }];

 _reloadTimer = [NSTimer scheduledTimerWithTimeInterval:5.0
 target:self

selector:@selector(reloadTweets:)
 userInfo:nil
 repeats:YES];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 233

Combining the calls to
performSelectorOnMainThread:withObject:waitUntilDone: into a single call to
dispatch_async() isn’t strictly necessary, but in the opinion of yours truly, it
makes the code much more readable.

Using Global Dispatch Queues
We’ve already seen an example of one dispatch queue: the main queue. You’ll
dispatch tasks to this queue for any UI-related methods or anything else that
needs to run on the main thread. For tasks that you’d like to run in the
background, you can get a global queue with the dispatch_get_global_queue()
function, which takes two arguments: a queue priority and options. The second
argument is reserved for future use by Apple, so for the time being, just pass 0.
The first argument should be one of four constants, presented here in order of
priority, highest first:

 DISPATCH_QUEUE_PRIORITY_HIGH

 DISPATCH_QUEUE_PRIORITY_DEFAULT

 DISPATCH_QUEUE_PRIORITY_LOW

 DISPATCH_QUEUE_PRIORITY_BACKGROUND (available in iOS 5 and
later)

Once you get a dispatch queue, you use it just like the main queue in the
previous example.

Let’s modify our Twitter example to use dispatch queues instead of an
NSOperationQueue. Open LCTTimelineViewController.m, and modify the
tableView:cellForRowAtIndexPath: method as follows:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 234

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];
 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

 NSString *profileImageURI = [[tweet objectForKey:@"user"]
objectForKey:@"profile_image_url"];
 NSURL *profileImageURL = [NSURL URLWithString:profileImageURI];

 NSURLRequest *profileImageURLRequest = [NSURLRequest
requestWithURL:profileImageURL];

 [_profileImageQueue addOperationWithBlock:^{
 dispatch_queue_t dispatchQueue =
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

 dispatch_async(dispatchQueue, ^{
 NSURLResponse *response = nil;
 NSError *error = nil;

 NSData *imageData = [NSURLConnection
sendSynchronousRequest:profileImageURLRequest
 returningResponse:&response
 error:&error];

 UIImage *image = [UIImage imageWithData:imageData];

 [[cell imageView] performSelectorOnMainThread:@selector(setImage:)
 withObject:image
 waitUntilDone:NO];

 [cell performSelectorOnMainThread:@selector(setNeedsLayout)
 withObject:nil
 waitUntilDone:NO];

 dispatch_async(dispatch_get_main_queue(), ^{
 [[cell imageView] setImage:image];
 [cell setNeedsLayout];
 });
 });
 }];

 return cell;
}

First, we get a global dispatch queue with the default queue priority. Next, we
use dispatch_async() to schedule a block of code on this queue. Inside of this
block of code, we use dispatch_async() a second time to schedule a block of
code on the main queue. Nested calls to dispatch_async() like we have here
are not uncommon and are in fact a big strength of Grand Central Dispatch.

g
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 235

Now that we’re using these queues, you can remove the NSOperationQueue
variable we created before:

@interface LCTTimelineViewController () {
 NSTimer *_reloadTimer;
 NSArray *_tweets;
 NSOperationQueue *_profileImageQueue;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets:(NSTimer *)reloadTimer;
- (void)tweetButtonPressed:(id)sender;

@end

Similarly, you can remove it from the initWithStyle: method:

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];

 UIBarButtonItem *tweetButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCompose
 target:self

action:@selector(tweetButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:tweetButton];

 _profileImageQueue = [[NSOperationQueue alloc] init];
 }

 return self;
}

Great. Now, build and run your code, and you’ll see that everything still works as
advertised. If this was all that Grand Central Dispatch could do for you, it would
be a great library. It can do so much more, but before we get too far into what it
can do, let’s talk a bit about how it’s structured.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 236

Dispatch Objects
Grand Central Dispatch is an object-oriented framework, but it isn’t Objective-C.
Instead, it’s in C, with its own object system. Like Objective-C, it uses reference
counting for its memory management, but unfortunately ARC won’t be able to
help with this code. Creating a dispatch object generally involves a function with
this form, where type is the kind of dispatch object:

dispatch_<type>_create()

To create a dispatch queue, for instance, you would call
dispatch_queue_create(). When you get a queue from this function, it has a
retain count of 1, so when you’re done with it, you’ll need to release it using the
dispatch_release() function. You don’t need to call dispatch_release() on
global queues or the main queue, since you didn’t create them. If you’re passing
a dispatch object around and need to retain its value, use the
dispatch_retain() function.

Dispatch Queues
One of the most common types of dispatch objects to be creating is a dispatch
queue. There are two types of queues: serial and concurrent. A serial queue
runs one task at a time, operating on a first-in, first-out basis. While only one
task will be running at a time within a serial queue, Grand Central Dispatch may
run tasks from two separate serial queues at the same time. Concurrent queues,
as the name suggests, can run multiple tasks at once. One of Grand Central
Dispatch’s features is that it automatically scales the number of threads active in
the app for you, so you don’t need to configure how many tasks can run
concurrently in a given concurrent queue. Tasks are started in a first-in, first-out
order, but the order in which they finish depends on how long they take.

To create a dispatch queue, use the dispatch_queue_create() function:

dispatch_queue_t myQueue = dispatch_queue_create("com.learncocoatouch.myQueue",
 DISPATCH_QUEUE_CONCURRENT);

The first argument is a C string that’s used as a label for the queue. The set of
queues is global to all active apps, so be sure to use a reverse-DNS style label
to avoid name collisions. It’s also useful when debugging, because you can see
which queue a broken piece of code is running on. The second argument is
either DISPATCH_QUEUE_CONCURRENT or DISPATCH_QUEUE_SERIAL, corresponding to
the type of dispatch queue you’d like to create. You may also see NULL used in
code that was written before these constants were available; in that case, the
queue is created as a serial queue. You can use this queue to dispatch tasks
just like a global queue:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 237

dispatch_async(myQueue, ^{ NSLog(@"Hello, World!"); });

When you’re done with the queue, be sure to release it:

dispatch_release(myQueue);

When you dispatch a task to a queue, the task retains the queue, so it’s OK to
release the queue immediately after submitting one or more tasks without
worrying about the order in which things will happen.

Another useful function that uses dispatch queues is dispatch_apply(). If you
need to perform the same task multiple times, you can use dispatch_apply()
(as well as its function-based counterpart, dispatch_apply_f()) to do so. If you
use the block-based dispatch_apply() function, the block takes one argument,
which corresponds to the index of the current iteration. The count will be passed
as the second argument to a function if you use dispatch_apply_f(). To
illustrate, here’s how you would use dispatch_apply() to iterate through an
array:

NSUInteger count = [myArray count];

dispatch_apply(count, myQueue, ^(size_t idx) {
 id object = [myArray objectAtIndex:idx];

 [object doSomething];
});

Note that the block we passed in as the third argument takes one argument. The
size_t type is essentially an integer, so we can use it as the index to retrieve the
object from the array. When you use dispatch_apply(), it dispatches the block
to the given queue the given number of times and then waits for them all to
finish before returning. Because it waits for the blocks to finish, you can use
dispatch_apply() as a quick replacement for for loops and, when using it in
tandem with a concurrent queue, can gain performance as a result.

Dispatch Semaphores
There’s a big problem with our Twitter example: since we can display so many
cells on the screen at once, we end up with a large number of URL connections
all loading at once. Too many simultaneous connections will have an adverse
effect on performance. To counteract this, we’ll use dispatch semaphores,
which are counting semaphores that will act as a lock. When you create a
semaphore with dispatch_semaphore_create(), you pass a number to initialize
the value of the semaphore. To use the semaphore, you call
dispatch_semaphore_wait(), which decrements the current value of the
semaphore. If the resulting value is less than 0, the function waits until the value

h
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 238

increases before returning. The value of the semaphore is set in the
dispatch_semaphore_create() method, so to create a semaphore to allow only
one access at a time, you would create it by calling
dispatch_semaphore_create(0);. To increment the value, call
dispatch_semaphore_signal(). It’s also possible to specify a maximum wait time
for dispatch_semaphore_wait() to allow you to respond appropriately if you
can’t act immediately. If dispatch_semaphore_wait() is called more than once,
the first call to this function to return is determined in a first-in, first-out manner,
similar to a lock.

To limit the number of simultaneous connections in our Twitter app, we’ll use a
value of 3 in dispatch_semaphore_create(). We’ll also create our own dispatch
queue to handle the requests to help clean things up. Open the TwitterExample
project in Xcode, and navigate to LCTTimelineViewController.m. Add two
variables to the class extension:

@interface LCTTimelineViewController () {
 NSTimer *_reloadTimer;
 NSArray *_tweets;
 dispatch_queue_t _profileImageQueue;
 dispatch_semaphore_t _profileImageSemaphore;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets:(NSTimer *)reloadTimer;
- (void)tweetButtonPressed:(id)sender;

@end

Note that because dispatch objects are not Objective-C objects, they aren’t
pointers. We’ll initialize them in the initWithStyle: method:

- (id)initWithStyle:(UITableViewStyle)style
{
 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];

 UIBarButtonItem *tweetButton =

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 239

 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCompose
 target:self

action:@selector(tweetButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:tweetButton];

 _profileImageQueue =
dispatch_queue_create("com.learncocoatouch.profileImageQueue",

DISPATCH_QUEUE_CONCURRENT);

 _profileImageSemaphore = dispatch_semaphore_create(3);
 }

 return self;
}

Even though we’re using ARC, we need to release these objects when we’re
done with them. Add a dealloc method after initWithStyle::

- (void)dealloc
{
 dispatch_release(_profileImageQueue);
 dispatch_release(_profileImageSemaphore);
}

Next, let’s use the queue and semaphore to control the number of concurrent
connections. Modify tableView:cellForRowAtIndexPath: as follows:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];
 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 240

 NSString *profileImageURI = [[tweet objectForKey:@"user"]
objectForKey:@"profile_image_url"];
 NSURL *profileImageURL = [NSURL URLWithString:profileImageURI];

 NSURLRequest *profileImageURLRequest = [NSURLRequest
requestWithURL:profileImageURL];

 dispatch_queue_t dispatchQueue =
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0ul);
 dispatch_async(dispatchQueue, ^{
 dispatch_async(_profileImageQueue, ^{
 NSURLResponse *response = nil;
 NSError *error = nil;

 dispatch_semaphore_wait(_profileImageSemaphore,
DISPATCH_TIME_FOREVER);

 NSData *imageData = [NSURLConnection
sendSynchronousRequest:profileImageURLRequest
 returningResponse:&response
 error:&error];

 dispatch_semaphore_signal(_profileImageSemaphore);

 UIImage *image = [UIImage imageWithData:imageData];

 dispatch_async(dispatch_get_main_queue(), ^{
 [[cell imageView] setImage:image];
 [cell setNeedsLayout];
 });
 });

 return cell;
}

As you can see, we wrap the URL connection method in semaphore calls. Once
we have the data from the server, we can start a new connection. Build and run
the app again, and you should see the images load. Depending on your Internet
connection speed, you may notice an improvement.

Dispatch Time
You may have noticed the DISPATCH_TIME_FOREVER macro in the previous code
example. That argument in dispatch_semaphore_wait() specifies the maximum
amount of time to wait for the semaphore before moving on. Passing
DISPATCH_TIME_FOREVER causes the function to wait, well, forever. The return
value of dispatch_semaphore_wait() is zero if the semaphore did not time out,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 241

and it’s nonzero if the timeout did occur. To specify the maximum timeout, you’ll
need to create a dispatch_time_t value. dispatch_time_t is not an object, so
you don’t use a function ending in ‘‘create.’’ Instead, use the dispatch_time()
function to return a new time value. dispatch_time() takes two arguments, the
first of which is another dispatch_time_t; the time you create will be relative to
this first argument. Use DISPATCH_TIME_NOW to create a time in the near future.
The second argument is the number of nanoseconds to add to the first
argument in order to get the desired time. You can use the NSEC_PER_SEC macro
to conveniently calculate the number of nanoseconds to use. To specify a
dispatch time 15 seconds from now, you would call the function as follows:

dispatch_time_t time = dispatch_time(DISPATCH_TIME_NOW, 15 * NSEC_PER_SEC);

To use this time as the timeout for a semaphore, you would call
dispatch_semaphore_wait() as follows:

long success = dispatch_semaphore_wait(mySemaphore, time);

if (success == 0) {
 // The timeout did not occur.
}
else {
 // The timeout occurred.
}

Using dispatch semaphores with these timeouts gives you flexible control over
resource allocation in your app. Another useful function that uses the
dispatch_time_t type is dispatch_after() (along with its counterpart,
dispatch_after_f(), that takes a function instead of a block), which schedules
the dispatch of a block of code for later. Using dispatch_after() is just like
using dispatch_async(), with one additional argument before the others, a
dispatch_time_t value specifying when to call the code. If you wanted to
schedule a block to run 30 seconds into the future, you could do so as follows:

dispatch_time_t time = dispatch_time(DISPATCH_TIME_NOW, 30 * NSEC_PER_SEC);

dispatch_after(time, dispatch_get_main_queue(), ^{
 NSLog(@"Hello, World!");
});

Using dispatch_after() like this has the same effect as a nonrepeating timer
but doesn’t have the overhead of creating the NSTimer object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Managing What Happens When 242

Summary
In this chapter, you learned a few different ways to run your code. The
performSelector: family of methods provides you with basic message routing,
while timers allow you to repeat code on timed intervals. Run loops are the
underpinnings of every thread, processing events in your application. Threads
and the thread-safety issues that accompany them allow you to run two pieces
of code at once, and NSOperationQueue allows you to enqueue specific chunks
of work. Finally, Grand Central Dispatch allows you fine-grained control over
how your code runs. Now that you’ve finished this chapter, you’re well on your
way toward writing high-performance iOS applications. We’ve made our Twitter
example more responsive with Grand Central Dispatch, but its user interface
could use some work. In the next chapter, we’ll talk about implementing great
iPhone UIs, rendering our own graphics, and animation.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Chapter

User Interface Design
As of this writing, more than 550,000 apps are available for iOS. Talk about
fierce competition. Your app will be in the App Store competing for the eyes-----
and pockets-----of the users of hundreds of millions of devices. With so many
products out there, users are often at a loss when trying to compare apps.
Here’s a quick experiment: fire up the App Store on your iOS device or in iTunes
and search for an app. Use the search term ‘‘photography.’’ Or ‘‘weight loss.’’
How in the heck a re users-----your potential users-----going to find your app among
all this noise? Primarily, it’s through their eyes. One of the most important things
you can do for a successful app is to have a great icon. Hire an artist and have
them make ridiculously high-resolution graphics for your icon. If your app is
good and Apple wants to feature it somewhere, you might be asked for an even
higher-resolution version. And if Apple wants to feature your app, you’d better
have those graphics at the ready; being featured in the App Store is even more
of a path to success than having a great icon.

Once your users see your amazing icon, pause for a moment to weep at its
beauty, and decide to purchase your app, they’re going to have to use the darn
thing. Even if your icon is a couple of stick figures, your users will appreciate
knowing that some care went into how the application looks. To that end, this
chapter will cover the ways in which you can make your app stand out from the
crowd with compelling user interface design. Not only will your apps look better,
they’ll be easier to use. We’ll s tart w ith h igh-level-----though still quite powerful-----
frameworks like UIKit, then get more low-level as we progress. By the end of
this chapter, you will be able to take an image that your designer gives you and
make your app look like your designer’s work. To start, let’s cover some basic
things in UIKit.

UIKit is a very large framework. It covers most of the user interface elements
you’ll be using to make iPhone apps, from buttons to sliders to labels to image

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 244

views. Happily, most of what UIKit offers can be customized to fit your needs,
whether it’s a custom image for a button, a color for a label, or a snappy
animation when your app starts up. One of the easiest ways you can make your
application stand out is to use custom colors for UI elements; to do that, you’ll
use the UIColor class.

Coloring Interface Elements with UIColor
You may have already toyed with color when playing with Interface Builder. If so,
great. If not, don’t worry, because we’re about to cover it in depth. Instances of
the UIColor class are representations of a specific color. They’re used all over
UIKit, but one of the easiest demonstrations of how they work is to take a user
interface element and add some color to it. To do this, let’s use our venerable
Twitter example project and add some pizzazz. Open the TwitterExample
project in Xcode and navigate to your app delegate’s implementation file
(LCTAppDelegate.m). Add the following lines in bold to the
application:didFinishLaunchingWithOptions: method:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 LCTTimelineViewController *viewController =
 [[LCTTimelineViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *navigationController =
 [[UINavigationController alloc] initWithRootViewController:viewController];

 UIColor *navigationBarColor = [UIColor redColor];
 [[navigationController navigationBar] setTintColor:navigationBarColor];

 [[self window] setRootViewController:navigationController];

 return YES;
}

NOTE: If you have removed your Twitter account from the device you’re using or the
iOS Simulator, you’ll need to reenter it before using the TwitterExample app.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 245

Build and run the app, and the difference should be quite noticeable. As you can
see in Figure 9-1, the navigation bars look quite different already.

Figure 9-1. The navigation controller with the default tint color on the left and with a red tint color on
the right

Not only does the tintColor property affect the color of the navigation bar, it
also changes the color of the UIBarButtonItem objects displayed on it. Tint
colors, which are supported by many UIKit classes, affect the color of the object
but not its shape or how it behaves.

You may have also noticed that we simply used the UIColor class method
redColor to get a color. This is provided as a convenience to you, allowing you
to create common colors quickly. You can use class methods to make black,
dark gray, light gray, gray, white, red, green, blue, cyan, yellow, magenta,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 246

orange, purple, and brown color objects. You can also use the clearColor
convenience method to create a transparent color, which is useful for making
the background of a view transparent. You can replace the redColor method in
the Twitter code to any of those colors, build and run the app, and see the
results. Note that for two-word color names, the methods are in camel case, so
for dark gray you’d use the darkGrayColor method.

The obvious next question is, ‘‘Can I use my own colors?’’ The answer is yes,
you can use your own colors. Simply use the UIColor class method
colorWithRed:green:blue:alpha: to create the color. You can create a nice,
dark blue slate color with the following line:

UIColor *darkBlueSlateColor = [UIColor colorWithRed:0.129f
 green:0.278f
 blue:0.380f
 alpha:1.0f];

NOTE: As is the case for all displays, colors on an iOS device’s display may not
match the same color on another display exactly. Always be sure to test your app on
a real device to see what the colors you use actually look like.

Each parameter of this method takes a float in the range from 0 to 1. For the
red, green, and blue values, designers are used to giving integer or hex values
for colors. For easier modification later, you can use division to get the values
between 0 and 1. The previous color could have been written in either of these
ways:

UIColor *darkBlueSlateColor = [UIColor colorWithRed:(74.0f/255.0f)
 green:(82.0f/255.0f)
 blue:(90.0f/255.0f)
 alpha:1.0f];

UIColor *darkBlueSlateColor = [UIColor colorWithRed:((float)0x4A / (float)0xFF)
 green:((float)0x52 / (float)0xFF)
 blue:((float)0x5A / (float)0xFF)
 alpha:1.0f];

In the first example, we use the numerical values divided by 255 to obtain a
value between 0 and 1; in the second, we use the hexadecimal value divided by
FF to obtain the value. When your designer gives you a specific color to use, you
can use the appropriate method to generate the color.

The fourth parameter to this method is the alpha component of the color, which
is a measure of how opaque it is. This won’t have any effect when setting the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 247

tint color on a navigation bar, but it can be used in other situations where you
use a UIColor object to add some transparency to the color.

If your designer gives you values for hue, saturation, and brightness, you can
create a color with those as well. The same color as shown earlier can be
created like so:

UIColor *darkBlueSlateColor = [UIColor colorWithHue:(210.0f/359.0f)
 saturation:(18.0f/100.0f)
 brightness:(35.0f/100.0f)
 alpha:1.0f];

Colors are useful for more than just tinting UI elements. You can use them to
change the text color of a UILabel or the background color of any UIView. If, for
instance, you want your table view cells to alternate between gray and a slightly
darker shade of gray, you can use a UIColor to do so. Open the TwitterExample
project in Xcode, and navigate to the LCTTimelineViewController.m file. Add a
new method implementation after tableView:cellForRowAtIndexPath: as
follows in bold:

- (void)tableView:(UITableView *)tableView
 willDisplayCell:(UITableViewCell *)cell
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSUInteger row = [indexPath row];

 if (row % 2) {
 [cell setBackgroundColor:[UIColor grayColor]];
 }
 else {
 [cell setBackgroundColor:[UIColor lightGrayColor]];
 }
}

The tableView:willDisplayCell:forRowAtIndexPath: table view delegate
method is called just before the cell appears on the screen. Among other things,
it’s used to set the background color of your table view cell. Build and run the
app, and you’ll notice that for the gray cells, the user name is invisible, because
it’s drawing gray text on a gray background. To fix that, let’s change the text to
be white. Modify tableView:cellForRowAtIndexPath: by adding the following
code in bold:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 248

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 // Configure the cell...
 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[tweet objectForKey:@"text"]];
 [[cell detailTextLabel] setText:[[tweet objectForKey:@"user"]
objectForKey:@"name"]];

 NSString *profileImageURI = [[tweet objectForKey:@"user"]
objectForKey:@"profile_image_url"];
 NSURL *profileImageURL = [NSURL URLWithString:profileImageURI];

 NSURLRequest *profileImageURLRequest = [NSURLRequest
requestWithURL:profileImageURL];

 dispatch_async(_profileImageQueue, ^{
 NSURLResponse *response = nil;
 NSError *error = nil;

 dispatch_semaphore_wait(_profileImageSemaphore, DISPATCH_TIME_FOREVER);

 NSData *imageData = [NSURLConnection
sendSynchronousRequest:profileImageURLRequest
 returningResponse:&response
 error:&error];

 dispatch_semaphore_signal(_profileImageSemaphore);

 UIImage *image = [UIImage imageWithData:imageData];

 dispatch_async(dispatch_get_main_queue(), ^{
 [[cell imageView] setImage:image];
 [cell setNeedsLayout];
 });
 });

 [[cell textLabel] setTextColor:[UIColor whiteColor]];
 [[cell detailTextLabel] setTextColor:[UIColor whiteColor]];

 return cell;
}

Build and run the app again. The text should be visible now, and your app
should look like Figure 9-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 249

Figure 9-2. Our Twitter client with a little color

As you can see, adding just a b it o f color------even shades o f g ray------really makes a
difference. As easy as it is, there’s no reason to release an app with the plain,
default interface. This Twitter interface could still use a bit of sprucing up,
however. Most of the tweets are longer than a single line, but they’re getting cut
off. Let’s see what we can do about that.

Fonts and Text Size
The font used to display text in a label is represented by the UIFont class. We
can also use it to determine how much space we’ll need to draw a string. To set
a label’s font, you can create a font like so:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 250

UIFont *myFont = [UIFont boldSystemFontOfSize:17.0f];

If you want to use a font with a specific name or a more specific variation of a
font, such as bold and italic, you can create a UIFont object using the font’s
name to represent it:

UIFont *myFont = [UIFont fontWithName:@"Helvetica Neue" size:17.0f];

The UIFont class method familyNames returns an array of font family names
present on the system. To get the names of the fonts in a particular family, use
the UIFont class method fontNamesForFamilyName:, which takes a string (the
family name) as a parameter and returns an array of font names in the specified
family. Use these font names in the fontWithName:size: method.

NOTE: For an up-to-date list of the fonts included with iOS, check out
www.iosfonts.com.

To use that font to draw a label’s text, set it as the label’s font:

[myLabel setFont:myFont];

For TwitterExample, let’s add some style with a custom font. Open your
TwitterExample project in Xcode and, if you aren’t already there, navigate to the
LCTTimelineViewController.m file. Let’s add two UIFont instance variables to
store the fonts we want to use. We’ll add the instance variables to the class
extension at the top of the file. Add the following lines in bold:

@interface LCTTimelineViewController () {
 NSTimer *_reloadTimer;
 NSArray *_tweets;
 dispatch_queue_t _profileImageQueue;
 dispatch_semaphore_t _profileImageSemaphore;
 UIFont *_tweetFont;
 UIFont *_usernameFont;
}

- (void)reloadButtonPressed:(id)sender;
- (void)reloadTweets:(NSTimer *)reloadTimer;
- (void)tweetButtonPressed:(id)sender;

@end

Next, modify the initWithStyle: method to initialize those fonts by adding the
lines in bold:

- (id)initWithStyle:(UITableViewStyle)style
{

www.it-ebooks.info

http://www.iosfonts.com
http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 251

 self = [super initWithStyle:style];

 if (self) {
 [self setTitle:@"Timeline"];

 UIBarButtonItem *reloadButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self

action:@selector(reloadButtonPressed:)];
 [[self navigationItem] setLeftBarButtonItem:reloadButton];

 UIBarButtonItem *tweetButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCompose
 target:self

action:@selector(tweetButtonPressed:)];
 [[self navigationItem] setRightBarButtonItem:tweetButton];

 _profileImageQueue =
dispatch_queue_create("com.learncocoatouch.profileImageQueue",
 DISPATCH_QUEUE_CONCURRENT);

 _profileImageSemaphore = dispatch_semaphore_create(3);

 _tweetFont = [UIFont fontWithName:@"HelveticaNeue-CondensedBold"
size:19.0f];
 _usernameFont = [UIFont italicSystemFontOfSize:14.0f];
 }

 return self;
}

Finally, let’s modify tableView:cellForRowAtIndexPath: to use these fonts. Add
the lines in bold (note that I skipped some lines with an ellipsis […] rather than
copy the method in its entirety):

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 252

 }

 ...

 [[cell textLabel] setTextColor:[UIColor whiteColor]];
 [[cell textLabel] setFont:_tweetFont];
 [[cell detailTextLabel] setTextColor:[UIColor whiteColor]];
 [[cell detailTextLabel] setFont:_usernameFont];

 return cell;
}

Build and run the app. You should see the new font in use, as in Figure 9-3.

Figure 9-3. Our timeline view with custom fonts

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 253

Now, as I mentioned earlier, we can use the font to help determine how large a
label needs to be to draw an entire string without truncating it. We can use that
knowledge to draw these table view cells at the correct height for the tweet
length. First, let’s modify the cell to draw its text label with multiple lines. In
tableView:cellForRowAtIndexPath:, add the lines in bold (again, I’ve omitted
some lines with an ellipsis):

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier];
 }

 ...

 [[cell textLabel] setLineBreakMode:UILineBreakModeWordWrap];
 [[cell textLabel] setNumberOfLines:0];
 [[cell textLabel] setTextColor:[UIColor whiteColor]];
 [[cell textLabel] setFont:[self tweetFont]];
 [[cell detailTextLabel] setTextColor:[UIColor whiteColor]];
 [[cell detailTextLabel] setFont:[self usernameFont]];

 return cell;
}

The first line we added sets the line break mode, which controls the label’s
behavior when the text is too wide for a single line. The next sets the number of
lines to 0. This value is 1 by default. Setting the number of lines to more than
one will draw the label with that many lines, but setting it to 0 will draw the label
with as many lines as it needs and has space for. With this change, we’re all set
to change the height of the row. Add a new method immediately following
tableView:cellForRowAtIndexPath: with the following implementation in bold:

- (CGFloat)tableView:(UITableView *)tableView
heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 CGFloat maxWidth = 240.0f;

 NSDictionary *tweet = [_tweets objectAtIndex:[indexPath row]];

 NSString *tweetText = [tweet objectForKey:@"text"];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 254

 NSString *tweetUsername = [[tweet objectForKey:@"user"]
objectForKey:@"name"];

 // Get the height of the tweet over multiple lines
 CGSize tweetSizeConstraints = CGSizeMake(maxWidth, FLT_MAX);

 CGSize tweetSize = [tweetText sizeWithFont:[self tweetFont]
 constrainedToSize:tweetSizeConstraints
 lineBreakMode:UILineBreakModeWordWrap];

 CGFloat tweetHeight = tweetSize.height;

 // Get the height of the username on a single line
 CGSize usernameSize = [tweetUsername sizeWithFont:[self usernameFont]];
 CGFloat usernameHeight = usernameSize.height;

 return tweetHeight + usernameHeight + 8.0f;
}

The key methods here, both NSString instance methods, are sizeWithFont: and
sizeWithFont:constrainedToSize:lineBreakMode:. The first of those,
sizeWithFont:, simply returns the size of a string when drawn in a single line in a
given font. The second takes a CGSize as a constraint, which defines the
maximum size for the label, and a UILineBreakMode constant, which determines
how the text is drawn over multiple lines. A CGSize is simply a C struct with two
CGFloat values, one for width and one for height. We create a CGSize with
essentially unlimited height by using FLT_MAX and then use it to constrain the
tweet text when drawn with our tweet height. The
sizeWithFont:constrainedToSize:lineBreakMode: method returns another
CGSize, which is the size needed to draw the text with the given font, size
constraints, and line break mode.

By adding these two heights, along with an 8-pixel margin, we can draw the
cells at an appropriate height for their contents. The 240-pixel maximum width
allows room for margins on either side of the label along with the image. To
determine this value, I increased the height of the table views and then took a
screenshot of the iPhone Simulator and used an image-editing program to
determine its size. This isn’t the most scientific way to determine the maximum
width, but it works.

Build and run the app. Your table view cells should now be sized according to
the tweet they contain, as in Figure 9-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 255

Figure 9-4. Our TwitterExample app drawing the table view cells with the correct height for their
content

Between custom colors and fonts, iOS user interfaces are already extremely
customizable. Next up, we’ll cover using images in your apps.

Using Images
We’ve already used the UIImage class a bit, having displayed images in both the
TwitterExample and MyStuff sample projects. The UIImage class is used to
represent basic images that we’ve loaded either from remote sources, such as
Twitter; from the camera or photo library, as we used in MyStuff; or from the
disk.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 256

To use an image in your app, you first need to add it to your app. From Finder,
drag it into the list of files in Xcode. You’ll see a dialog, as in Figure 9-5.
Alternatively, you can select File  Add Files to MyProject… (where MyProject is
your project’s name), or press +Option+A. The resulting dialog will be similar to
the one you see when dragging files in but with the addition of file selection
component at the top with which you select files to add to the project. For either
dialog, the checkbox next to your app’s name indicates that you’d like to add it
to that app. With that checked, when you build and run the app, the image will
be included. The top checkbox, if checked, will copy the file into your app’s
directory. Generally, you’ll want to copy files into the same directory as your app
to protect against problems if you move the original file or move the project
around on your disk. As your app grows to include more and more images,
consider adding a group under Supporting Files for them to help organize your
app’s content. This is how you add any additional file to your app, whether it’s
an image, a movie, or even code. When you add other files to your target, Xcode
will copy them to the application bundle at build time for most types of files, but
code will be compiled into your app itself.

Figure 9-5. The Add File dialog box in Xcode

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 257

Once the image file has been included in your application’s bundle by adding it
to the target in Xcode, you can create a UIImage object with the imageNamed:
class method, like so:

UIImage *myImage = [UIImage imageNamed:@"myImage"];

You don’t need to specify a file extension; for any image format that UIImage
supports, it will find the file in your app bundle and create the image
appropriately. For a complete list of image formats supported, refer to the
UIImage class documentation. To use a UIImage object, you can create a
UIImageView object, which is just a view that draws the image to the screen. You
can create a UIImageView like so:

UIImageView *myImageView = [[UIImageView alloc] initWithImage:myImage];

You can also create an image view in Interface Builder by dragging it from the
Object Library onto your view.

Beginning with the iPhone 4 and the third-generation iPad, which have Retina
displays, the screens have many more pixels-----twice as many in each direction.
Because of this, when you provide images with your application, you should
provide two versions: one at the normal size and one with twice the resolution. If
an image in your app is 37 pixels wide by 37 pixels tall, the double-resolution
version should be 74 pixels wide and 74 pixels tall. Using the UIImage class and
creating them with the imageNamed: class method will automatically load the
correct image for the device, provided that you use the correct naming
convention: the double-resolution version should have @2x appended to the file
name but before the file extension. If your image file, for example, is named
blueButton.png, then the Retina Display version should be named
blueButton@2x.png and be twice the size in each dimension. If you don’t provide
a higher-resolution version of an image, then the system will automatically scale
up the normal-resolution version, but that won’t look as good and will mar your
user experience. We’ll talk more about the Retina Display as we cover view
layout, but that’s what you need to know about it for images.

Being able to create UIImage objects and UIImageView objects is important, but
getting them on-screen makes this knowledge useful. As UIImageView is a
subclass of UIView, it can be involved in the view hierarchy of your application,
which is how it’ll get on-screen. Next we’ll talk about using the UIView class to
manage a hierarchy of views to present your application’s user interface.

View Layout
Up until now, your use of views has been pretty limited. Each view controller
you’ve created has had a view, whether that’s been created with Xcode’s

www.it-ebooks.info

mailto:blueButton@2x.png
http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 258

Interface Builder or created implicitly by a UITableViewController. The table
views you’ve used have themselves had child elements, but up until now we
haven’t been manipulating them directly too much. Before we do, let’s cover
some of the fundamental aspects of the view system in Cocoa Touch.

View Hierarchy
Views in iOS maintain a strict hierarchy. Every view, except for the top-level
view, has a superview, and any view may have one or more subviews. This
parent-child relationship governs how elements are displayed. The top-level
view on iOS is an instance of the UIWindow class, representing your app’s
window. Unlike desktop operating systems like Mac OS X or Windows, your
application may have only one window displayed on a screen at a particular
time-----though it is possible to connect your iOS device to another display and
add a window to that display’s screen. The Apple TV, for instance, allows you to
use AirPlay to add a TV to your app as a second display. To add a subview to a
view, use the addSubview: method. To add a view called myView to a UIWindow
called myWindow, you would write the following code:

[myWindow addSubview:myView];

The subviews of a view are arranged in order, which allows you to control which
view will be displayed on top when two views share the same location. You can
manipulate this order with UIView methods, including bringSubviewToFront:,
sendSubviewToBack:, insertSubview:atIndex:, insertSubview:aboveSubview:,
and insertSubview:belowSubview:. To swap two subviews’ order, you can use
the exchangeSubviewAtIndex:withSubviewAtIndex: method. To remove a view
from its superview, call its removeFromSuperview method.

View Coordinate Systems
Every view has its own coordinate system. The coordinate system’s origin is the
upper-left corner of the view (if you’ve previously programmed on Mac OS X,
recall that this is different, because Mac OS X’s coordinate systems have origins
in the bottom left). The CGRect struct is used to represent the coordinate system
inside of a view, represented with the bounds property. A CGRect has two
members: origin, a CGPoint struct; and size, a CGSize struct. The CGPoint
struct has in turn two members: x and y, both CGFloat values representing a
coordinate in the coordinate system. The CGSize has two members: width and
height, also CGFloat values. Finally, CGFloat values are just regular float values
defined as a type.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 259

The UIWindow object for a typical iPhone app has a bounds property whose
origin member is the point (0, 0), and whose size member has a width value
of 320 and a height value of 480.

Inside of their superviews, individual UIView objects have a frame property,
which defines their size and location in the coordinate system of their superview.
The frame property is also a CGRect and is defined in terms of the parent’s
coordinate system. A view with a width of 100 and a height of 100, placed in the
center of a standard-sized UIWindow on an iPhone, would have a frame property
whose origin member is the point (110, 190) and whose size member has a
width value of 100 and a height value of 100. Figure 9-6 displays the two views
in relation to one another, laid on a coordinate grid with the origin of the
superview’s bounds and the origin of the subview’s frame displayed.

Figure 9-6. A view inside of another view. The subview, here represented by a gray rounded rectangle,
is centered in the view, represented with a coordinate grid.

It’s important to note that a view is always placed inside the coordinate system
of its superview according to the origin member of its frame property. If we
added a subview to the previous gray, rounded rectangle view with the origin
of (0, 0), it would appear at the upper-left corner of the previous view, not at
the upper-left corner of the window. In the window’s coordinate system, it would
be at (110, 190), just like its superview. Similarly, since the bounds property

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 260

represents the internal coordinate system of the view (as opposed to the frame
property, which represents the view’s location and size in its superview’s
coordinate system), the previous subview’s bounds property would have a size
member with a width value of 100 and a height value of 100, but its origin
member would be the point (0, 0). In fact, since all views’ coordinate systems
begin at (0, 0), the bounds property of every UIView object will by default have
the same origin. You can change the origin of the bounds property to adjust the
portion of the view that will be displayed.

NOTE: Although the UIView class has a center property that returns the center
point of the view, you should treat it as a read-only property. If you try to set the
center property on a view with odd dimensions, you may wind up with an origin
that’s not on an even pixel boundary, such as (55.5, 102.5). This will cause your
view to appear blurry because of rendering bugs. Similarly, when setting the frame
property of a view, always use whole numbers to avoid rendering issues or coerce
the values you use to whole numbers with floorf() or roundf().

View Display Properties
The UIView class defines several properties that you can use to customize its
appearance and behavior without creating a subclass of UIView. Some are
straightforward, such as backgroundColor, a UIColor object representing the
background color of the view, and alpha, a CGFloat for the transparency of the
object ranging from 0 (fully transparent) to 1 (fully opaque). To give a view a blue
background and make it half-transparent, you would set the properties as
follows:

[myView setAlpha:0.5f];
[myView setBackgroundColor:[UIColor blueColor]];

NOTE: One of the properties defined in the UIView class is opaque, a BOOL value
that acts as a hint to the rendering engine. If the view completely fills its bounds with
opaque content—that is, content without any transparency—then it should be
considered opaque, so its opaque property should be set to YES (the default value).
For any view that is either semitransparent or doesn’t entirely fill its bounds, you
should set its opaque property to NO. Properly setting the opaque property can
improve drawing performance and avoid unpredictable side effects.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 261

View Autosizing
Other UIView properties are not so straightforward. One of the most important is
autoresizingMask. This property is a bitmask that controls how the view
behaves when its superview is resized. There are six bits you can set:

 UIViewAutoresizingFlexibleLeftMargin

 UIViewAutoresizingFlexibleWidth

 UIViewAutoresizingFlexibleRightMargin

 UIViewAutoresizingFlexibleTopMargin

 UIViewAutoresizingFlexibleHeight

 UIViewAutoresizingFlexibleBottomMargin

If UIViewAutoresizingFlexibleWidth is set, the view will automatically become
wider as its superview becomes wider, and similarly if
UIViewAutoresizingFlexibleHeight is set, the view will automatically become
taller as its superview becomes taller. The other four, when not set, ‘‘anchor’’ the
view to the sides of its superview; for a given side, if the corresponding margin
value is not set, the view will remain the same distance from that side no matter
what. One of the most common autoresizing masks is simply flexible width and
flexible height, which keeps the view the same distance from each side of its
superview no matter how its superview changes in dimensions, growing as
needed to do so. If you do not want the view to resize at all, use
UIViewAutoresizingNone, which is the absence of any of these bits being set.

If you’re using Interface Builder to lay out your view, you can set the autoresizing
mask visually. Referred to as springs and struts, you set the values by clicking a
virtual map of the view. With the view selected, show the Size Inspector by
pressing +Option+5 or selecting View  Utilities  Show Size Inspector. Figure
9-7 shows the Size Inspector. The bottom portion contains the autoresizing
mask, above the Autosizing label. Inside the box are the two springs that
represent UIViewAutoresizingFlexibleWidth and
UIViewAutoresizingFlexibleHeight as the horizontal and vertical lines,
respectively. Click them to toggle the corresponding bit. The outer lines are the
struts, which represent the other bit values. Click them to toggle their
corresponding bits. The springs and struts are a solid red line if their bit is set or
a faded and dashed red line if their bits are not set. To the right is a live preview
above the ‘‘Example’’ label that demonstrates the effect your chosen settings
will have on a view that is constantly growing and shrinking while your mouse
pointer is hovered over the ‘‘Autoresizing’’ section or the preview itself.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 262

Figure 9-7. The Size Inspector, with the springs and struts that set the view’s autoresizing values

View Content Modes
Another property of UIView that takes some explaining is the contentMode
property. As a view is resized, this property defines how its content is redrawn.
By default, a view is not redrawn, but rather its contents are resized, because
this is more efficient. The possible values of this property are as follows:

 UIViewContentModeScaleToFill

 UIViewContentModeScaleAspectFit

 UIViewContentModeScaleAspectFill

 UIViewContentModeRedraw

 UIViewContentModeCenter

 UIViewContentModeTop

 UIViewContentModeBottom

 UIViewContentModeLeft

 UIViewContentModeRight

 UIViewContentModeTopLeft

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 263

 UIViewContentModeTopRight

 UIViewContentModeBottomLeft

 UIViewContentModeBottomRight

Don’t worry, I won’t explain each one individually. The first three,
ScaleToFill, ScaleAspectFit, and ScaleAspectFill, each scale the
original contents. ScaleToFill simply resizes the contents to fit the
new view exactly, stretching it if necessary and disregarding its aspect
ratio. This is best for content such as gradient or a solid color that
doesn’t need to maintain its aspect ratio. ScaleAspectFit and
ScaleAspectFill both maintain the original aspect ratio of the content.
ScaleAspectFit ensures that the original content is displayed in its
entirety, making it smaller if it needs to but making it as large as it can
without cutting any of it off; any remaining area is filled in with the
view’s background color. ScaleAspectFill resizes the original content
to completely fill the new size, cutting off the top, bottom, or sides as
necessary. UIViewContentModeRedraw forces the system to redraw the
content for the new size. This is the least-efficient choice but is useful
if you need to redraw your content to react to size changes. The rest of
the content view modes don’t resize the content as the view’s size
changes but instead anchor it to the specified point.

The content view mode is most useful when dealing with images.
Since image content usually has a specific aspect ratio, it’s usually
best to use either UIViewContentModeScaleAspectFit or
UIViewContentModeScaleAspectFill for image views.

View Layout in UIView Subclasses
When you create your own UIView subclasses, they may have subviews of their
own. You might, for instance, create a UIView object that contains a UILabel and
a UIImage. While the subviews’ autoresizing masks go a long way toward
customizing this view’s behavior, you might want something more customized.
You may want, for instance, to display the label underneath the image view if the
view is taller than it is wide but to the right of it if the view is wider than it is tall.
To accomplish this goal, you would implement the layoutSubviews method in
your UIView subclass as follows:

- (void)layoutSubviews
{
 [super layoutSubviews];

 CGFloat width = [self bounds].size.width;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 264

 CGFloat height = [self bounds].size.height;

 CGRect imageFrame;
 CGRect labelFrame;

 if (width > height) {
 imageFrame = CGRectMake(0.0f, 0.0f, height, height);
 labelFrame = CGRectMake(height, 0.0f, width - height, height);
 }
 else {
 imageFrame = CGRectMake(0.0f, 0.0f, width, width);
 labelFrame = CGRectMake(0.0f, width, height - width, width);
 }

 [[self imageView] setFrame:imageFrame];
 [[self label] setFrame:labelFrame];
}

This method will, assuming an image view property named imageView and a
label property named label, will make the image square, with the label to its
right if the view’s width is larger than its height or the label underneath if the
view’s height is larger than its width.

View Layout on Retina Display Devices
Just as with images, there are some things you need to know for Retina
Display---equipped devices when laying out your views. Most of the actual code
that you’ll write, thankfully, is unchanged, but when dealing with a designer, it
will help to know how the Retina Display is handled by the operating system.

Screen dimensions, when drawing and positioning views, are not measured in
pixels. Instead, they’re measured in points, an abstract measurement that
corresponds to pixels depending on the resolution of the device. On an iPhone,
iPhone 3G, or iPhone 3GS, along with their corresponding iPod touch
counterparts, the screen is 320 pixels wide and 480 pixels tall and is measured
in points at 320 points wide and 480 points tall. The iPhone 4, iPhone 4S, and
potentially later iPhone devices, along with their iPod touch counterparts, have
screens that are 640 pixels wide and 960 pixels tall. In points, however, the
measurements are the same: 320 points wide and 480 points tall. So, when you
consider the frame property of a UIWindow on an iPhone 4S, its size member’s
values are 320 and 480, not 640 and 960. What this means for developers is that
you don’t need to do any extra work for an existing application to work properly
on a Retina Display. If you simply provide double-sized images, the layout is the
same.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 265

When you’re working with a designer, however, they typically have a dilemma.
They’ll want to make a Photoshop document that’s 640 by 960 pixels large,
which they ought to do in order to support a Retina Display iPhone. Inevitably,
however, they’ll create a button or a title or a logo that’s meant for the Retina
Display size but has odd dimensions. This presents a problem, because the
Retina Display---sized images must be exactly twice the size in each dimension
as their non---Retina Display counterparts. The proper thing to do is to design
user interface elements for a 320-pixel by 480-pixel screen and then generate
them at exactly twice the size.

Nonimage elements, such as text, should be displayed in the proper size
automatically by the system.

View Layout on iPad
Another circumstance that can cause your view layout code to change is
running on an iPad. The same app can run on an iPad and iPhone, so there may
be times when you need to determine in code which device you’re running on.
To do that, you can use the UIDevice class, which represents the device the app
is running on, like so:

BOOL isPad = ([[UIDevice currentDevice] userInterfaceIdiom] ==
UIUserInterfaceIdiomPad);

The userInterfaceIdiom method of UIDevice returns either
UIUserInterfaceIdiomPad or UIUserInterfaceIdiomPhone, depending on the
device (on an iPod touch, it will return the latter). There’s a helpful macro defined
called UI_USER_INTERFACE_IDIOM(), which replaces the call to UIDevice, as well
as wrapping the call in safety checks in case your code needs to run on iOS
3.1.3 or older, which didn’t have the userInterfaceIdiom method of UIDevice.
The previous line could be written as follows to use the macro:

BOOL isPad = (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad);

Just as with the iPhone, the Retina Display of the third-generation iPad uses the
@2x suffix for high-resolution graphics. As a convention, the suffix ~ipad is often
used to denote the iPad version of a file, with the ~iphone suffix (or no suffix) for
the iPhone version. A single image, then, might have four variations:

 blueButton~iphone.png

 blueButton~iphone@2x.png

 blueButton~ipad.png

 blueButton~ipad@2x.png

www.it-ebooks.info

mailto:iphone@2x.png
mailto:ipad@2x.png
http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 266

As you can imagine, it’s very easy for your image files to multiply in number
such that your app’s file size is quite large, especially if you have full-sized
graphics on both iPhone and iPad.

View Animation
One of the things that makes the iPhone so successful is that using it feels like
magic. This might seem like something a marketing department would dream up
to say, but the fact is that providing a compelling user interface can make your
users feel like they’re not interacting with an iPhone or an iPad but rather
interacting directly with your app. A good way to get this feeling is to increase
the interactivity of your app with animations. Some animations are built in, such
as when you navigate from one view controller to another in a navigation
controller. Others you can create yourself. To animate your views, there are
some class methods on UIView you can use. For a basic example, here’s how
you would animate a UIView named myView from fully opaque (100 percent
opacity) to fully transparent (0 percent opacity) over a two-second span:

[UIView animateWithDuration:2.0
 animations:^{
 [myView setAlpha:0.0f];
 }];

animateWithDuration:animations: is the most basic animation method
available. The first parameter is an NSTimeInterval value, which is really just a
double, and the second is a block. In this block, simply set the properties of the
view you’d like to animate, and the UIView class will take care of creating the
animation. Many properties are animatable in this manner:

 frame

 bounds

 center (though animating this property has the same
drawbacks as setting it directly)

 transform

 alpha

 backgroundColor

 contentStretch

To animate a view moving across the screen, you would change its frame value
to the frame you’d like it to have at the end of the animation. There are also
more complicated, but more powerful, animation methods available, the most

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 267

powerful of which being
animateWithDuration:delay:options:animations:completion:. This mouthful of
a method, along with the other methods with a parameter named completion,
allow you to run a block of code when the animation is finished. This code
sample waits five seconds and then animates myView to become fully
transparent; when it’s done, it removes myView from its superview:

[UIView animateWithDuration:2.0
 delay:5.0
 options:0
 animations:^{
 [myView setAlpha:0.0f];
 }
 completion:^(BOOL finished) {
 [myView removeFromSuperview];
 }];

The completion parameter takes a block with one argument, a BOOL value named
finished. If the animation completes successfully, then finished will be set to
YES. If it does not, which could happen if, for instance, the superview of myView
was removed from the view hierarchy, then finished will be set to NO.

You can nest animations, as well. The following code would replace myView with
myOtherView, fading myView out and fading myOtherView in:

[UIView animateWithDuration:2.0
 delay:5.0
 options:0
 animations:^{
 [myView setAlpha:0.0f];
 }
 completion:^(BOOL finished) {
 [[myView superview] addSubview:myOtherView];
 [myView removeFromSuperview];

 [myOtherView setAlpha:0.0f];

 [UIView animateWithDuration:2.0
 animations:^{
 [myOtherView setAlpha:1.0f];
 }];
 }];

As you can see, before we animate myOtherView, we set its alpha property to 0.
Since we changed this property outside of an animation block, it happens
instantly.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 268

Animations are a great way to add a touch of life to your applications. Great
apps use animations in subtle ways, guiding the user through using them. A
clever example of animation can be found in Apple’s Maps app. When you
search for something and the results are displayed on the map as pins, the pins
don’t just appear; instead, they drop down from above, helping the user to see
where they’re going. The human brain is wired to notice movement; animations
can exploit that to gain your user’s attention.

Example: Reddit Photo Browser
To demonstrate our newfound user interface skills, let’s build a cool photo
browser for the social news aggregator Reddit. If you’re unfamiliar with Reddit, it
organizes its content into subcategories of the site called subreddits. Our app,
which we’ll call RedditPics, will display an animated slideshow of pictures
posted to Reddit.

The first question to answer when building an app based on a third-party API is,
‘‘How do I get to the data?’’ For Reddit, the answer is simple: simply append
.json to any URL to receive the contents of that URL in JSON. We can get the
main JSON feed for the front page by loading this URL:

http://www.reddit.com/.json

The JSON feed will return an array of items, each of which has a URL. We’ll
inspect the URL for image file extensions-----.png, .jpg, and .gif-----and download
those images for our slideshow. On top of this, we’ll make the app universal so it
can run on iPhone and iPad. Open Xcode and select ‘‘Create a new Xcode
project’’ from the Welcome screen. If the Welcome screen does not appear,
select File  New  Project…, or press +Shift+N. Select Application under iOS
on the left column, and then choose the Single View Application template and
click Next. For Product Name, use RedditSlideshow. If you don’t already have a
Company Identifier or Class Prefix set, put them in now; I’ll use
com.learncocoatouch and LCT, respectively. Select iPhone for Device Family.
Use Storyboards and Include Unit Tests should be unchecked, while Use
Automatic Reference Counting should be checked. Verify that those settings are
correct, and click Next. Choose where you’d like to save your project to disk,
and click Next again to create the project.

The first thing we’ll do is display one image. First, we’ll need to load the Reddit
site and parse its JSON output. To do this, first we’ll declare a method to parse
the JSON in our class extension, and while we’re at it, we’ll declare an array
we’ll use to store the returned image URLs. Navigate to LCTViewController.m
(your file name may vary based on your class prefix). If there’s a class extension
in the LCTViewController.m file, then add the line in bold below to it. If not, add

www.it-ebooks.info

http://www.reddit.com/.json
http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 269

the class extension below in its entirety to the top of the file, before the
@implementation directive, as well as the @synthesize line:

@interface LCTViewController ()

@property (strong) NSMutableArray *imageURLs;

- (void)parseJSONData:(NSData *)jsonData;

@end

@implementation LCTViewController

@synthesize imageURLs = _imageURLs;

Next, locate the viewDidLoad method. If there is no viewDidLoad method, copy
the following code in its entirety between the view controller’s @implementation
and @end directives; otherwise, just add the lines in bold:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSURL *redditURL = [NSURL
URLWithString:@"http://www.reddit.com/r/aww/.json"];
 NSURLRequest *redditURLRequest = [NSURLRequest
requestWithURL:redditURL];

 [NSURLConnection sendAsynchronousRequest:redditURLRequest
 queue:[NSOperationQueue
currentQueue]
 completionHandler:^(NSURLResponse *response,
 NSData *data,
 NSError *error) {
 if (data != nil) {
 [self parseJSONData:data];
 }
 else {
 NSLog(@"Error loading JSON: %@", error);
 }
 }];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 270

NOTE: Reddit, like many other things on the Internet, consists of user-generated
content. It’s possible for the content returned from it to be inappropriate for small
children, offensive, or culturally insensitive. The URL used earlier points to a portion
of the site (called a subreddit) reserved for cute pictures, usually of animals, called
“aww.” Other subreddits may not contain the same type of content; browse at your
own risk.

This code loads the Reddit URL and checks to see whether data was returned.
If it was, it passes the data to the parseJSONData: method. Let’s implement that
method. If you look at the JSON returned from the web service, its top-level
object is a dictionary, followed with a data key, which has a key called children
that maps to an array of child dictionaries. In those dictionaries, we’ll look at the
url key to see whether the link is an image. Add the method implementation
blow to the class implementation, before the @end compiler directive at the end
of the file:

- (void)parseJSONData:(NSData *)jsonData
{
 [self setImageURLs:[NSMutableArray array]];

 NSError *parseError = nil;

 id returnedObject = [NSJSONSerialization JSONObjectWithData:jsonData
 options:0

error:&parseError];

 if (returnedObject != nil) {
 if ([returnedObject isKindOfClass:[NSDictionary class]]) {
 NSDictionary *data = [returnedObject objectForKey:@"data"];

 NSArray *children = [data objectForKey:@"children"];

 for (NSDictionary *childDict in children) {
 NSString *url = [[childDict objectForKey:@"data"]
objectForKey:@"url"];

 // Is this an image?
 if ([url hasSuffix:@".png"] ||
 [url hasSuffix:@".jpg"] ||
 [url hasSuffix:@".jpeg"] ||
 [url hasSuffix:@".gif"]) {
 NSURL *imageURL = [NSURL URLWithString:url];
 [[self imageURLs] addObject:imageURL];
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 271

 }
 }
 }
 else {
 NSLog(@"Error parsing data: %@", parseError);
 }
}

This code walks the response, looking for URLs with image extensions and
populating the imageURLs array with matches. When it’s done, the imageURLs
array is populated with NSURL objects, each representing a different image. Once
we have the list of URLs, we need to display the images on-screen! First, add an
instance variable, a property and two method declarations to the class
extension, synthesized accessor methods for the property, as well as a constant
we’ll use later, by adding the lines in bold to the top of LCTViewController.m:

static const NSTimeInterval kPictureDisplayTime = 15.0;

@interface LCTViewController () {
 NSUInteger _currentImageIndex;
}

@property (strong) NSMutableArray *imageURLs;
@property (strong) UIImageView *imageView;

- (void)parseJSONData:(NSData *)jsonData;
- (void)startSlideshow;
- (void)loadNextImageInSlideshow;

@end

@implementation LCTViewController

@synthesize imageURLs = _imageURLs;
@synthesize imageView = _imageView;

We’ll use the startSlideshow method to load the first image and the
loadNextImageInSlideshow method to proceed to the next. So, modify the
viewDidLoad method to call startSlideshow after parsing the data returned from
Reddit by adding the line in bold:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSURL *redditURL = [NSURL
URLWithString:@"http://www.reddit.com/r/aww/.json"];
 NSURLRequest *redditURLRequest = [NSURLRequest requestWithURL:redditURL];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 272

 [NSURLConnection sendAsynchronousRequest:redditURLRequest
 queue:[NSOperationQueue currentQueue]
 completionHandler:^(NSURLResponse *response,
 NSData *data,
 NSError *error) {
 if (data != nil) {
 [self parseJSONData:data];
 [self startSlideshow];
 }
 else {
 NSLog(@"Error loading JSON: %@", [error
localizedDescription]);
 }
 }];
}

Next, add the startSlideshow method’s implementation, as well as an empty
implementation for loadNextImageInSlideshow (so the app doesn’t crash if we
call it) by inserting the following code in bold after the parseJSONData: method
but before the @end directive:

- (void)startSlideshow
{
 if ([[self imageURLs] count] == 0) {
 return;
 }

 UIActivityIndicatorView *activityIndicatorView = [[UIActivityIndicatorView
alloc] initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleGray];

 CGRect activityIndicatorFrame = [activityIndicatorView frame];

 activityIndicatorFrame.origin =
 CGPointMake(floorf((CGRectGetWidth([[self view] bounds]) +
 CGRectGetWidth(activityIndicatorFrame)) / 2.0f),
 floorf((CGRectGetHeight([[self view] bounds]) +
 CGRectGetHeight(activityIndicatorFrame)) / 2.0f));

 [activityIndicatorView setFrame:activityIndicatorFrame];
 [[self view] addSubview:activityIndicatorView];
 [activityIndicatorView startAnimating];

 // Load the first image
 _currentImageIndex = 0;
 NSURL *firstURL = [[self imageURLs] objectAtIndex:0];
 NSURLRequest *firstImageRequest = [NSURLRequest requestWithURL:firstURL];

 [NSURLConnection sendAsynchronousRequest:firstImageRequest
 queue:[NSOperationQueue currentQueue]
 completionHandler:^(NSURLResponse *response,
 NSData *data,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 273

 NSError *error) {
 UIImage *image = [UIImage imageWithData:data];

 if (image == nil) {
 return;
 }

 UIImageView *imageView =
 [[UIImageView alloc] initWithImage:image];

 [imageView
setAutoresizingMask:(UIViewAutoresizingFlexibleWidth|UIViewAutoresizingFlexibleH
eight)];
 [imageView
setContentMode:UIViewContentModeScaleAspectFit];

 [imageView setFrame:[[self view] bounds]];
 [[self view] addSubview:imageView];
 [activityIndicatorView removeFromSuperview];

 [self setImageView:imageView];

 int64_t popTime =
 kPictureDisplayTime * NSEC_PER_SEC;

 dispatch_time_t nextPictureLoadDelay =
 dispatch_time(DISPATCH_TIME_NOW,
 popTime);

 dispatch_after(nextPictureLoadDelay,
 dispatch_get_main_queue(),
 ^{
 [self
loadNextImageInSlideshow];
 });
 }];
}

- (void)loadNextImageInSlideshow
{

}

This code creates a URL request for the first image and then loads it with an
asynchronous connection. When the data is loaded, it creates a UIImage object
from it and then an image view with which we’ll display the image. Next it
creates a dispatch_time_t time representation using the popTime variable and
schedules the loadNextImageInSlideshow after that amount of time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 274

Build and run the app, and you should see an image appear once it’s loaded,
before which you should see an activity indicator. Once that’s done, the app
won’t do anything else, because we’ve left the loadNextImageInSlideshow
method blank. Let’s fill it in to get our slideshow loading new images! Add the
following code in bold to the implementation of loadNextImageInSlideshow:

- (void)loadNextImageInSlideshow
{
 _currentImageIndex += 1;

 if (_currentImageIndex >= [[self imageURLs] count]) {
 return;
 }

 NSURL *imageURL = [[self imageURLs] objectAtIndex:_currentImageIndex];
 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:imageURL];

 [NSURLConnection sendAsynchronousRequest:urlRequest
 queue:[NSOperationQueue currentQueue]
 completionHandler:^(NSURLResponse *response, NSData
*data, NSError *error) {
 UIImage *image = [UIImage imageWithData:data];

 if (image == nil) {
 return;
 }

 UIImageView *nextImageView = [[UIImageView alloc]
initWithImage:image];

 [nextImageView
setAutoresizingMask:(UIViewAutoresizingFlexibleWidth |

UIViewAutoresizingFlexibleHeight)];
 [nextImageView
setContentMode:UIViewContentModeScaleAspectFit];

 [nextImageView setFrame:[[self view] bounds]];
 [nextImageView setAlpha:0.0f];

 [[self view] addSubview:nextImageView];

 [UIView animateWithDuration:1.0
 animations:^{
 [[self imageView]
setAlpha:0.0f];
 [nextImageView
setAlpha:1.0f];
 }
 completion:^(BOOL finished) {
 [[self imageView]
removeFromSuperview];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: User Interface Design 275

 [self
setImageView:nextImageView];
 }];

 int64_t popTime =
 kPictureDisplayTime * NSEC_PER_SEC;

 dispatch_time_t nextPictureLoadDelay =
 dispatch_time(DISPATCH_TIME_NOW,
 popTime);

 dispatch_after(nextPictureLoadDelay,
 dispatch_get_main_queue(),
 ^{
 [self
loadNextImageInSlideshow];
 });

 }];
}

This method is quite similar to the one before it; it fetches the next URL,
downloads the image data, and creates an image view. What’s new is the
animation it uses. The old image view fades out (its alpha property animates to
0) as the new image fades in (its alpha property animates to 1). Once we’ve
loaded the new image, we schedule the next to load the same way: creating a
dispatch_time_t time representation and scheduling a block after that amount
of time.

Build and run the app again, and there you have it! You should now be seeing a
slideshow of Reddit pictures, complete with an animated transition between
images!

Summary
This chapter has been all about user interfaces. By now you should be able to
create a user interface that’s customized to your liking, helping make your app
stand out from the crowd. You should be able to use fonts, colors, and images
to design your views, as well as lay them out on-screen and animate them. In
the next chapter, we’ll explore some of the APIs available to interact with
hardware components such as the GPS chip and accelerometer, giving you
more data to represent on-screen.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Chapter

Hardware APIs

One of the debates that comes up frequently in conversations about mobile
development is the idea of web apps vs. native apps. So far, we’ve been writing
native apps exclusively; by native app, we mean an app written in Objective-C,
compiled into a binary executable format, and installed on a device. The
alternative, a web app, is written in HTML, CSS, and JavaScript; installed onto a
server; and accessed v ia a b rowser-----instead of being compiled into executable
binaries, the JavaScript is interpreted at runtime. There are some frameworks
available that try to bridge the gap, essentially hiding the web site inside a native
app that is no more than a web browser, but it’s usually easy to tell the
difference between native apps and web apps. Native apps run faster, have
smoother user interaction, and can do more on the phone than their web
counterparts. This book has been about writing native apps, and this chapter is
about them doing more.

The iPhone, iPod touch, and iPad have several hardware sensors you can use to
your advantage. Packed into these tiny devices are one or two cameras, one or
two microphones, a GPS chip, an accelerometer, a gyroscope, and even a
magnetometer! We can use these sensors to our advantage, enabling apps to
know where you are, how fast you’re moving, and what direction you’re facing.
The accelerometer can tell us how you’re holding the device, and the gyroscope
tells us how you’re moving it. Put this data into your app, and you can create
engaging, immersive experiences. In this chapter, we’ll cover using the camera,
accelerometer, gyroscope, GPS, and magnetomer, as well as their related
frameworks. We’ll look at some sample code and extend our Twitter example
app to use your current location. First, we’ll cover using the camera to take
pictures and video.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 278

Using the Camera
We’ve already used the camera APIs a bit in the MyStuff example project, where
we used them to get an image for a possession and save it to disk. In that
project, however, we only scratched the surface of what’s possible with the
camera APIs. There are two ways to use the camera on an iOS device: first, as
we did in MyStuff, to use the UIImagePickerController class and its built-in UI
to get an image from the camera, and second, to use the AVFoundation
framework. The AVFoundation framework is an advanced audiovisual framework
created by Apple for iOS and later brought back to Mac OS X. It can be used for
many powerful tasks, including audio and video playback, real-time video
manipulation, and even video editing! In fact, the iMovie app for iOS was written
using AVFoundation using no private APIs, so everything Apple does in that app
is possible for you to do in yours.

AVFoundation is a very advanced framework, and as such we won’t be covering
it here. Plenty of books are available on the subject, and Apple’s documentation
is helpful as ever.

Using UIImagePickerController for Photos
To accomplish most tasks having to do with photos, we can use the
UIImagePickerController class for our needs. As we’ve seen in MyStuff,
creating an image picker controller and displaying it are simple tasks:

UIImagePickerController *imagePickerController =
[[UIImagePickerController alloc] init];

[imagePickerController setSourceType:UIImagePickerControllerSourceTypeCamera];

[imagePickerController setDelegate:self];

[self presentModalViewController:imagePickerController animated:YES];

This code creates a UIImagePickerController called imagePickerController.
Next, it sets its source type to UIImagePickerControllerSourceTypeCamera,
which causes it to take a picture; we could have used
UIImagePickerControllerSourceTypePhotoLibrary or
UIImagePickerControllerSourceTypeSavedPhotosAlbum to use pictures already
on the user’s device. In the sample code, we have a view controller named
myViewController that we set as the delegate for the image picker controller.
We then use this view controller to present the image picker controller. It’s
common to see one view controller do both of these things; since the delegate
to the image picker controller is also responsible for removing it from the screen,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 279

it makes sense to have it also responsible for displaying the image picker
controller in the first place.

An image picker controller presented this way will, by default, show the default
controls for taking a picture and either return one picture to its delegate via the
imagePickerController:didFinishPickingMediaWithInfo: method or indicate
that the user canceled it via the imagePickerControllerDidCancel: method.
There are plenty of ways to customize a UIImagePickerController to behave
differently. One of the easiest is to add an overlay view to the image preview,
which you can use to help line up a photo or just to match your application’s UI.
Figure 10-1 displays an image picker controller with a custom overlay view.

Figure 10-1. An image picker controller with a custom overlay view

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 280

This overlay is just a semitransparent image. The code to create an image picker
controller and then create an image view to use as an overlay is as follows (the
image file is named Overlay.png):

UIImagePickerController *imagePickerController =
[[UIImagePickerController alloc] init];

[imagePickerController setSourceType:UIImagePickerControllerSourceTypeCamera];

// "self" in this case should be an instance of a subclass of UIViewController
// that conforms to both the UIImagePickerControllerDelegate and
// UINavigationControllerDelegate protocols.
[imagePickerController setDelegate:self];

UIImage *overlayImage = [UIImage imageNamed:@"Overlay"];
UIImageView *overlayView = [[UIImageView alloc] initWithImage:overlayImage];

[imagePickerController setCameraOverlayView:overlayView];

[self presentModalViewController:imagePickerController animated:YES];

Any UIVIew subclass will do; simply set the cameraOverlayView property of the
image picker controller to your overlay view.

Custom overlays can do much more than look pretty. In fact, you can
completely replace the default chrome of the image picker controller in favor of
your own custom UI; just set the showsCameraControls property of your image
picker controller to NO. If you do this, you’ll need to implement your own button
to take pictures with. That button, which should be a subview of the overlay
view, should call the takePicture method of the image picker controller, which
will result in the image picker controller calling
imagePickerController:didFinishPickingMediaWithInfo: on its delegate.

If you do implement your own overlay UI with a ‘‘take picture’’ button, you can
then use the image picker controller to take multiple pictures, which is
something you can’t do with the default UI. Every time you call takePicture on
your image picker controller, it will send another picture to its delegate, but you
can’t take another picture while the first picture’s delegate method is still
processing. This can be quite useful if you want to take several pictures in
succession.

When you hide the built-in camera UI, you also hide the controls that allow the
user to turn on the camera flash. If you’d like to provide your own control to
enable or disable the flash, you can control that setting of the image picker
controller through its cameraFlashMode property. The valid settings are
UIImagePickerControllerCameraFlashModeAuto, which is the default setting;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 281

UIImagePickerControllerCameraFlashModeOff; and
UIImagePickerControllerCameraFlashModeOn. Note that not all iOS devices with
cameras also have a flash, so this setting may be ignored.

Another camera control that the built-in UI provides is a button to switch
between the rear-facing camera and the front-facing camera on iOS devices
with two cameras. You can control this setting using the image picker controller,
as well; simply set the cameraDevice property to either
UIImagePickerControllerCameraDeviceRear or
UIImagePickerControllerCameraDeviceFront. Before doing so, you’ll need to
make sure that the selected device is available by calling the
UIImagePickerController class method isCameraDeviceAvailable: and passing
the desired device as the parameter. You can also use the camera device to
determine whether flash is available or not through the
UIImagePickerController class method isFlashAvailableForCameraDevice:.
Through proper use of these methods, you can avoid adding a button to the
camera UI to set unavailable options; if, for instance, the user switches the
camera from the rear-facing camera that has a flash to the front-facing camera
that does not have a flash, then you should remove or disable the flash button
you’ve provided.

Although providing your own UI for an image picker controller can be powerful,
there are advantages to using the built-in UI. If you set the allowsEditing
property of the image picker controller to YES, then after the user takes a picture,
they will be prompted to edit it, allowing them to crop it and move the cropped
image around. If you do this, then the image picker controller’s delegate can
access both the original image and the edited image by using different keys in
the dictionary passed as a parameter. Here’s how you would get each image:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage *originalImage = [info
objectForKey:UIImagePickerControllerOriginalImage];
 UIImage *editedImage = [info
objectForKey:UIImagePickerControllerEditedImage];
 ...
}

When you allow the user the chance to edit the pictures they take with the
image picker controller, you should be sure to use the edited image if it exists
and to use the original image if it doesn’t, which will happen if the user doesn’t
edit the image at all. If you allow them to edit it, you should not use the original
image, because they won’t be expecting your app to have received it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 282

Using UIImagePickerController for Videos
If you’d like the ability to use video in your app, the UIImagePickerController
class provides much of the same functionality for videos as it does for photos.
To use an image picker controller properly for videos, you first need to tell it
what kind of media you’d like via its mediaTypes property. mediaTypes is an
NSArray, and by default the only thing in it is kUTTypeImage, which corresponds
to images. The alternative is kUTTypeMovie for movies. The available media types
for an image picker controller depend on its source type (for example, the
camera or photo library). So, to set an image picker controller to give us video
only, we would use the following code:

[imagePickerController setMediaTypes:[NSArray
arrayWithObject:(id)kUTTypeMovie]];

NOTE: To use the kUTTypeMovie constant, you’ll need to import the header file that
declares it by adding this line at the top of your file:

#import <MobileCoreServices/UTCoreTypes.h>

You will also need to link your project against the MobileCoreServices framework.

Since the mediaTypes property is an array, you can create an image picker
controller that can select or capture both pictures and videos. To do so, simply
set the mediaTypes property to the list of available media types:

UIImagePickerControllerSourceType sourceType = [imagePickerController
sourceType];

NSArray *mediaTypes =
[UIImagePickerController availableMediaTypesForSourceType:sourceType];

[imagePickerController setMediaTypes:mediaTypes];

You can use the image picker controller this way to obtain videos from the
camera as well as the user’s photo library.

When a user finishes taking a video or selects a video from their library, objects
are provided for different keys in the info dictionary passed to the delegate
method imagePickerController:didFinishPickingMediaWithInfo:. Although the
image picker controller will pass the raw image data for an image to this
method, movies are much too large to remain in memory in their entirety. To this

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 283

end, the image picker controller will instead pass a file URL to the method with
the UIImagePickerControllerMediaURL key. You can access this URL like so:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSURL *movieURL = [info objectForKey:UIImagePickerControllerMediaURL];
}

If you’re expecting either photos or videos, then you’ll need to look at the object
stored with the key UIImagePickerControllerMediaType to determine what type
of media the user selected. A complete implementation of this delegate method
might look like this:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *mediaType = [info objectForKey:UIImagePickerControllerMediaType];

 if ([mediaType isEqualToString:(NSString *)kUTTypeMovie]) {
 NSURL *movieURL = [info objectForKey:UIImagePickerControllerMediaURL];

 // Handle movie URL here.
 }
 else if ([mediaType isEqualToString:(NSString *)kUTTypeImage]) {
 UIImage *image = [info objectForKey:UIImagePickerControllerEditedImage];

 if (image == nil) {
 image = [info objectForKey:UIImagePickerControllerOriginalImage];
 }

 // Handle image here.
 }

 [self dismissModalViewControllerAnimated:YES];
}

Just as with photos, the allowsEditing property of the image picker controller
can be set to YES to allow the user to edit their video after recording it. In the
case of videos, this allows the user to trim some of the video off at the beginning
or end. There are also some video-specific properties of
UIImagePickerController that you can set to control its behavior when you’re
recording video. The videoMaximumDuration property can constrain the length of
videos, which can be useful if, for instance, you plan on uploading the video to a
service that will accept videos only under a certain length. By default, an image
picker controller will constrain videos to ten minutes long.

If you’d like to control the quality of the video returned by an image picker
controller, set the videoQuality method to the quality you’d like to receive. By

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 284

default, the property is set to UIImagePickerControllerQualityTypeMedium,
which Apple declares is appropriate for sending the video over Wi-Fi. The quality
setting UIImagePickerControllerQualityTypeHigh will prevent the image picker
controller from lowering the quality at all; for devices with high-quality cameras,
these files can get quite large, so this quality setting is not recommended for
transmitting the video file, except over the USB cable.
UIImagePickerControllerQualityTypeLow will produce a video with a low
enough file size that it can be comfortably transferred over the cellular network.
There are also three quality constants for fixed resolutions:
UIImagePickerControllerQualityType640x480,
UIImagePickerControllerQualityTypeIFrame960x540, and
UIImagePickerControllerQualityTypeIFrame1280x720.

No matter what you set the videoQuality property to, the video can be scaled
only down, not up. If your source type is the user’s photo library and they select
a video, the videoQuality property is used to lower the resolution of the video (if
needed). When this happens, the info dictionary passed to the delegate in the
imagePickerController:didFinishPickingMediaWithinfo: method will contain
the original video URL in the UIImagePickerControllerReferenceURL key.

If you set the cameraFlashMode property of an image picker controller to
UIImagePickerControllerCameraFlashModeOn, then the flash will remain on while
the image picker controller is displaying and set to take videos. This can have an
adverse effect on batter life, so be sure to use it only when necessary.

Using UIVideoEditorController for Video
Once you’ve used a UIImagePickerController to obtain a video’s URL, you may
want to provide the user with a way to edit it. This is where the
UIVideoEditorController class comes in. To use it, simply create an instance of
UIVideoEditorController, set its videoPath property to the path of the video,
and present it like any other view controller. It has two properties in common
with UIImagePickerController, videoMaximumDuration and videoQuality, and
they function identically to their image picker controller counterparts, though the
default video quality for the image picker controller is
UIImagePickerControllerQualityTypeMedium, whereas the default video quality
for the video editor controller is UIImagePickerControllerQualityTypeLow.
Before you create a video editor controller, verify that it will be able to edit the
video by calling the class method canEditVideoAtPath:.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 285

NOTE: The videoPath property of UIVideoEditorController is an NSString,
but the UIImagePickerController class passes to the delegate method
imagePickerController:didFinishPickingMediaWithInfo: a dictionary of
editing information including the key UIImagePickerControllerMediaURL, the
value for which is an NSURL object. To convert the NSURL to the NSString path it
represents, use its path method.

Once the user is done editing their video, the video editor controller calls the
delegate method videoEditorController:didSaveEditedVideoToPath: with the
path (as a string) to the edited video. The delegate will also need to implement
videoEditorControllerDidCancel:, in case the user cancels the operation, and
videoEditorController:didFailWithError: in case of any errors.

The UIImagePickerController and UIVideoEditorController classes give you
nearly everything you will ever need for using photos and videos in your apps.
For more advanced image manipulation outside the scope of this book, check
out the Core Image framework; for more advanced video manipulation, check
out the AVFoundation framework. We’ll also look at playing audio and video in
your app later in this book. Next up in this chapter, let’s talk about using another
piece of hardware in your iOS app: the accelerometer.

Using the Accelerometer
One way you can respond to user actions is to use the device’s accelerometer.
This device provides real-time data about the orientation of the device, which
lets you know exactly how the user is holding it. The data coming from the
accelerometer i s extremely verbose-----you can receive data as frequently as
every ten milliseconds-----and for simple tasks, it’s definitely overkill. Fortunately,
there are some more high-level methods of responding to user motion that don’t
require you to respond to the raw accelerometer data. We’ll cover that, too, just
in case you need to use it, but first we’ll look at some easier-to-use APIs.

Accelerometer Events
As we saw in Chapter 5, when the user taps the screen, you receive a UIEvent
object containing one or more UITouch objects representing the touch. Similarly,
when the user shakes the device, it generates a UIEvent representing the
motion. This event travels up the responder chain until a responder implements
either the motionBegan:withEvent: method or the motionEnded:withEvent:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 286

method. In those methods, you can respond appropriately to the event. If, for
instance, you have a view controller that has an undo method and you’d like to
allow the user to shake the phone to call the undo method, first your view
controller would need to become the first responder in order to receive the
event. To allow an object to become the first responder, implement
canBecomeFirstResponder as follows:

- (BOOL)canBecomeFirstResponder
{
 return YES;
}

You would then tell your view controller to become the first responder when its
view appears, as well as resign as the first responder when it disappears:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 [self becomeFirstResponder];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

 [self resignFirstResponder];
}

Once your view controller is the first responder, you would implement the touch
methods as follows:

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{

}

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 [self undo];
}

- (void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)event
{

}

As you can see, there isn’t much code here. You don’t even need to put
anything in the motionBegan:withEvent: or motionCancelled:withEvent:
methods; they simply need to be present for the application to send motion

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 287

events to the object. When you’re implementing ‘‘shake to undo,’’ you’ll want to
present the user with a choice, but the shake-handling code remains this simple.
‘‘Shake to undo’’ is, in my opinion, a bit obtuse and hard to discover for the
user, along with very easy to accidentally trigger, but if you’d like to support it, it
isn’t very difficult. Usually, you’ll use a UIAlertView to present the choice; a
typical motionEnded:withEvent: method will be as follows:

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 // "self" in this case should conform to the UIAlertViewDelegate protocol.
 UIAlertView *alertView =
 [[UIAlertView alloc] initWithTitle:@"Undo"
 message:@"Would you like to undo?"
 delegate:self
 cancelButtonTitle:@"Don’t Undo"
 otherButtonTitles:@"Undo", nil];

 [alertView show];
}

Once the user selects either Undo or Don’t Undo, your code would either undo
or do nothing.

Device Orientation Notifications
Another use of the accelerometer in the device is to determine the device
orientation. Most of the time, you don’t need to intervene when the orientation of
the device changes. If you return the correct value in your view controller’s
shouldAutorotateToInterfaceOrientation: method, it will automatically rotate
its interface to handle device orientation changes. There may be certain
situations, however, where you would like to receive notifications of the
orientation changing without changing the user interface’s orientation. To begin
receiving these notifications, you must call the
beginGeneratingDeviceOrientationNotifications method on the device, which
you can obtain via the currentDevice class method. You can combine the
methods and begin generating notifications as follows:

[[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

Once you’ve enabled the notifications, you are responsible for telling the device
when you’re done by calling its endGeneratingDeviceOrientationNotifications
method. If you don’t, the accelerometer hardware will stay more active than it
otherwise would, causing your app to use more battery than it should.

With orientation notifications enabled, the UIDevice object representing the
device will post notifications to the default notification center with the name

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 288

UIDeviceOrientationDidChangeNotification. Simply add an observer for this
notification and then inspect the orientation property of the device to
determine its current orientation. The possible values for the orientation are as
follows:

 UIDeviceOrientationUnknown

 UIDeviceOrientationPortrait

 UIDeviceOrientationPortraitUpsideDown

 UIDeviceOrientationLandscapeLeft

 UIDeviceOrientationLandscapeRight

 UIDeviceOrientationFaceUp

 UIDeviceOrientationFaceDown

Of particular interest are the last two in this list. If the user holds the phone flat,
the device’s accelerometer will not be able to determine an interface orientation,
just that the device is facing up or down. Be sure to always account for these
two values, because your failure to do so may result in unforeseen
circumstances.

Using Raw Accelerometer, Gyroscope, and Magnetometer
Data with Core Motion
Sometimes, the device orientation is not fine-grained enough for your
application. This is often the case with games, which require real-time updates
with very fine precision. The accelerometer data is perfectly capable of
satisfying these needs. Some iOS devices are also equipped with a gyroscope,
which helps provide more accurate motion data. This data is provided to your
application via the Core Motion framework. Let’s look at a quick sample app
that uses device motion to move a dot around the screen.

NOTE: Using Core Motion requires that you test your code on an iOS device, because
there is no support for it on the iPhone Simulator. If you have not yet run code on the
device, ensure that you have a valid iOS Developer account and read the
documentation available at http://developer.apple.com/ios for getting
started running your code on the device. This will also be explained in detail in
Appendix A.

www.it-ebooks.info

http://developer.apple.com/ios
http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 289

Open Xcode and create a new project by selecting File ➤ New ➤ Project… or
by pressing +Shift+N. With Application selected under iOS in the left column,
select the Single View Application template on the right and click Next. Enter
MotionDot as the product name, and fill in your company identifier and class
prefix. Select iPhone next to Device Family, and ensure that Use Storyboards
and Include Unit Tests are unchecked, while Use Automatic Reference Counting
is checked. Click Next, choose a location to save the project, and click Create
to create your project. There will be one view controller class already created-----
mine is called LCTViewController. Open its implementation file
(LCTViewController.m). First, we’ll create a view that we’ll move around based
on the device motion. Add an instance variable into which we’ll store this view
by adding the code in bold to the class extension at the top of the file (if there is
no class extension, enter this code in its entirety between the #import
statements and the @implementation directive):

@interface LCTViewController () {
 UIView *_blueDot;
}

@end

Modify the viewDidLoad method to create this view and the viewDidUnload
method to destroy it by adding the lines in bold:

- (void)viewDidLoad
{
 [super viewDidLoad];

 _blueDot = [[UIView alloc] initWithFrame:CGRectMake(0.0f, 0.0f, 20.0f,
20.0f)];
 [_blueDot setBackgroundColor:[UIColor blueColor]];

 [[self view] addSubview:_blueDot];
}

- (void)viewDidUnload
{
 [super viewDidUnload];

 _blueDot = nil;
}

We don’t want the user interface to rotate, so remove the struck-out line and
add the line in bold in the shouldAutorotateToInterfaceOrientation: method:

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)orientation
{
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 290

 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

Next, we’ll set up the actual motion-handling methods. First, we need to add the
Core Motion framework to the project. Select the project at the top of the file
browser, and then select the MotionDot target. In the editing pane, select the
Build Phases tab, and then expand the Link Binary With Libraries phase by
clicking the arrow to the left of its title. Click the plus (+) sign at the bottom of
the expanded list of libraries, select CoreMotion.framework from the list, and
click Add. Next, open your view controller’s implementation file again
(LCTViewController.m) and add an #import statement for the Core Motion
headers to the top of the file, as well as an instance variable for a
CMMotionManager class in the class extension by adding the lines in bold:

#import "LCTViewController.h"

#import <CoreMotion/CoreMotion.h>

@interface LCTViewController () {
 CMMotionManager *_motionManager;
 UIView *_blueDot;
}

@end

Now we’re ready to receive motion data. Add method implementations for
viewWillAppear: and viewWillDisappear: by adding the following code in bold
after the viewDidLoad method:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 CGRect bounds = [[self view] bounds];
 CGFloat width = CGRectGetWidth(bounds);
 CGFloat height = CGRectGetHeight(bounds);

 CGRect blueDotFrame = [_blueDot frame];
 CGFloat dotWidth = CGRectGetWidth(blueDotFrame);
 CGFloat dotHeight = CGRectGetHeight(blueDotFrame);

 _motionManager = [[CMMotionManager alloc] init];

 if ([_motionManager isAccelerometerAvailable] == NO) {
 return;
 }

 [_motionManager setAccelerometerUpdateInterval:1.0 / 60.0];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 291

 CMAccelerometerHandler accelerometerHandler =
 ^(CMAccelerometerData *accelerometerData, NSError *error) {
 CMAcceleration acceleration = [accelerometerData acceleration];

 CGFloat x = floorf(((width - dotWidth) / 2.0f) + (100 *
acceleration.x));
 CGFloat y = floorf(((height - dotHeight) / 2.0f) + (100 *
acceleration.y));
 CGFloat width = floorf(dotWidth * (20 * acceleration.z));
 CGFloat height = floorf(dotHeight * (20 * acceleration.z));

 [_blueDot setFrame:CGRectMake(x, y, width, height)];
 };

 [_motionManager startAccelerometerUpdatesToQueue:[NSOperationQueue
mainQueue]
 withHandler:accelerometerHandler];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

 if ([_motionManager isAccelerometerActive]) {
 [_motionManager stopAccelerometerUpdates];
 }
 _motionManager = nil;
}

This code works by first checking that the accelerometer is available and then
setting the update interval to 60 times per second. The accelerometerHandler
variable holds a block that handles returned data from the motion manager,
which is in the form of a CMAccelerometerData object. That object, in turn, has a
property called acceleration, which is a C struct with x, y, and z, members,
which are the actual measurements from the device. We use that data to move
the blue dot around. When the view begins disappearing, we check to see
whether the accelerometer is active, disabling it if it is.

Build and run this code on a device, and then move it around a bit. You’ll notice
that the dot is quite jumpy but that you can move it around the screen by
moving the device. You’re using the accelerometer data now! While serious,
business-like applications have little use for this data under normal
circumstances; if you’re making a driving game, you’ll definitely want to look into
this.

The Core Motion framework also covers the gyroscope data. The methods look
very similar to the accelerometer methods; you’ll want to call isGyroAvailable
before calling setGyroUpdateInterval: and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 292

startGyroUpdatesToQueue:withHandler:. These methods are structured just like
their accelerometer counterparts, except that the block passed to
startGyroUpdatesToQueue:withHandler: is passed a CMGyroData object, which
has the C structure CMRotationRate, which has three members (x, y, and z) and
which measures the rate of rotation along each axis measured in radians per
second. When you’re done receiving gyroscope data, be sure to call
stopGyroUpdates.

Another sensor in some iOS devices is the magnetometer, which measures the
magnetic field surrounding the device. While this sounds like something straight
out of a science-fiction movie, it’s now commonplace. The magnetometer
methods follow the same pattern as the accelerometer and gyroscope methods:
you call isMagnetometerAvailable first, then call
setMagnetometerUpdateInterval: and
startMagnetometerUpdatesToQueue:withHandler:, and finally call
stopMagnetometerUpdates when you’re finished. The object passed to the
handler is a CMMagnetometerData object with one property, magneticField, which
is a struct with three members (x, y, and z), each of which measures the
magnetic field in that direction, measured in microteslas. With this information,
you’d have enough information to create your very own compass app.

The killer feature of the Core Motion framework is not that it can use any of
these three sensors; it’s that it can use all of them. By combining the
accelerometer with the gyroscope, we can filter out gravity, giving us a more
pure idea of the user’s motion, and we can also calibrate these measurements
with the surrounding magnetic fields. These are tough calculations, though, and
way beyond the scope of this book. Thankfully, you don’t have to figure it out.
There is a fourth type of data returned by Core Motion, appropriately called
device motion. You’ll use it just like the others: call isDeviceMotionAvailable,
then setDeviceMotionUpdateInterval:, followed by
startDeviceMotionUpdatesToQueue:withHandler:, and finally
stopDeviceMotionUpdates. The handler receives a CMDeviceMotion object, which
has a conglomeration of data from all three sensors in it. The rotationRate
property i s s imilar to that returned by the g ryroscope, but w ith the b ias-----the
output f rom the sensor w ith no input s ignal-----removed by Core Motion. The
accelerometer data is split into gravity and userAcceleration properties,
allowing you to measure them separately. The magneticField property stores
magnetic field data, also with the bias removed by Core Motion.

When you’re using the device motion data in Core Motion, there is a data type
not returned by the other kinds of data: the attitude property. This is a
CMAttitude object with roll, pitch, and yaw; a quaternion; and a rotation matrix

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 293

returned. If you know the math behind using these, then you can do so without
having to calculate them yourself.

Core Motion is an extremely powerful framework. You probably won’t ever need
to use it, but if you ever do, you can get a wealth of data out of it. If you need to
figure out where the phone is, however, you’ll be using the GPS chip and the
Core Location framework.

Using Location Data
People love searching for local data on their devices. From restaurant reviews to
weather to local singles, there are countless opportunities for location data to be
useful to your users. That being said, you should also take every opportunity
possible to protect your users’ privacy and never send their location data
anywhere they haven’t specifically asked you to. This i s serious s tuff-----mess up
user privacy and the U.S. Congress might ask Apple about your app.

Using CoreLocation
To get raw location data, you’ll use the Core Location framework. You’ll create
an instance of the CLLocationManager object after checking its availability with
the locationServicesEnabled class method. The first time you try to access the
user’s location, the system will display a prompt asking them to authorize your
app to use their location data. If it’s not clear why your app needs this data, you
can set the location manager’s purpose property to a string explaining what
you’ll be doing. You can always check on the authorization status with the
authorizationStatus class method, which returns a CLAuthorizationStatus
value. If the value is equal to kCLAuthorizationStatusDenied, then the user has
declined the authorization prompt or has disabled Location Services entirely. At
this point, unless the user opens the Settings app and removes the restriction
on your app or reenables Location Services if it had been disabled, you won’t be
able to use Core Location.

The Core Location framework gets its location data from three sources. The
first, available only for devices that communicate with cell networks, is cell tower
triangulation. By looking at nearby cell towers and estimating the distance
between the device and the tower, the device can get a pretty good idea of
roughly where you are. You won’t be able to get extremely specific just going off
of this information, but if your app just needed to determine which country the
user is in, it’s probably good enough. Core Location also examines which Wi-Fi
networks are nearby and queries a database of locations to help determine the
user’s location based on which networks are nearby. This is a bit more accurate,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 294

because there are more Wi-Fi networks than cell towers. Finally, for devices with
a hardware GPS chip, the device can use GPS satellites to accurately pinpoint
the user’s location. The previous methods of determining the user’s location
help narrow the GPS search to a rough location, which Core Location can then
use to find the correct GPS satellites more quickly.

One of the great things about CoreLocation is that you don’t need to manage
these different sources of data. Core Location will automatically use them as
needed, switching seamlessly from one to the next. All you need to do is ask the
CLLocationManager class to start updating the user’s location, and it takes over
from there.

The CLLocationManager class has many similarities to the CMMotionManager
class, but without the modern block-based syntax. You’ll call
startUpdatingLocation to turn the location manager on, which will then call
delegate methods with data. You can shape what it returns with the
desiredAccuracy property. If you need to determine street-level accuracy, you’d
set desiredAccuracy to kCLLocationAccuracyBest, but if you only need to
determine that the user is in a specific geographic region, you’d use the other
extreme value, kCLLocationAccuracyThreeKilometers, which is accurate only to
three kilometers. In general, you should specify the least-accurate desired
accuracy as you can; the more accurate the location manager needs to be, the
more likely it is to use the power-hungry communications systems in the device,
of which the GPS chip is the worst offender.

The delegate message you’ll receive is
locationManager:didUpdateToLocation:fromLocation:. You’ll receive both the
new location and the old location, allowing you to determine whether the
location has changed enough to act on. Locations are instances of the
CLLocation class. The most important property for user location is the
coordinate property, which has latitude and longitude data, as well as the
altitude property. There are some other useful properties, such as course and
speed.

NOTE: Once you’ve determined the user’s location enough for your needs, be sure to
disable location services by calling stopUpdatingLocation on your location
manager. The hardware involved is very expensive from a power standpoint, so the
less time it spends on, the better.

If you don’t need super-frequent updates on the user’s location, just to know
that they’re in a different location; you can instead monitor significant location
changes by calling startMonitoringSignificantLocationChanges on your

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 295

location manager. This will still result in the location manager calling
locationManager:didUpdateToLocation:fromLocation:, but it won’t be as
frequent. Be sure to check that this is available with the
significantLocationChangeMonitoringAvailable class method.

If what you want to know is when a user enters or leaves a region, you can use
the startMonitoringForRegion:desiredAccuracy: method, passing in a
CLRegion, which has a center coordinate and a radius in meters. When you’re
monitoring a region, the location manager will call the
locationManager:didEnterRegion: and locationManager:didExitRegion:
methods as appropriate.

Using MapKit
If what you want to do is display a map to the user, then you’ll use the MapKit
framework. The centerpiece of MapKit is the MKMapView class, which draws a
map that the user can interact with, allowing you to provide your own mapping
data, as well. You can highlight specific points on the map, draw lines over
specific geographic areas, and draw arbitrary shapes over the map. As of iOS
5.1, all of the mapping data used by MapKit is provided by Google, though this
may change in future iOS releases.

The best way to learn how to use MapKit is probably by using it, so let’s do just
that. We’re going to add a really cool feature to our TwitterExample project: a
map of local tweets. Open the project in Xcode. First, we’ll need to add the
CoreLocation and MapKit frameworks to the project. Click the project at the top
of the file browser, then select the TwitterExample target under TARGETS, and
navigate to the Build Phases tab. Expand the Link Binary With Libraries phase,
click the plus button, select CoreLocation.framework and MapKit.framework (you
can hold while clicking to select multiple items), and click Add. Next, we’ll
need to add search capabilities to the project.

Open LCTTwitterController.h, and add a forward class declaration for the
CLLocation class and two new method declarations by adding the lines in bold:

#import <Foundation/Foundation.h>

@class CLLocation;

@interface LCTTwitterController : NSObject

+ (id)sharedInstance;

- (void)authorizeAccountWithCompletionHandler:(void(^)(void))handler;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 296

- (void)getTweetsInUserTimelineWithCompletionHandler:(void(^)(NSArray
*tweets))handler;

- (void)getTweetsNearStreetAddress:(NSString *)streetAddress
 searchRadius:(NSUInteger)searchRadiusInMeters
 completionHandler:(void(^)(NSArray *tweets))handler;

- (void)getTweetsNearLocation:(CLLocation *)location
 searchRadius:(NSUInteger)searchRadiusInMeters
 completionHandler:(void(^)(NSArray *tweets))handler;

@end

This method we’ll call from outside the controller is
getTweetsNearStreetAddress:searchRadius:completionHandler:, which will turn
the street address provided in the first parameter into a CLLocation object and
then call getTweetsNearLocation:searchRadius:completionHandler: to finish
the search, using the Twitter Search API to find tweets near that location, and
then parsing the results into an array of tweets. Navigate to
LCTTwitterController.m and import the Core Location and MapKit headers by
adding the lines in bold to the top of the file:

#import "LCTTwitterController.h"

#import <Accounts/Accounts.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>
#import <Twitter/Twitter.h>

Next, add the first method to the implementation before the @end directive by
adding the lines in bold:

- (void)getTweetsNearStreetAddress:(NSString *)streetAddress
 searchRadius:(NSUInteger)searchRadiusInMeters
 completionHandler:(void (^)(NSArray *))handler
{
 // Geocode the address
 CLGeocoder *geocoder = [[CLGeocoder alloc] init];

 [geocoder geocodeAddressString:streetAddress
 completionHandler:^(NSArray *placemarks,
 NSError *error) {
 if ([placemarks count] > 0) {
 CLPlacemark *placemark = [placemarks objectAtIndex:0];

 CLLocation *location = [placemark location];

 if (location != nil) {
 // Now that we have the address, we can search Twitter.
 [self getTweetsNearLocation:location

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 297

 searchRadius:searchRadiusInMeters
 completionHandler:handler];
 }
 }
 else {
 NSLog(@"Error geocoding %@: %@", streetAddress, error);
 }
 }];
}

The first thing this method does is to create a CLGeocoder object, which it uses
to geocode the street address into a location. Once it has the location in the
form of a CLLocation object, it passes it to the next method, along with the
search radius and the completion handler. Add that next method after the
previous one by adding the lines in bold:

- (void)getTweetsNearLocation:(CLLocation *)location
 searchRadius:(NSUInteger)searchRadiusInMeters
 completionHandler:(void (^)(NSArray *))handler
{
 NSString *searchURI =
 [NSString stringWithFormat:
 @"http://search.twitter.com/search.json?geocode=%f,%f,%fkm",
 [location coordinate].latitude,
 [location coordinate].longitude,
 (float)searchRadiusInMeters / 1000.0f];

 NSURL *searchURL = [NSURL URLWithString:searchURI];

 TWRequest *searchRequest = [[TWRequest alloc] initWithURL:searchURL
 parameters:nil

requestMethod:TWRequestMethodGET];

 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:YES];

 [searchRequest performRequestWithHandler:^(NSData *responseData,
 NSHTTPURLResponse *response,
 NSError *error) {
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];

 if (responseData) {
 id topLevelObject = [NSJSONSerialization
JSONObjectWithData:responseData
 options:0

error:NULL];

www.it-ebooks.info

http://search.twitter.com/search.json?geocode=%f,%f,%fkm
http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 298

 if ([topLevelObject isKindOfClass:[NSDictionary class]]) {
 NSArray *results = [topLevelObject
objectForKey:@"results"];

 if ([results isKindOfClass:[NSArray class]] && [results
count] > 0) {
 if (handler != NULL) {
 handler(results);
 }
 }
 else {
 NSLog(@"No results.");
 }
 }
 }
 else {
 NSLog(@"Error searching: %@", error);
 }
 }];
}

In this method, we create a search URL based on the coordinate property of the
location and the searchRadiusInMeters parameter, which we convert to
kilometers for the API. Once we have the URL, searching is just like before:
create a TWRequest object and execute it.

Since we’re going to be displaying tweets on a map, we need a class that
implements the MKAnnotation protocol. An annotation is a point on the map
where we can, for example, drop a pin that the user can click. Since each point
on the map corresponds to a tweet, we’ll make an LCTTweet class that we can
use to store tweet information. Click File ➤ New ➤ File… or press Command+N.
Select Cocoa Touch in the left column and then Objective-C class on the right.
Click Next. Enter NSObject for Subclass Of, and then enter LCTTweet for
Class. Click Next and then Create to save the file to disk. Open LCTTweet.h and
add the code in bold:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interface LCTTweet : NSObject <MKAnnotation>

@property (copy, nonatomic) NSString *text;
@property (copy, nonatomic) NSString *username;
@property (copy, nonatomic) CLLocation *location;

@end

Next, open LCTTweet.m and add the code in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 299

#import "LCTTweet.h"

@implementation LCTTweet

@synthesize text = _text;
@synthesize username = _username;
@synthesize location = _location;

#pragma mark - MKAnnotation Protocol Methods

- (NSString *)title
{
 return [self text];
}

- (NSString *)subtitle
{
 return [self username];
}

- (CLLocationCoordinate2D)coordinate
{
 return [[self location] coordinate];
}

#pragma mark -

@end

As you can see, this class is pretty sparse. We’ll take care of creating the tweets
and filling in their data later; for now, we just need the class to implement the
MKAnnotation protocol methods title, subtitle, and coordinate.

We’ll parse the tweets into LCTTweet objects in our LCTTwitterController class.
Open LCTTwitterController.m and import the header for LCTTweet at the top of
the file by adding the line in bold:

#import "LCTTwitterController.h"

#import <Accounts/Accounts.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>
#import <Twitter/Twitter.h>

#import "LCTTweet.h"

Next, modify the getTweetsNearLocation:searchRadius:completionHandler:
method by removing the struck-out lines and adding the bold lines:

- (void)getTweetsNearLocation:(CLLocation *)location

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 300

 searchRadius:(NSUInteger)searchRadiusInMeters
 completionHandler:(void (^)(NSArray *))handler
{
 NSString *searchURI =
 [NSString stringWithFormat:
 @"http://search.twitter.com/search.json?geocode=%f,%f,%fkm",
 [location coordinate].latitude,
 [location coordinate].longitude,
 (float)searchRadiusInMeters / 1000.0f];

 NSURL *searchURL = [NSURL URLWithString:searchURI];

 TWRequest *searchRequest = [[TWRequest alloc] initWithURL:searchURL
 parameters:nil

requestMethod:TWRequestMethodGET];

 [[UIApplication sharedApplication] setNetworkActivityIndicatorVisible:YES];

 [searchRequest performRequestWithHandler:^(NSData *responseData,
 NSHTTPURLResponse *response,
 NSError *error) {
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];

 if (responseData) {
 id topLevelObject = [NSJSONSerialization
JSONObjectWithData:responseData
 options:0
 error:NULL];

 if ([topLevelObject isKindOfClass:[NSDictionary class]]) {
 NSArray *results = [topLevelObject objectForKey:@"results"];

 if ([results isKindOfClass:[NSArray class]] && [results count] >
0) {
 NSMutableArray *tweets = [NSMutableArray array];

 for (NSDictionary *tweetDict in results) {
 LCTTweet *tweet = [[LCTTweet alloc] init];
 [tweet setText:[tweetDict objectForKey:@"text"]];

 [tweet setUsername:
 [tweetDict objectForKey:@"from_user_name"]];

 // Not every tweet has an exact location.
 NSDictionary *geoDict = [tweetDict
objectForKey:@"geo"];
 if ([geoDict isKindOfClass:[NSDictionary class]]) {

www.it-ebooks.info

http://search.twitter.com/search.json?geocode=%f,%f,%fkm
http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 301

 NSArray *coords = [geoDict
objectForKey:@"coordinates"];
 float latitude = [[coords objectAtIndex:0]
floatValue];
 float longitude = [[coords objectAtIndex:1]
floatValue];

 CLLocation *location =
 [[CLLocation alloc] initWithLatitude:latitude

longitude:longitude];

 [tweet setLocation:location];
 }
 else {
 // Here, location is the location received from
the geocoder
 [tweet setLocation:location];
 }

 [tweets addObject:tweet];
 }

 if (handler != NULL) {
 handler(results);
 handler(tweets);
 }
 }
 else {
 NSLog(@"No results.");
 }
 }
 }
 else {
 NSLog(@"Error searching: %@", error);
 }
 }];
}

Now that we have the search code written and a class to represent the tweets,
let’s show some tweets on a map. To do this, we’ll need to add a new view
controller. Click File ➤ New ➤ File… or press Command+N. Select Cocoa
Touch in the left column and then Objective-C class on the right. Click Next.
Enter UIViewController for Subclass Of, and then enter
LCTTweetMapViewController for Class. Uncheck Targeted for iPad, but leave
‘‘With XIB for user interface’’ checked (or check it if it isn’t checked). Click Next
and then Create to save the file to disk and open it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 302

Open LCTTweetMapViewController.h. We’ll be adding a text field and map view,
so we’ll need to add their delegate protocols to our class. For the map view,
we’ll also need to import the MapKit headers. Add the lines in bold to the
header:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface LCTTweetMapViewController : UIViewController <MKMapViewDelegate,
UITextFieldDelegate>

@property (strong, nonatomic) IBOutlet UITextField *searchTextField;
@property (strong, nonatomic) IBOutlet MKMapView *mapView;

@end

Save your work and open LCTTweetMapViewController.xib. From the Object
Library, drag a text field and a map view onto the user interface, resizing them to
use the view’s space, as shown in Figure 10-2. Select the text field and open the
Attributes Inspector by selecting View ➤ Utilities ➤ Show Attributes Inspector or
by pressing Option+Command+4. Under Text Field in the Attributes Inspector,
and enter placeholder text that will appear before the user enters their search
term. I’ve used Address (e.g. 10 Main St., Anytown, USA) as my placeholder; the
idea is to tell the user what to type into the field. Lower in the Attributes
Inspector, select Search next to Return Key, which will change the text on the
Return key on the keyboard to Search.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 303

Figure 10-2. The text field and map view in Xcode, resized to fit the available space.

Next, in Xcode’s editing view, expand the left side if needed by clicking the
circle with a triangle in it at the bottom-left of the grid view where the view sits.
With the left side expanded, hold Control and drag from File’s Owner to the text
field. In the Outlets pop-up that appears, select searchTextField. Do the same
for the map view, selecting the mapView outlet. Next, from the search text field
and then the map view, hold Control and drag to File’s Owner, selecting the
delegate outlet for each. Now that our user interface is set up, let’s put in some
search code.

Open the implementation file (LCTTweetMapViewController.m). First, import the
Twitter controller and tweet headers and add synthesized accessor methods for
the properties we added by adding the lines in bold at the top of the file:

#import "LCTTweetMapViewController.h"

#import "LCTTwitterController.h"
#import "LCTTweet.h"

@interface LCTTweetMapViewController ()

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 304

@end

@implementation LCTTweetMapViewController

@synthesize searchTextField = _searchTextField;
@synthesize mapView = _mapView;

Next, set those properties to nil in the viewDidUnload method:

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;

 [self setSearchTextField:nil];
 [self setMapView:nil];
}

It’s time for some search code. We’ll start the search when the user enters some
text in the search field and hits Search on the keyboard. Add the following code
in bold to LCTTweetMapViewController before the @end compiler directive:

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];

 NSString *searchText = [textField text];

 if ([searchText length] == 0) {
 return NO;
 }

 LCTTwitterController *twitterController = [LCTTwitterController
sharedInstance];

 void (^completionHandler)(NSArray *) = ^(NSArray *tweets) {
 NSArray *currentAnnotations = [[self mapView] annotations];

 [[self mapView] removeAnnotations:currentAnnotations];
 [[self mapView] addAnnotations:tweets];

 // Get the location from a tweet to center the map
 LCTTweet *tweet = [tweets objectAtIndex:0];
 CLLocationCoordinate2D coordinate = [[tweet location] coordinate];

 [[self mapView] setRegion:MKCoordinateRegionMake(coordinate,

MKCoordinateSpanMake(0.1, 0.1))
 animated:YES];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 305

 };

 [twitterController getTweetsNearStreetAddress:searchText
 searchRadius:1000
 completionHandler:completionHandler];

 return YES;
}

This code triggers our search when the user presses the Search key on the
keyboard. To see it in action, we just need to put this view controller on the
screen. Open LCTAppDelegate.m, and modify the beginning of the file through
the application:didFinishLaunchingWithOptions: method by removing the
struck-out lines and adding the lines in bold:

#import "LCTAppDelegate.h"

#import "LCTTimelineViewController.h"
#import "LCTTweetMapViewController.h"

@implementation LCTAppDelegate

@synthesize window = _window;

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];

 LCTTimelineViewController *viewController =
 [[LCTTimelineViewController alloc] initWithStyle:UITableViewStylePlain];

 UINavigationController *navigationController =
 [[UINavigationController alloc] initWithRootViewController:viewController];

 UIColor *darkBlueSlateColor = [UIColor colorWithRed:(74/255.0f)
 green:(82/255.0f)
 blue:(90/255.0f)
 alpha:1.0f];

 [[navigationController navigationBar] setTintColor:darkBlueSlateColor];

 [[self window] setRootViewController:navigationController];

 LCTTweetMapViewController *viewController =
 [[LCTTweetMapViewController alloc] initWithNibName:nil

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 306

 bundle:nil];

 [[self window] setRootViewController:viewController];

 return YES;
}

Build and run the app. Enter an address in the search field, press Search, and
you should see results, as in Figure 10-3. If you tap them, a pop-up will appear
with the tweet text and username. Note that there will be a slight delay as the
search is performed.

Figure 10-3. Our tweet map displaying tweets as pins on the map

There i s a lot more that MapKit can do than what we’ve covered here-----there
could easily be an entire book on Core Location and MapKit-----but this is a good

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 307

start. As an exercise to the reader, consider further modifying TwitterExample to
integrate maps into the rest of the application’s flow.

Bring Your Own Device
If none of the sensors described in this chapter does what you need or if you
need greater power than available in the sensors included in your device, it is
possible to create a hardware device and use it in your app. Apple has a
program, abbreviated MFi, that allows you to license hardware technologies and
communicate with iOS devices over the dock connector. I’d love to tell you
about it, but to even get the documentation, you need to apply to the program. If
you need to create a hardware accessory for an iOS device, look into the
program, but expect resources outside of Apple’s documentation to be sparse.

There is a glimmer of hope with hardware devices in the form of Bluetooth 4.0.
This new Bluetooth standard allows devices to communicate with your apps
with much less friction. Implementing Bluetooth hardware is outside the scope
of this book, but if you find yourself in need of hardware that communicates with
your app, Bluetooth 4.0 may be the way to go with the lease amount of friction.

Requiring Devices in Your App
For certain apps, the absence of a certain sensor renders the app useless. The
compass app on your device, for instance, requires a magnetometer, because
otherwise a compass is pretty useless. Video-recording apps will require a
camera that can take video, and face-to-face video chat apps will require a
front-facing camera. To specify what devices are required by your app, you’ll
modify the Info.plist file for your app. By default, this is named after your
target, so for TwitterExample, it’s TwitterExample-Info.plist. You’ll need to
add a new line for the key ‘‘Required device capabilities’’ if it isn’t already there.
To do so, right-click in empty space in the editor and select Add Row. Xcode
makes the names of keys friendly in your Info plist, but in the file this key is
actually UIRequiredDeviceCapabilities. The value of this key is either an array
or a dictionary; if it’s an array, each object inside of it should be a string
enumerating a required device capability. If it’s a dictionary, each key should be
a capability string, and the value should be a Boolean-----YES if the app requires
the capability and NO if the device must not have the capability. To change the
type of the value, you’ll first need to tell Xcode to treat the Info.plist file as a
regular property list by right-clicking the editor, selecting Property List Type,
then selecting None. Once you’ve done that, right-click the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Hardware APIs 308

UIRequiredDeviceCapabilities key, select Value Type, and then select either
Array or Dictionary.

Here’s a partial list of capability strings covering hardware discussed in this
chapter:

 still-camera: The presence of a camera

 front-facing-camera: The presence of a front-facing camera

 camera-flash: The presence of a camera flash (though not
necessarily for all cameras on a device)

 video-camera: The presence of a camera that can capture
video

 accelerometer: The presence of an accelerometer

 gyroscope: The presence of a gyroscope

 location-services: The availability of Location Services

 gps: The presence of a GPS sensor

 magnetometer: The presence of a magnetomer

 bluetooth-le: The presence of a low-energy Bluetooth chip,
used for Bluetooth 4.0 devices

If, for instance, you require a camera for your app to work, then users of devices
that don’t have a camera will not see your app listed in the App Store. You can
see a complete list of the available keys in the Apple document Information
Property List Key Reference available in the iOS documentation.

Summary
This chapter has been all about taking advantage of the various hardware
components of an iOS device. As Apple continues to grow the product line,
newer and better hardware components enter their devices. That said, the
current line-up is fairly robust. After reading this chapter, you should be able to
get photos and videos from the user, determine the device’s orientation and
acceleration with Core Motion, and determine where the user is with Core
Location and show them where they are with MapKit. These hardware sensors
enable you to build some really cool functionality into your apps, and if you don’t
find what you need, you can always make your own!

www.it-ebooks.info

http://www.it-ebooks.info/

11
Chapter

Media in Your App:
Playing Audio
and Video
So far in this book, we’ve covered a lot of ways to control how your app looks
and how the user interacts with it. From custom user interfaces design to
custom user interactions, what you’ve learned so far has really been limited to
changing how the app appears. In this chapter, we’ll introduce media to your
app. Being able to play audio and video back from your app allows you to
engage users on another dimension, provide instant feedback on their actions,
and enrich the content you can provide in your app. For games, being able to
play sound effects, ambient noise, and music is essential. Since every iOS
device can also play music, the user could be playing music when they start any
app, so those that play media should take that into account.

Playing Audio
For the purposes of this section, we’ll split audio into three categories: sounds
that play by themselves, such as an alert or notification sound; sound effects
that play with music or with other sounds, such as game sound effects; and
music. The code you write will depend on what you’re trying to achieve with the
sound. First, let’s talk about sounds that play independently as an alert or a
notification. For these, you’ll use System Sound Services.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 310

System Sound Services
System Sound Services is most basic sound API available on iOS, and with its
simplicity comes a few limitations: you can’t stop a sound once it starts, you can
play only one sound at a time, you can’t control the volume of the sound (it
plays at the system’s current sound level), and sounds are limited to 30 seconds
in length. So, for a game, system sounds are right out, but for an app that needs
to play a quick sound for a notification or an alert, it’s a good fit. System Sound
Services is a C API, so you’ll be using some lower-level technologies than you’re
used to using. It’s in the AudioToolbox framework, so you’ll need to add this
framework to the Link Binary With Libraries build phase of any target you’d like
to use it with, as well as import the AudioToolbox headers with #import
<AudioToolbox/AudioToolbox.h>.

Playing System Sounds
The first thing you need to do to play a system sound is to create a sound ID.
The sound ID is stored in the SystemSoundID type. This isn’t an Objective-C
object, just an identifier that the system associates with your sound. To create
an ID, use the AudioServicesCreateSystemSoundID() function, which takes two
arguments: a CoreFoundation URL reference (CFURLRef) to the file URL for the
sound, and a pointer to the SystemSoundID variable that it will fill in with the
correct ID. Since the CoreFoundation class CFURL is ‘‘toll-free-bridged’’ with
NSURL, you can convert an NSURL to CFURLRef, and vice versa. This lets you keep
the memory management for the URL in Cocoa Touch, allowing ARC to handle
it for you. To do so, use the __bridge keyword when casting it, as follows.
Creating a system sound for the file mySound.wav in the main bundle would be
done like so:

NSURL *soundURL = [[NSBundle mainBundle] URLForResource:@"mySound"
 withExtension:@"wav"];

SystemSoundID soundID;

OSStatus status = AudioServicesCreateSystemSoundID((__bridge CFURLRef)soundURL,
 &soundID);

When the AudioServicesCreateSystemSoundID function returns, the soundID
variable will have been initialized with the sound ID, and the status variable will
contain the function’s return value representing the result code for the operation.
If successful, this code will equal kAudioServicesNoError; error codes are listed
in the System Sound Services Reference documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 311

Once you’ve created a sound, there are two different functions you can use to
play it. AudioServicesPlaySystemSound() will simply play the sound immediately
when it’s called. Its sole argument is the sound ID. After creating a sound ID
with the previous code, you would play it like so:

if (status == kAudioServicesNoError) {
 AudioServicesPlaySystemSound(soundID);
}

Note that we first checked the value of status to make sure that the sound ID
was created successfully. The AudioServicesPlaySystemSound() function runs
asynchronously, so it will return immediately no matter how long the sound is; to
run code when the sound completes, you can add a callback to a C function
with the AudioServicesAddSystemSoundCompletion function. The function you
use as a callback must match the AudioServicesSystemSoundCompletionProc
prototype in the AudioServices header, which is as follows:

typedef void (*AudioServicesSystemSoundCompletionProc)(SystemSoundID ssID,
 void *clientData);

The function pointer syntax used here is similar to the block declaration syntax
but with a pointer (*) instead of a carat (^). If you wanted to create a function
called MySystemSoundCallback(), you would declare it like so in your header file:

void MySystemSoundCallback(SystemSoundID ssID, void *clientData);

Then, you would implement the function:

void MySystemSoundCallback(SystemSoundID ssID, void *clientData)
{
 // Run callback code
}

NOTE: You can use C functions alongside your Objective-C code with no issue.
Simply place the function declarations outside of the @interface block in the
header file, and place the function implementations outside of the
@implementation block in the implementation file. After the @end directive is
usually a good place to put C functions, in both your header and implementation files.
If you want to keep a C function private to your class, you can put both the
declaration and the implementation for it in the class implementation file, so long as
your declaration is before the @implementation block.

After you’ve created a C function to use as a callback for your system sounds,
you use the AudioServicesAddSystemSoundCompletion() function to add the
callback. It takes five arguments: the sound ID, which is a CFRunLoopRef

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 312

reference to a CoreFoundation run loop; a CFStringRef, which is a Core
Foundation string, representing the run loop mode; the function pointer to your
function, of type AudioServicesSystemSoundCompletionProc; and a void *
pointer to any additional data you’d like to pass the function, shown earlier in
the callback function’s implementation as the function argument clientData. For
the run loop arguments and the client data argument, you can pass NULL, which
will call your function on the default run loop in the default mode, with no extra
data passed. To use our MySystemSoundCallback function as a sound callback,
the code would be as follows:

AudioServicesAddSystemSoundCompletion(soundID,
 NULL,
 NULL,
 &MySystemSoundCallback,
 NULL);

The AudioServicesAddSystemSoundCompletion() function returns an OSStatus
value as a result code, so if you need to determine that the callback was added
successfully, you can use the returned value to do so. You should call
AudioServicesAddSystemSoundCompletion() before calling
AudioServicesPlaySystemSound() to ensure that the sound doesn’t stop playing
before your function is added as a callback.

Finally, once you’re done with a system sound, you should destroy it to reclaim
the resources it used. This is accomplished via the
AudioServicesDisposeSystemSoundID() function, which takes the system sound
ID as its sole argument and reclaims its resources. System sounds are not
reference-counted like CoreFoundation or Objective-C objects, so ARC won’t
be able to help manage their memory; you’ll have to call this method yourself. If
you call AudioServicesDisposeSystemSoundID() immediately after calling
AudioServicesPlaySystemSound(), the sound will never play. If you need to
create a system sound, play it, and then never use it again, you can dispose of it
in the callback function.

We now have enough code to play a system sound, which will be adequate for
anything like a button click sound. Here it is in its entirety:

NSURL *soundURL = [[NSBundle mainBundle] URLForResource:@"mySound"
 withExtension:@"wav"];

SystemSoundID soundID;

OSStatus status = AudioServicesCreateSystemSoundID((__bridge CFURLRef)soundURL,
 &soundID);

if (status == kAudioServicesNoError) {
 AudioServicesAddSystemSoundCompletion(soundID,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 313

 NULL,
 NULL,
 &MySystemSoundCallback,
 NULL);

 AudioServicesPlaySystemSound(soundID);
}

The corresponding callback function, which should be declared in the header
file or before the @implementation block in the implementation file, then destroys
the sound ID to reclaim its memory:

void MySystemSoundCallback(SystemSoundID ssID, void *clientData)
{
 NSLog(@"System sound finished!");

 AudioServicesDisposeSystemSoundID(ssID);
}

This method of playing sounds is simple and adequate for many needs. Earlier,
however, I mentioned that there are two ways of playing system sounds. We’ve
just seen one way. The other is to play a system sound as an alert.

Playing Alert Sounds
Playing a system sound as an alert is accomplished using the
AudioServicesPlayAlertSound() function. The process is similar to playing it as
a system sound, but there are some differences depending on the device. On an
iPhone, if the user has configured the device to play a sound and vibrate when
they receive a phone call, then the alert sound will also cause the phone to
vibrate, unless the app is configured to record audio, in which case the phone
will not vibrate, which it does to avoid disturbing the audio. On the original iPod
touch, which didn’t have a speaker to play sounds without headphones plugged
in, playing an alert sound will result in a generic alert sound playing. As with
system sounds, alert sounds may not be more than 30 seconds long, or the app
will crash with an error. Playing our sound as an alert is pretty straightforward:

NSURL *soundURL = [[NSBundle mainBundle] URLForResource:@"mySound"
 withExtension:@"wav"];

SystemSoundID soundID;

OSStatus status = AudioServicesCreateSystemSoundID((__bridge CFURLRef)soundURL,
 &soundID);

if (status == kAudioServicesNoError) {
 AudioServicesPlayAlertSound(soundID);
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 314

You can add callbacks just as with system sounds. You also still need to call
AudioServicesDisposeSystemSoundID() to dispose of the sound when you’re
done with it, typically in a dealloc method. You should use alert sounds to
indicate that the app needs the user’s attention, such as when an error occurs.
On devices with vibration motors, alert sounds can also be used to trigger
vibration, as we’ll talk about next.

Triggering Vibration
If you’d like to trigger vibration, you can use the
AudioServicesPlayAlertSound() function with a constant sound ID value that
indicates vibration:

AudioServicesPlayAlertSound(kSystemSoundID_Vibrate);

On a device such as an iPhone with a vibration motor, this will trigger a short
vibration. On other devices, this will do nothing.

As you can see, System Sound Services is a good fit for short sounds, such as
button clicks and alerts. For sounds longer than 30 seconds, music, or playing
multiple sounds at once, we’ll need to use more advanced audio APIs.

AVAudioPlayer
If you need to play multiple sounds at once, control the playback level of
individual sounds, or loop your sounds but you don’t need to precisely
synchronize two or more sounds with one another, don’t need stereo playback,
and aren’t playing audio from a network stream, then the AVAudioPlayer class is
what Apple recommends. Unlike System Sound Services, AVAudioPlayer is
written in Objective-C, so you don’t need to do any additional memory
management for your sounds other than what you would do for any object.
You’ll create an AVAudioPlayer object for each sound you want to play; they can
each play their sound while the others are also playing. You can create an audio
player either from a file URL, as with System Sound Services, or with an NSData
object if you have the audio bytes in a data buffer.

To play a sound with an audio player, simply call its play method. It doesn’t get
much easier than this! The .caf extension is the native uncompressed sound
format of iOS and is what Apple recommends for short sound effects. You can
convert a .wav file to .caf using the afconvert command-line utility; type man
afconvert at the command line to read its documentation. This step is optional
and recommended to save space; a .wav file should work just fine as is.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 315

Assuming that your sound file is named mySound.caf, here’s how you would
create an AVAudioPlayer for a sound and play it:

NSURL *soundURL = [[NSBundle mainBundle] URLForResource:@"mySound"
 withExtension:@"caf"];

NSError *error = nil;
AVAudioPlayer *audioPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:soundURL

error:&error];

if (audioPlayer != nil) {
 [audioPlayer play];
}
else {
 NSLog(@"Error creating audio player: %@", error);
}

NOTE: Since AVAudioPlayer is a part of the AVFoundation framework, be sure to
add that framework to the Link Binary With Libraries build phase of your target.

This code is fairly similar to the System Sound Services code. The advantage of
AVAudioPlayer, however, is that you can set a number of properties on each
player, including but not limited to:

 The volume property, a float value, lets you adjust the
playback volume from 0.0 to 1.0 on a linear scale.

 To loop the sound, you can use the numberOfLoops property,
an NSInteger value. Setting numberOfLoops to 0 will play the
sound once. Setting it to 1 will play the sound two times total
(the first time plus 1 loop). Setting it to any value n will play the
sound n + 1 times. Setting numberOfLoops to any negative
value will loop the sound indefinitely or until you call the audio
player’s stop method.

 To adjust the stereo position from left to right, set the value of
pan, a float, from -1.0 to 1.0, with -1.0 being 100 percent left
and 1.0 100 percent right.

 To adjust the playback rate, first set the enableRate property
(a BOOL) to YES, then set the rate property, a float. The rate
property can range from 0.5 (half-speed) to 2.0 (double-
speed).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 316

 To adjust the playback time, either to seek to a specific point
in the sound or to implement fast-forward or rewind
functionality, set the currentTime property, an NSTimeInterval
value, which is just a double representing seconds.

There are some other considerations to take into account when using an
AVAudioPlayer. While an audio player is playing, the audio is loaded into
memory and the audio hardware is engaged. To avoid a delay between calling
the play method and the audio starting, you can call prepareToPlay, which will
preload audio buffers and engage the audio hardware. If you’re going to set
enableRate to YES, do so before calling prepareToPlay. To stop playback, you
can call the pause method of your audio player, which will leave the buffers filled
and audio hardware engaged, or call the stop method, which will empty the
buffers and disengage the audio hardware. Calling stop will not reset the
playback time, however, so if you call stop and then play, the audio will resume
where it left off. To stop the audio and reset the playback time, set currentTime
to 0.0 after calling stop.

Whereas we used callback functions when using System Sound Services, the
AVAudioPlayer class has a delegate property, which conforms to the
AVAudioPlayerDelegate protocol. The equivalent of the System Sound Services
callback is the audioPlayerDidFinishPlaying:successfully: delegate method,
which takes a pointer to the audio player object as its first parameter and a BOOL
value indicating whether the playback was successful or not as the second
parameter. You can respond to decoding errors during playback using the
audioPlayerDecodeErrorDidOccur:error: delegate method.

When the user receives a phone call or the application is otherwise interrupted,
playback from your audio player will stop until the interruption is resolved (for
instance, if the user declines the call). At the beginning of the interruption, the
audioPlayerBeginInterruption: delegate method will be called, giving you a
chance to react by, for instance, adjusting your application’s UI to reflect that
the audio player is not playing. Once the interruption is finished, the
audioPlayerEndInterruption: delegate method is called, allowing you to, for
instance, resume playback. To receive more information about the interruption,
you can instead implement the audioPlayerEndInterruption:withFlags:
delegate method, to which the audio player will pass flags containing more
information as the second parameter. If you implement both, only the version
with the flags will be called. As of iOS 5.1, the only flag is
AVAudioSessionInterruptionFlags_ShouldResume, which is set to 1 if the sound
should resume. Implementing this delegate method is straightforward:

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player
withFlags:(NSUInteger)flags

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 317

{
 if (flags == AVAudioSessionInterruptionFlags_ShouldResume) {
 [player play];
 }
}

This covers pretty much everything you need to know about AVAudioPlayer. It
has more features, such as audio levels if you’d like to implement that in your
application’s user interface, but this is the basic interface for playing sound. You
can use it to play multiple sound effects at a time at different volumes, such as
for a game.

Other Sound APIs
There are other sound APIs available on iOS. If you need to precisely control the
synchronization of two or more sounds with one another or load sound from a
network buffer, you’ll need to use Audio Queue Services. This API gives you a
callback method in which you’ll fill an audio buffer with sound to play. If, for
example, you were making a music app with multiple loops of music playing at
the same time, you could use Audio Queue Services to manage the loops and
ensure they stay in sync.

If you need to position your sound effects in 3D space, which is most common
for a game, then you can use the open source OpenAL framework, which is also
available in iOS. While OpenAL is the best choice for games where sounds can
be traced to a specific location on-screen, it’s also not a bad choice for general-
purpose sound playback. For complex audio work such as applying effects in
real time, you can use the Core Audio framework, but the relative difficulty level
of programming for Core Audio is quite high when compared to the other audio
frameworks. Both OpenAL and Core Audio are pretty low-level frameworks, so if
you determine that neither System Sound Services nor AVAudioPlayer meet your
needs, you should investigate these options. To get help with OpenAL, you can
visit the web site at OpenAL.org, and for Core Audio, a good resource is the
Core Audio mailing list at
https://lists.apple.com/mailman/listinfo/coreaudio-api.

Example: SoundBoard
Let’s make a sample app to test playing sounds. Open Xcode and select File 
New  Project…, or press +Shift+N. Select Application in the leftmost column
under the iOS section, and then select Single View Application on the right. Click
Next, and then enter SoundBoard as the name for the project. Enter your
company identifier and class prefix (I’ll use com.learncocoatouch and LCT),

www.it-ebooks.info

https://lists.apple.com/mailman/listinfo/coreaudio-api
http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 318

select iPhone for Device Family, and ensure that Use Automatic Reference
Counting is checked and both Use Storyboards and Include Unit Tests are
unchecked. Click Next, and then click Create to save the project to disk.

Before we can play a sound, we’ll need a sound to play. You can download a
sample audio file named Trumpet.m4a that’s compatible with iOS from this
book’s web site at www.learncocoatouch.com. Once you’ve downloaded the file,
locate it in Finder, and then drag it into the file browser in Xcode. For
organization’s sake, let’s put it in the Supporting Files section. Check ‘‘Copy
items into destination group’s folder (if needed),’’ and then next to ‘‘Add to
targets,’’ check SoundBoard to include the sound in this app’s bundle. Click
Finish, and then the sound will be added to the project.

The goal of this project will be a view with buttons we can use to play this sound
three different ways: as a system sound, as an alert sound, and using an
AVAudioPlayer object. First, let’s create those buttons. Open the main view
controller’s user interface file (LCTViewController.xib) in Xcode. Open the
Object Library by selecting View  Utilities  Show Object Library or by
pressing Control+Option+ +3. Once it’s open, drag three Round Rect Buttons
onto your project’s view, arranging them in a column vertically. Double-click
each to set its title; we’ll name them Play System Sound, Play Alert Sound, and
Play using AVAudioPlayer, respectively. The buttons will automatically resize to
fit their text. When you’re done, the view will look like Figure 11-1.

Figure 11-1. Our view after adding three buttons

www.it-ebooks.info

http://www.learncocoatouch.com
http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 319

Next, let’s add some outlets and actions for these buttons. Open the view
controller’s header file (LCTViewController.h), and add the lines in bold:

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController

@property (strong, nonatomic) IBOutlet UIButton *systemSoundButton;
@property (strong, nonatomic) IBOutlet UIButton *alertSoundButton;
@property (strong, nonatomic) IBOutlet UIButton *audioPlayerButton;

- (IBAction)systemSoundButtonPressed:(id)sender;
- (IBAction)alertSoundButtonPressed:(id)sender;
- (IBAction)audioPlayerButtonPressed:(id)sender;

@end

As you can see, we’ve created an IBOutlet and IBAction for each button. Let’s
connect these to the objects in the view. Open the interface file
(LCTViewController.xib) again. Holding Control, click the File’s Owner object at
the left of the editing pane and drag to the button labeled Play System Sound,
and then select systemSoundButton from the pop-up menu. Do the same for the
button labeled Play Alert Sound, selecting alertSoundButton; then do the same
for the button labeled Play using AVAudioPlayer, selecting audioPlayerButton.
Now that we’ve connected the outlets, let’s connect the actions. Holding
Control, click the button labeled Play System Sound and drag to the File’s
Owner object, selecting the systemSoundButtonPressed: method from the list.
Do the same for the button labeled Play Alert Sound, selecting
alertSoundButtonPressed:, and for the button labeled Play using
AVAudioPlayer, selecting audioPlayerButtonPressed:.

Before we implement our view controller, add the AVFoundation and
AudioToolbox frameworks to your project and link them to your target. To do
this, select the project at the top of the file browser in Xcode, click the
SoundBoard target, and then select Build Phases in the editing pane. Expand
the Link Binary With Libraries phase by clicking the triangle next to it, and click
press the Add button (+) and select AVFoundation.framework. Click the Add
button again and select AudioToolbox.framework.

Now that we’ve added the AVFoundation and AudioToolbox frameworks to the
project, we’re ready to implement this class. Open the implementation file
(LCTViewController.m). First, we’ll import the header file for the AVFoundation
framework, add private instance variables for the sound ID and audio player,
and add @synthesize directives for our properties. We’ll implement the dealloc
method to properly dispose of the sound ID. Then we’ll initialize our sounds in
the viewDidLoad method, and finally we’ll implement playing the sounds in the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 320

three IBAction methods. To accomplish this, modify the file by adding the lines
in bold:

#import "LCTViewController.h"

#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>

@interface LCTViewController () {
 AVAudioPlayer *_audioPlayer;
 SystemSoundID _soundID;
}

@end

@implementation LCTViewController

@synthesize systemSoundButton;
@synthesize alertSoundButton;
@synthesize audioPlayerButton;

- (void)dealloc
{
 AudioServicesDisposeSystemSoundID(_soundID);
}

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSURL *soundURL = [[NSBundle mainBundle] URLForResource:@"Trumpet"
 withExtension:@"m4a"];

 // Create a sound ID used to play the system sound.
 OSStatus status = AudioServicesCreateSystemSoundID((__bridge
CFURLRef)soundURL,
 &_soundID);

 if (status != kAudioServicesNoError) {
 // An error occurred, so let's disable the buttons.
 [[self systemSoundButton] setEnabled:NO];
 [[self alertSoundButton] setEnabled:NO];
 }

 // Initialize the AVAudioPlayer
 NSError *error = nil;
 _audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:soundURL
 error:&error];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 321

 if (_audioPlayer == nil) {
 // An error occured, so let's disable the button and log the error.
 NSLog(@"%@", error);
 [[self audioPlayerButton] setEnabled:NO];
 }
 else {
 [_audioPlayer prepareToPlay];
 }
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOr
ientation
{
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

- (IBAction)systemSoundButtonPressed:(id)sender
{
 AudioServicesPlaySystemSound(_soundID);
}

- (IBAction)alertSoundButtonPressed:(id)sender
{
 AudioServicesPlayAlertSound(_soundID);
}

- (IBAction)audioPlayerButtonPressed:(id)sender
{
 [_audioPlayer play];
}

@end

As you can see in the viewDidLoad method, we use the same NSURL object
representing the path to our sound file to create the sound ID and the audio
player. If we encounter any errors creating them, we’ll disable the relevant
buttons. Finally, in the IBAction methods, we play the sound using the
appropriate method or function. Now that we’re done, build and run the app.
You should be able to play the sound by clicking any of the buttons. Just like
that, we’re playing sounds! Next, let’s discuss another type of audio: music.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 322

Playing Music
Every iOS devices supports maintaining a library of music, videos, podcasts, TV
shows, and more in its library. Although the iPhone and iPad have this library,
it’s still referred to in documentation as the iPod library. Your apps are able to
search the user’s iPod library, play items in it, and even control the built-in
music player on the device. One of the most common uses of this is to allow the
user to select some of their songs to play while your app is running. To do so,
you’ll use the MPMediaPickerController class to provide your users with an
interface they can use to select media.

Using MPMediaPickerController
Much like the UIImagePickerController class, which allows the user to select an
image for use in your app, the MPMediaPickerController allows the user to
select media from their iPod library to use in your app, represented by the
MPMediaItem class.

NOTE: There is no iPod library on the iPhone Simulator, so using the
MPMediaPickerController class is limited to actual devices.

Before you use an MPMediaPickerController, you’ll need to add the MediaPlayer
framework to your project, link it to your target, and then import the header files
for the MediaPlayer framework as follows:

#import <MediaPlayer/MediaPlayer.h>

As we’ll discuss later, you’ll need a delegate object for the media picker
controller, typically a view controller that displays the media picker controller,
that conforms to the MPMediaPickerControllerDelegate protocol. To show an
MPMediaPickerController, create one and display it like any other view
controller:

MPMediaPickerController *mediaPickerController =
[[MPMediaPickerController alloc] initWithMediaTypes:MPMediaTypeAnyAudio];

[mediaPickerController setDelegate:self];
[mediaPickerController setPrompt:@"Choose a song!"];

[self presentModalViewController:mediaPickerController animated:YES];

q
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 323

In the initialization method, we specify the type of media we’re looking for; in
this case, it’s any audio. Other media types include podcasts, iTunes U, music
videos, audiobooks, and other specific types of media. There is a delegate
protocol for MPMediaPickerController, and you can probably guess its name:
MPMediaPickerControlerDelegate. The media picker controller also has a prompt
property that we can use to display a custom string on top of the picker
controller’s view. Figure 11-2 shows what a media picker controller’s view looks
like, with the custom prompt ‘‘Choose a song!’’

Figure 11-2. A media picker controller’s view. The cloud icon on the right indicates that these artists
are in iTunes Match. A cloud icon with a downward-facing arrow in the middle indicates that the song
is available in the user’s iTunes Match account but is not on the device; tapping this icon will download
the song.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 324

Just as with UIImagePickerController, the MPMediaPickerController returns the
selected item or items via its delegate, in this case using the
MPMediaPickerControllerDelegate protocol. There are two methods in this
protocol: mediaPickerDidCancel: and mediaPicker:didPickMediaItems:. The
first is called if the user cancels and does not select any media items, while the
second is called with one or more media items that the user has selected. To
allow the user to select multiple items, set the allowsPickingMultipleItems
property of the MPMediaPickerController to YES. Unlike similar delegate
methods, however, the selected items are not returned in an NSArray object;
instead, they are returned in an MPMediaItemCollection object. A media item
collection behaves like an array of media items but with some extra abilities. Its
mediaTypes property contains flags for each of the media types present in the
collection. Individual media items, instances of the MPMediaItem class, can be
accessed through the items property, which returns an NSArray of the items.
When the i tems a ll have a shared characteristic-----if you select an album by a
particular a rtist, for i nstance-----the representativeItem property will return an
MPMediaItem object that has common properties set, in this case, the artist
name, album name, release year, and other common metadata.

Accessing these properties of a media item is done not through direct property
access but instead through the valueForProperty: method it inherits from
MPMediaEntity, an abstract class that sits above both MPMediaItem and
MPMediaItemCollection. To access the artist name and title of all media items
selected in the MPMediaPickerController, you could implement the delegate
method mediaPicker:didPickMediaItems: as follows:

- (void)mediaPicker:(MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
{
 // Print the artist and title of each item
 for (MPMediaItem *mediaItem in [mediaItemCollection items]) {
 NSString *artist = [mediaItem
valueForProperty:MPMediaItemPropertyArtist];
 NSString *title = [mediaItem valueForProperty:MPMediaItemPropertyTitle];

 NSLog(@"Artist: %@ Title: %@", artist, title);
 }
}

Using MPMusicPlayerController
Once you have an MPMediaItemCollection, you probably want to play the music!
To do so, you’ll use the MPMusicPlayerController class. Instead of creating a
music player controller directly, you’ll use one of two class methods to access

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 325

one of two singleton players: applicationMusicPlayer or iPodMusicPlayer.
While only one of these can be playing at a time, you’ll use them for different
scenarios. The application music player is specific to your application; when the
user leaves your app, the music stops playing. The iPod music player, on the
other hand, is a device-wide music player. When your app starts, it might
already be playing music, and when your app quits, it will keep on playing.
When your app starts, it’s a good idea to determine whether the user is already
listening to music. First, as with the MPMediaPickerController class discussed
earlier, you’ll need to add the MediaPlayer framework to your project, link it with
your target, and import its header file. Once you’ve done this, you can determine
whether the user is currently listening to music as follows:

BOOL isAlreadyPlaying;
MPMusicPlayerController *iPodPlayer = [MPMusicPlayerController iPodMusicPlayer];

if ([iPodPlayer playbackState] == MPMusicPlaybackStatePlaying) {
 isAlreadyPlaying = YES;
}
else {
 isAlreadyPlaying = NO;
}

This code sets isAlreadyPlaying to YES if the user is already listening to music
by accessing the playbackState property of the iPod music player controller.
Similar to the AVAudioPlayer, the MPMusicPlayerController class has play,
pause, and stop methods, though you don’t need to prepare it to play before
playing. To load the player with the media items that the user selected with the
media picker controller, use the setQueueWithItemCollection: method. The
following code immediately plays the items that the user selected. (Note that as
with UIImagePickerController, you are responsible for dismissing the modal
view controller presented by the media picker controller, as it won’t dismiss
itself automatically.)

- (void)mediaPicker:(MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection
{
 MPMusicPlayerController *iPodPlayer = [MPMusicPlayerController
iPodMusicPlayer];
 [iPodPlayer setQueueWithItemCollection:mediaItemCollection];
 [iPodPlayer play];

 [self dismissModalViewControllerAnimated:YES];
}

If you were to press the device’s Home button and close the app, music played
with the iPod player like this would continue to play.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 326

You may at times need finer-grained control over which media items to play.
Suppose you want to build a custom user interface to browse the user’s media
library or perform advanced searching capabilities. To do so, you can use the
MPMediaQuery class, which allows you to search the media library
programmatically, giving you finer-grained control than your user has with the
search bar in the MPMediaPickerController.

Media Queries
To search the media library, you create an instance of MPMediaQuery using one
of several convenience constructors, which are class methods of MPMediaQuery:

 albumsQuery

 artistsQuery

 songsQuery

 playlistsQuery

 podcastsQuery

 audiobooksQuery

 compilationsQuery

 composersQuery

 genresQuery

Media queries can have a grouping type, expressed in the groupingType
property. Each of the convenience constructors listed earlier applies a grouping
type; the query returned by the albumsQuery method, for instance, has a
grouping type of MPMediaGroupingAlbum. The collections property of the query
returns media item collections based on the grouping type; for the albums
query, the collections property returns a separate MPMediaItemCollection
object for each album in the user’s library, sorted by album title. You can use the
items property to return all of the items returned by the query.

Suppose you want to find all of the user’s songs with a title that contains the
word Friday. To do so, you would create a filter for a media item query. This filter
would be a predicate of the MPMediaPropertyPredicate class. First, you would
start by creating a query that matches all of the user’s songs:

MPMediaQuery *query = [MPMediaQuery songsQuery];

Then, you would construct a predicate by filtering on the title. Before doing so,
you should check to ensure that the property you’d like to use to filter the media

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 327

items is one that you can use as a predicate. Filtering the query would go as
follows:

if ([MPMediaItem canFilterByProperty:MPMediaItemPropertyTitle]) {
 MPMediaPropertyPredicate *titlePredicate =
 [MPMediaPropertyPredicate predicateWithValue:@"Friday"
 forProperty:MPMediaItemPropertyTitle

comparisonType:MPMediaPredicateComparisonContains];

 [query addFilterPredicate:titlePredicate];
}

You can combine multiple filter predicates to zero in on the media items you’d
like. With these queries, you can build your own search UI, discover detailed
information about the user’s media library, and build awesome apps that play
the user’s music, podcasts, and other items.

With the music player controller and the media library, we’ve examined several
ways to incorporate audio into your app. Whether you’re playing a clicking
sound when the user taps a button, sound effects for a game, or just some
music, there’s a framework in iOS that’s right for you. Let’s put this to work in a
sample app.

Example: TitularSongs
The goal of this sample app is simple: find all of the songs in your iTunes library
with the same name as the album they appear on. Open Xcode and select File 
New  Project…, or press +Shift+N. Select Application in the leftmost column
under the iOS section, and then select Single View Application on the right. Click
Next, and then enter TitularSongs as the name for the project. Enter your
company identifier and class prefix (I’ll use com.learncocoatouch and LCT),
select iPhone for Device Family, and ensure that Use Automatic Reference
Counting is checked and both Use Storyboards and Include Unit Tests are
unchecked. Click Next, and then click Create to save the project to disk.

First, let’s add our user interface. This app will be fairly simple: a single table
view. Open the main view controller’s user interface file (LCTViewController.xib)
in Xcode. Open the Object Library by selecting View  Utilities  Show Object
Library or by pressing Control+Option+ +3. Once it’s open, drag a table view
out of the library and place it on the view. It should automatically resize itself to
the size of the view; if not, resize it to fit the view exactly, looking like Figure 11-
3. Next, set your view controller as the table view’s delegate and data source by
holding Control and dragging from the table view to the File’s Owner object at

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 328

the left of Xcode’s editing pane. Do this twice, selecting both dataSource and
delegate.

Figure 11-3. Our view controller’s user interface

Next, let’s open the view controller’s header file (LCTViewController.h). Since
we’ve made it the data source and delegate for the table view, we’ll need to
conform to the UITableViewDataSource and UITableViewDelegate protocols. Add
the code in bold:

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController <UITableViewDataSource,
UITableViewDelegate>

@end

You may see some warnings in Xcode once you add these protocols to the
class declaration. It’s OK to ignore those for now; they’re simply telling us that
we haven’t implemented required methods from those protocols, which we’re
about to do. Before we implement this view controller, add the MediaLibrary
framework to your project and link it to your target. To do this, select the project
at the top of the file browser in Xcode, click the TitularSongs target, and then
select Build Phases in the editing pane. Expand the Link Binary With Libraries
phase by clicking the triangle next to it, then press the Add button (+), and finally
select MediaPlayer.framework.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 329

Now that we’ve added the MediaPlayer framework to the project, let’s
implement our view controller. Open the view controller’s implementation file
(LCTViewController.m). Import the MediaPlayer headers by adding the line in
bold at the top of the file:

#import "LCTViewController.h"

#import <MediaPlayer/MediaPlayer.h>

To store the list of all songs that meet our criteria, we’ll use an NSArray object.
Add it as a private instance variable by adding it to the class extension with the
cold in bold:

@interface LCTViewController () {
 NSArray *_songs;
}

@end

We’ll search the library in the viewDidLoad method. Add the search code (we’ll
examine it after) by adding the lines in bold:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 MPMediaQuery *mediaQuery = [MPMediaQuery songsQuery];

 // Iterate through songs, figuring out if they share a title with their
album. If
 // they do, add them to an array.
 NSMutableArray *matchingSongs = [[NSMutableArray alloc] init];

 // Create a block called on each item; it will add the item to the
array if it meets
 // our criteria.
 void (^songBlock)(id, NSUInteger, BOOL *) = ^(id obj, NSUInteger idx,
BOOL *stop) {
 MPMediaItem *song = (MPMediaItem *)obj;
 NSString *songTitle = [song
valueForProperty:MPMediaItemPropertyTitle];
 NSString *albumTitle = [song
valueForProperty:MPMediaItemPropertyAlbumTitle];

 if ([songTitle isEqualToString:albumTitle]) {
 @synchronized(matchingSongs) {
 [matchingSongs addObject:song];
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 330

 };

 // Iterate through the items in the query, calling songBlock with each.
 [[mediaQuery items] enumerateObjectsWithOptions:NSEnumerationConcurrent
 usingBlock:songBlock];

 // Now that we have the data, store it in the _songs variable.
 _songs = [NSArray arrayWithArray:matchingSongs];
}

The first thing this code does is fetch the list of all songs on the device with the
songsQuery method and store it in the mediaQuery variable. Then, we create a
mutable array to which we’ll add the songs as we find them. Next, we create a
block called songBlock that we’ll use to enumerate the songs. In it, we’ll get the
song title and album title from the song; then, if they’re equal, we’ll add them to
the matchingSongs array. We use the @synchronized directive to ensure that we
aren’t trying to modify the array from multiple threads at once. That this is
important is made clear on the next line: we’re enumerating the objects in the
array returned by the items method of our query using the
NSEnumerationConcurrent option, which will result on the block running
concurrently on multiple threads. Finally, once we’re done enumerating the
songs, we’ll store each matching song in the _songs array. Now that we have the
songs we’re looking for, let’s implement the table view methods to display our
results. Add the methods in bold before the @end compiler directive in your view
controller’s implementation:

@implementation LCTViewController

...

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
 return [_songs count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *cellIdentifier = @"songCell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:cellIdentifier];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 331

 if (cell == nil) {
 cell = [[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:cellIdentifier];
 }

 MPMediaItem *song = [_songs objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[song
valueForProperty:MPMediaItemPropertyTitle]];
 [[cell detailTextLabel] setText:[song
valueForProperty:MPMediaItemPropertyArtist]];

 MPMediaItemArtwork *albumArt = [song
valueForProperty:MPMediaItemPropertyArtwork];
 CGSize imageSize = CGSizeMake([tableView rowHeight], [tableView
rowHeight]);

 [[cell imageView] setImage:[albumArt imageWithSize:imageSize]];

 return cell;
}

@end

Our table view will have one section, with as many rows as we have matching
songs. In the tableView:cellForRowAtIndexPath; method, we’ll create (or reuse)
a cell with the UITableViewCellStyleSubtitle style and then populate it with the
song title (which, thanks to the songs we’re searching for, is also the album title)
and the artist name. Next, we get an MPMediaItemArtwork object representing
the album art for the song, and then we’ll use it to populate the cell’s image
view. Build and run the app on an iOS device, and the songs in your media
library that match our criteria will appear in your table view. Figure 11-4 shows
the app running on my iPhone, displaying the songs in my library that meet this
criteria. Note that not all albums may have album art, especially those in iTunes
Match.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 332

Figure 11-4. The TitularSongs sample app

So far, so good. Let’s add one more feature to this app: playing the songs. Add
the delegate method tableView:didSelectRowAtIndexPath: to the
implementation file before the @end directive. Create it with the lines in bold:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 MPMediaItem *song = [_songs objectAtIndex:[indexPath row]];

 NSArray *items = [NSArray arrayWithObject:song];

 MPMediaItemCollection *itemCollection =

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 333

 [MPMediaItemCollection collectionWithItems:items];

 [[MPMusicPlayerController iPodMusicPlayer]
 setQueueWithItemCollection:itemCollection];

 [[MPMusicPlayerController iPodMusicPlayer] play];
}

This code creates an MPMediaItemCollection from an array containing only the
selected song and then directs the system-wide iPod music player to play it.
Build and run the application, and then tap on one of the songs; it’ll begin
playing. Since we haven’t built in any playback controls into this app, you’ll need
to use the Music app on the device to stop the audio. We used the iPod music
player in the app, so clicking Stop in Xcode to stop execution isn’t enough,
because it hands off control of the audio to the built-in iPod player.

As you can see, the MediaPlayer framework allows us to manipulate the user’s
iTunes library to perform arbitrary searches and play back the content at will.
Next, we’ll look at adding another media type to your application: video.

Playing Video
As with playing audio, there are multiple ways to play video on iOS. What you’ll
use depends on your needs. Some apps simply need to provide videos for their
user to consume at their leisure, while other apps may want to play videos with
no controls or videos on certain parts of the screen. At a high level, you can use
the MPMoviePlayerController class to play video, but if you need more fine-
grained control, you can use the AVFoundation framework. Let’s first discuss the
MPMoviePlayerController class.

Using MPMoviePlayerController
If you have a local video file, you can create an MPMoviePlayerController with
the following code:

NSURL *movieURL = [[NSBundle mainBundle] URLForResource:@"myMovie"
 withExtension:@"mov"];

MPMoviePlayerController *moviePlayerController =
[[MPMoviePlayerController alloc] initWithContentURL:movieURL];

It’s also possible to play video from a network stream; we’ll get into that later.
Similar to the AVAudioPlayer class, the MPMoviePlayerController class
maintains buffers and engages hardware; to that end, you can call its
prepareToPlay instance method to buffer the video and avoid a delay when you

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 334

call its play method. Unlike the AVAudioPlayer class, however, you aren’t done
after you call play; because we’re talking about video here, we’re necessarily
talking about UI, and you need a place to put the video as it’s displayed to the
user.

NOTE: By default, a movie player controller will play the audio of a movie along with
the audio in your app. If you’d like to change this behavior and ensure that the
movie’s audio is not mixed with the other audio in your app, set the
useApplicationAudioSession property of your movie player controller to NO.

Using MPMoviePlayerViewController
The easiest way to play video is to not use an MPMoviePlayerController at all
but instead to use another class that uses it, the MPMoviePlayerViewController
class. This class is a self-contained way to present a full-screen view controller
and play a movie in it. It contains its own logic for displaying movie controls but
otherwise acts like a normal view controller. Using it is as easy as creating a
movie player controller:

NSURL *movieURL = [[NSBundle mainBundle] URLForResource:@"myMovie"
 withExtension:@"mov"];

MPMoviePlayerViewController *moviePlayerViewController =
[[MPMoviePlayerViewController alloc] initWithContentURL:movieURL];

You can access the movie player controller that the movie player view controller
uses behind the scenes by accessing its moviePlayer property. This allows you
to configure the MPMoviePlayerController p roperties you need for p layback-----
we’ll get to those in a bit. When you want to present a movie player, instead of
using presentModalViewController:animated:, you’ll use
presentMoviePlayerViewControllerAnimated:, a similar method designed for
this specific use (and defined in the MediaPlayer framework as a category on
UIViewController) that will display the movie player view controller modally. The
sole parameter to this method is the movie player view controller; it always
displays with an animation. When your video is done, call
dismissMoviePlayerViewControllerAnimated to dismiss it. But how do you know
that the video is done? For that, you’ll need to use the MPMoviePlayerController
in the moviePlayer property of the MPMoviePlayerViewController.

One of the things you can do with an MPMoviePlayerController is sign up for
notifications it posts at different points in the movie-playing process. The
notification in this case, MPMoviePlayerPlaybackDidFinishNotification, is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 335

posted when the video finishes, whether it finishes because it played in its
entirety or because an error occurred. In the case of an
MPMoviePlayerViewController, you might dismiss the view controller when its
video has finished. The MPMoviePlayerPlaybackDidFinishNotification
notification will not be sent if the user presses the Done button to stop watching
the video; in that case, the movie player controller will post the
MPMoviePlayerDidExitFullscreenNotification notification. If you don’t use a
movie player view controller, however, you can do more interesting things with
the video by simply using the movie player controller.

Using the MPMoviePlayerController’s View
One of the MPMoviePlayerController’s properties is the view property. This is a
regular UIView and can be placed in your view hierarchy wherever you like.
When it appears, it will contain a system-drawn Play button. On an iPhone or
iPod touch, because the screen size is limited, the video will automatically play
in full=screen. On an iPad, the video will by default play inline right where the
movie player controller’s view is. You can, of course, play the video without it
being full-screen on an iPhone or iPod touch or play the video full-screen on an
iPad. Whether or not the video is currently playing and no matter which device
you’re using, you can call the movie player controller’s
setFullscreen:animated: method to enter and exit full-screen playback. This
generates a notification you can listen for, either
MPMoviePlayerDidEnterFullscreenNotification or
MPMoviePlayerDidExitFullscreenNotification. When the video is playing in
full-screen mode, the system automatically provides a Done button that the user
can press to exit the full-screen mode.

The movie controls-----the play, pause, rewind, and fast-forward buttons, among
others-----are provided standard on a movie player controller’s view. If you’d like
to supply your own, perhaps to use your app’s UI style, you can use the movie
player controller’s controlStyle property. Set this to the
MPMovieControlStyleNone constant to remove the built-in controls, and then add
your own controls as subviews of the movie player controller’s view. Simply call
the play, pause, stop, and other methods as appropriate when your custom
controls are used.

Playing Network Video
The initialization method for the MPMoviePlayerController class is
initWithContentURL:. While you can use a file URL for a file located in your
application’s bundle or elsewhere in the filesystem, you can also use a remote

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 336

URL to play a movie from a server. If the video’s URL was
http://www.example.com/myMovie.mp4, the code to create a movie player
controller would be as follows:

NSURL *movieURL = [NSURL URLWithString:@"http://www.example.com/myMovie.mp4"];

MPMoviePlayerController *moviePlayerController =
[[MPMoviePlayerController alloc] initWithContentURL:movieURL];

If you do this, there are some considerations to keep in mind. Since part of the
remote movie is its metadata such as duration, you can’t necessarily access
those immediately. If the movie player controller can’t determine the duration of
its movie, it will return 0.0 for its duration property. If that happens, you can
sign up to be notified when the duration is known by registering an observer for
the MPMovieDurationAvailableNotification notification. Assuming you have a
label called durationLabel, here’s how you would initialize it with the movie’s
duration:

MPMoviePlayerController *moviePlayerController =
[[MPMoviePlayerController alloc] initWithContentURL:movieURL];

NSTimeInterval duration = [moviePlayerController duration];

if (duration > 0.0) {
 NSString *durationString =
 [NSString stringWithFormat:@"%f", duration];

 [durationLabel setText:durationString];
}
else {
 [durationLabel setText:nil];

 NSNotificationCenter *notificationCenter = [NSNotificationCenter
defaultCenter];

 [notificationCenter addObserverForName:MPMovieDurationAvailableNotification
 object:moviePlayerController
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 NSString *durationString =
 [NSString stringWithFormat:@"%f", duration];

 [durationLabel setText:durationString];
 }];
}

Note that we register for this notification only for the movie player controller in
question; you might have several movie player controllers active at one time, so
you want to be sure you’re getting the duration from the right one.

www.it-ebooks.info

http://www.example.com/myMovie.mp4
http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 337

Getting Video Thumbnails
Another item you won’t be able to get immediately from a video played over the
network is a thumbnail image to use. Ordinarily, you would use the
thumbnailImageAtTime:timeOption: method to retrieve a thumbnail from a
movie player controller. The first parameter to this method is an NSTimeInterval
value representing the time in the movie, in seconds from its beginning, for
which you’d like a thumbnail, which can be useful if, for instance, you’re building
a UI that navigates between multiple chapters in a movie. The second parameter
is an MPMovieTimeOption constant, which will be either
MPMovieTimeOptionNearestKeyFrame or MPMovieTimeOptionExact. The former
doesn’t attempt to get a thumbnail at exactly the time specified, instead opting
for the nearest keyframe, which can offer better performance, while the second
value causes the thumbnail to come from exactly the specified time in the video.
Depending on the video compression codec used to compress the video, this
can result in the movie player controller compositing several frames of
compressed video together to create the desired thumbnail.

The problem with using the thumbnailImageAtTime:timeOption: method is that it
runs synchronously. For a network video, if you call this method and ask for a
thumbnail near the end, this can cause the method to block the current thread
for quite some time. To work around this, as well as to offer the ability to request
multiple thumbnails at once separately and asynchronously, the
MPMoviePlayerController class offers the
requestThumbnailImagesAtTimes:timeOption: method. The first parameter is an
NSArray of NSNumber objects representing NSTimeInterval values in seconds
from the beginning of the video, and the second is the same MPMovieTimeOption
value as before. When you create the NSNumber objects for use in this array, be
sure to use the numberWithDouble: class method of NSNumber, because using
numberWithInt: or other methods that use integers will cause an error. The
movie player controller is expecting an NSTimeInterval value, which is defined
as a double. Once the thumbnails are available, the movie player controller
posts a notification with the name
MPMoviePlayerThumbnailImageRequestDidFinishNotification. Passed with this
notification in its userInfo dictionary are two objects. One is the NSNumber object
representing the time in the movie in seconds from its beginning for which
you’re requesting the thumbnail, which will be associated with the key
MPMoviePlayerThumbnailTimeKey. The other object will be either the thumbnail
image, represented by a UIImage object, or an error, represented by an NSError
object, associated with one of two keys: MPMoviePlayerThumbnailImageKey or
MPMoviePlayerThumbnailErrorKey, depending on if the operation was
successful.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 338

Finally, i f you need to cancel thumbnail requests-----for instance, if the user leaves
a v iew controller that was to d isplay the thumbnail images-----you can call the
movie player controller’s cancelAllThumbnailImageRequests method, which, as
the name implies, will cancel all thumbnail image requests currently pending.

AirPlay
AirPlay is Apple’s technology for streaming audio and video over a local
network. If you have an Apple TV at home and a wireless network, you can use it
to receive audio and video from your iOS devices. By default, an
MPMoviePlayerController will not allow its videos to be streamed to other
devices via AirPlay; to allow this, set the allowsAirPlay property of the movie
player controller to YES. Once you do, the controls in the
MPMoviePlayerController’s view will contain a button to send the currently
playing video to another device.

We’ve covered pretty much everything involved in using the
MPMoviePlayerController class to play video. You can also use the
AVFoundation f ramework to p lay v ideo-----particularly if you need to play multiple
videos a t once-----but for the vast majority of needs, MPMoviePlayerController
and MPMoviePlayerViewController suffice to handle the playback of video. Let’s
write a sample app to put this knowledge to use.

Example: CustomPlayer
This sample app will be fairly simple. Our goal is to obtain a video-----we’ll use a
UIImagePickerController for that-----and then to display the video using custom
controls. Open Xcode and select File  New  Project…, or press +Shift+N.
Select Application in the leftmost column under the iOS section, and then select
Single View Application on the right. Click Next, and then enter CustomPlayer
as the name for the project. Enter your company identifier and class prefix (I’ll
use com.learncocoatouch and LCT), select iPhone for Device Family, and
ensure that Use Automatic Reference Counting is checked and both Use
Storyboards and Include Unit Tests are unchecked. Click Next, and then click
Create to save the project to disk.

First, let’s add our user interface. This app will be fairly simple: a single table
view. Open the main view controller’s user interface file (LCTViewController.xib)
in Xcode. Since we’ll be embedding this view controller in a navigation
controller, select the view and open the Attributes Inspector by selecting View 
Utilities  Show Attribute Inspector or by pressing Option+ +4. Under
Simulated Metrics, select Navigation Bar for the Top Bar setting. You should see

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 339

a navigation bar appear, indicating the portion of the screen it will take up. Open
the Object Library by selecting View  Utilities  Show Object Library or by
pressing Control+Option+ +3. Once it’s open, drag two Round Rect Buttons
into your view. Double-click them to change their title; set the title of one to Play
and the title of the other to Fullscreen. Drag them down to the bottom of the
user interface (a blue guide will appear to show you the appropriate distances
from the bottom to use). Next, drag a new View object from the object library
into your view, and resize it to fill the space above the buttons, using the blue
guides to line it up. When you’re done, it should look like Figure 11-5.

Figure 11-5. Our custom video player UI

Since this app is going to support rotation, we’ll need to set the autoresizing
masks for these views appropriately. We want the Play button to stay in the
bottom-left corner, the Fullscreen button to stay in the bottom-right corner, and
the view above them to grow with the view. Open the Size Inspector by
selecting View  Utilities  Show Size Inspector or by pressing Option+ +5.
Select the Play button by single-clicking it. In the Size Inspector, adjust the area
above the label that reads Autosizing to modify the autosizing mask such that
the bottom and left struts (the lines outside of the inner box) are selected
(indicated by a solid red line) and the other struts and both springs (the arrows
inside the inner square) are not selected (indicated by a dashed red line). Next,
select the Fullscreen button and set it to the mirror image of the Play button; the
only selected springs or struts should be the bottom and right struts. Next, for

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 340

the view above the two buttons, set the autoresizing mask so that all four struts
and both springs are selected; this will allow it to resize with the view.

Our user interface is set up, so let’s define some outlets for these objects, as
well as some actions for the buttons. We’ll also indicate that this view controller
conforms to a few of delegate protocols: one for an action sheet, one for a
navigation controller, and one for an image picker controller. Open the view
controller’s header file (LCTViewController.h), and add the code in bold:

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController <UIActionSheetDelegate,
UIImagePickerControllerDelegate, UINavigationControllerDelegate>

@property (strong, nonatomic) IBOutlet UIView *movieHostingView;
@property (strong, nonatomic) IBOutlet UIButton *playPauseButton;
@property (strong, nonatomic) IBOutlet UIButton *fullscreenButton;

- (IBAction)playPauseButtonPressed:(id)sender;
- (IBAction)fullscreenButtonPressed:(id)sender;

@end

Next, let’s connect our view objects to these outlets and actions. Open the user
interface file (LCTViewController.xib) again. Holding Control, and drag from the
File’s Owner at the left of Xcode’s editing pane to the view above your buttons,
selecting movieHostingView from the Outlets pop-up that appears. Do the same
for the buttons, selecting the playPauseButton outlet for the button labeled Play
and the fullscreenButton outlet for the button labeled Fullscreen. Now let’s
connect the actions; holding Control, drag from the button labeled Play to the
File’s Owner object, selecting the playPauseButtonPressed: action from the
Sent Events pop-up that appears. Do the same for the button labeled
Fullscreen, selecting the fullscreenButtonPressed: action from the pop-up
instead. This completes our user interface setup; let’s move into the
implementation.

Since we’re going to embed the view controller in a navigation controller, we’ll
need to modify the app delegate’s implementation. Open its implementation file
(LCTAppDelegate.m), and modify the
application:didFinishLaunchingWithOptions: method by adding the lines in
bold and removing the struck-out line:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
bounds]];
 // Override point for customization after application launch.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 341

 self.viewController = [[LCTViewController alloc]
initWithNibName:@"LCTViewController" bundle:nil];

 UINavigationController *navigationController =
 [[UINavigationController alloc] initWithRootViewController:[self
viewController]];

 self.window.rootViewController = self.viewController;
 self.window.rootViewController = navigationController;
 [self.window makeKeyAndVisible];
 return YES;
}

Before we implement our view controller, add the MediaPlayer and
MobileCoreServices frameworks to your project and link them to your target. To
do this, select the project at the top of the file browser in Xcode, click the
CustomPlayer target, and then select Build Phases’’ in the editing pane. Expand
the Link Binary With Libraries phase by clicking the triangle next to it, and then
click the Add button (+) and select MediaPlayer.framework. Click the Add button
again and select MobileCoreServices.framework.

Now that we’ve added the MediaPlayer and MobileCoreServices frameworks to
the project, let’s implement our view controller. Open the view controller’s
implementation file (LCTViewController.m). Import the MediaPlayer and
MobileCoreServices headers by adding the line in bold at the top of the file:

#import "LCTViewController.h"

#import <MediaPlayer/MediaPlayer.h>
#import <MobileCoreServices/MobileCoreServices.h>

Next, we’ll add a private instance variable to store a pointer to an
MPMoviePlayerController. We’re also going to add a method that will be called
by a button on the navigation bar to bring up an image picker controller, and
we’re going to add a method to show this image picker controller. Modify the
class extension by adding the following code in bold:

@interface LCTViewController () {
 MPMoviePlayerController *_moviePlayerController;
}

- (void)selectVideoButtonPressed:(id)sender;
-
(void)showImagePickerForSourceType:(UIImagePickerControllerSourceType)sourc
eType;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 342

Now we can implement the view controller. The first thing we’ll do is add
@synthesize directives for our properties. Second, we’ll implement the
initWithNibName:bundle: method to do some additional setup when our view
controller is created. To perform these tasks, add the lines in bold:

@implementation LCTViewController

@synthesize movieHostingView;
@synthesize playPauseButton;
@synthesize fullscreenButton;

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle
*)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

 if (self) {
 [self setTitle:@"CustomPlayer"];

 SEL selectVideoSelector = @selector(selectVideoButtonPressed:);
 UIBarButtonItem *selectVideoButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCamera
 target:self

action:selectVideoSelector];

 [[self navigationItem] setRightBarButtonItem:selectVideoButton];
 }

 return self;
}

The button we create here will be used to bring up an image picker controller.
First, we’ll determine whether video is available using the camera, the photo
library, or both. Depending on what we find, we’ll show either the image picker
controller or an action sheet to ask the user which source type to use. We’ll
implement the selectVideoButtonPressed: method first. Add the lines in bold
after the view controller methods from the template but before the @end compiler
directive:

- (void)selectVideoButtonPressed:(id)sender
{
 // Determine the ways in which we can get a video from an image picker
controller.
 BOOL canUseCamera = NO;

 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera] &&

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 343

 [[UIImagePickerController

availableMediaTypesForSourceType:UIImagePickerControllerSourceTypeCamera]
 containsObject:(NSString *)kUTTypeMovie]) {
 canUseCamera = YES;
 }

 BOOL canUsePhotoLibrary = NO;

 if ([UIImagePickerController

isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary] &&
 [[UIImagePickerController

availableMediaTypesForSourceType:UIImagePickerControllerSourceTypePhotoLibr
ary]
 containsObject:(NSString *)kUTTypeMovie]) {
 canUsePhotoLibrary = YES;
 }

 // If we can use both source types, show the user an action sheet to
allow them to
 // decide which to use.
 if (canUseCamera == YES && canUsePhotoLibrary == YES) {
 UIActionSheet *actionSheet =
 [[UIActionSheet alloc] initWithTitle:nil
 delegate:self
 cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:nil
 otherButtonTitles:@"Take a Video", @"Use Photo
Library", nil];

 [actionSheet showInView:[self view]];
 }
 else if (canUseCamera == YES && canUsePhotoLibrary == NO) {
 [self
showImagePickerForSourceType:UIImagePickerControllerSourceTypeCamera];
 }
 else if (canUseCamera == NO && canUsePhotoLibrary == YES) {
 [self
showImagePickerForSourceType:UIImagePickerControllerSourceTypePhotoLibrary]
;
 }
 else {
 // Neither the camera or the photo library are available.
 UIAlertView *alertView =
 [[UIAlertView alloc] initWithTitle:@"Error Loading Video"
 message:@"No source type is available."
 delegate:nil
 cancelButtonTitle:@"OK"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 344

 otherButtonTitles:nil];
 [alertView show];
 }
}

In this method, we use canUseCamera and canUsePhotoLibrary to store whether
we can use the camera or photo library, respectively. To determine this, we use
the UIImagePickerController class method isSourceTypeAvailable: to
determine whether the source is available and then use
availableMediaTypesForSourceType: to determine whether the source type can
return videos. This is important because some older iOS devices have cameras
but are not capable of shooting video, though they can take pictures. If we find
that both source types are available and can return video, we create a
UIActionSheet with both choices and present it to the user. If we find that only
one of the source types is available and can return video, we call the
showImagePickerForSourceType: method on our view controller with that source
type. If neither source type is available, we notify the user with a UIAlertView. If
we present the action sheet, the action sheet delegate method
actionSheet:clickedButtonAtIndex: is called when the user selects an option.
Let’s add a #pragma mark statement before we implement this method to help us
organize the code a bit. Add this code in bold after the previous method you
implemented but before the @end directive:

#pragma mark - UIActionSheetDelegate Protocol Methods

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 0) {
 // The user selected "Take a Video."
 [self
showImagePickerForSourceType:UIImagePickerControllerSourceTypeCamera];
 }
 else if (buttonIndex == 1) {
 // The user selected "Use Photo Library."
 [self
showImagePickerForSourceType:UIImagePickerControllerSourceTypePhotoLibrary]
;
 }
}

As you can see, this method simply examines the index of the selected button
and calls showImagePickerForSourceType: with the source type the user
selected. Now that we’ve added this method, let’s implement
showImagePickerForSourceType:. In keeping with how we’re organizing our
code, add this method before the #pragma mark line you added before by
inserting the lines in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 345

-
(void)showImagePickerForSourceType:(UIImagePickerControllerSourceType)sourc
eType
{
 UIImagePickerController *imagePicker =
 [[UIImagePickerController alloc] init];

 [imagePicker setDelegate:self];
 [imagePicker setMediaTypes:[NSArray arrayWithObject:(NSString
*)kUTTypeMovie]];
 [imagePicker setSourceType:sourceType];

 [self presentModalViewController:imagePicker animated:YES];
}

In this method, we create a UIImagePickerController, set our view controller as
its delegate, set its mediaTypes property to an array including only the
kUTTypeMovie type to prevent the user from selecting images, and finally set the
source type to the given source type. We then present the image picker
controller modally. The user will then either press Cancel, take a video, or select
a video, at which point the image picker controller will call its delegate methods.
Let’s implement those now. We’ll add a new #pragma mark section for these
methods, so add the following lines in bold after the
actionSheet:clickedButtonAtIndex: method but before the @end directive:

#pragma mark - UIImagePickerControllerDelegate Protocol Methods

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self dismissModalViewControllerAnimated:YES];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [self dismissModalViewControllerAnimated:YES];

 NSURL *movieURL = [info objectForKey:UIImagePickerControllerMediaURL];

 if (movieURL != nil) {
 _moviePlayerController =
 [[MPMoviePlayerController alloc] initWithContentURL:movieURL];

 [_moviePlayerController setControlStyle:MPMovieControlStyleNone];

 [[_moviePlayerController view]
 setAutoresizingMask:(UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight)];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 346

 [[_moviePlayerController view] setClipsToBounds:YES];
 [[_moviePlayerController view] setFrame:[[self movieHostingView]
bounds]];
 [[self movieHostingView] addSubview:[_moviePlayerController view]];
 }
}

Whether the user cancels, takes a video, or selects a video, the first thing we do
is call dismissModalViewControllerAnimated: on our view controller to get rid of
the image picker controller. If the user didn’t cancel, we get the movie URL from
the info dictionary in the
imagePickerController:didFinishPickingMediaWithInfo: method. Here, we
create an MPMoviePlayerController pointing to this URL. We set its control style
to MPMovieControlStyleNone to remove the built-in controls and then set its
view’s autoresizing mask to resize along with its containing view. We set the
clipsToBounds property of the movie player controller’s view to YES in order to
prevent it from drawing outside of its frame, then we set its frame to the bounds
of the movie hosting view, which will cause it to fill the movie hosting view in its
entirety. Finally, we add the movie player controller’s view as a subview of the
movie hosting view.

Now that we’ve added this code, if the user of this app were to press the
camera button again to choose a new video, our code would add a new movie
player controller’s view to the movie hosting view. To prevent this, modify the
selectVideoButtonPressed: method by adding the lines in bold at the beginning
of the method:

- (void)selectVideoButtonPressed:(id)sender
{
 // If there is already a movie player controller, clean it up.
 if (_moviePlayerController != nil) {
 [[_moviePlayerController view] removeFromSuperview];
 _moviePlayerController = nil;
 }

 // Determine the ways in which we can get a video from an image picker
controller.
 BOOL canUseCamera = NO;
 ...

This will prevent us from having multiple movie player controllers’ views in the
view hierarchy at once. Next up, let’s add methods for our Play and Fullscreen
buttons. Add these two methods before the #pragma mark sections, after
showImagePickerForSourceType:, by adding the code in bold:

- (void)playPauseButtonPressed:(id)sender
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 347

 if (_moviePlayerController == nil) {
 return;
 }

 if ([_moviePlayerController playbackState] ==
MPMoviePlaybackStatePlaying) {
 // The video is playing.
 [_moviePlayerController pause];
 }
 else {
 // The video is not playing.
 [_moviePlayerController play];
 }
}

- (void)fullscreenButtonPressed:(id)sender
{
 if (_moviePlayerController == nil) {
 return;
 }

 [_moviePlayerController setControlStyle:MPMovieControlStyleDefault];
 [_moviePlayerController setFullscreen:YES animated:YES];
}

In each method, we’ll quit immediately by calling return if there isn’t a movie
player controller. In playPauseButtonPressed:, if the movie player controller is
currently playing, we call pause on it; otherwise, we call play. In the
fullscreenButtonPressed: method, before we call setFullscreen:animated: on
the movie player controller, we set its control style back to
MPMovieControlStyleDefault. If we didn’t do this, the full-screen movie wouldn’t
have any playback controls, which would make it hard for us to get back! Now
that we’ve added these methods, build and run the app on a device that
supports video recording or that has videos in its media library. Press the
camera button, select or take a video, and you can use the Play button to start
the video in our view controller’s view! If you’ve selected a video from the library,
you may see a progress bar labeled ‘‘Compressing Video…’’ while the video is
compressed for playback in your app.

There are a few more things we’ll do to improve this app’s experience. The
movie player controller posts notifications to the default NSNotificationCenter
as it plays, which we can take advantage of to modify our user interface. Modify
the initWithNibName:bundle: method to listen for these notifications by adding
the lines in bold:

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 348

 if (self) {
 [self setTitle:@"CustomPlayer"];

 SEL selectVideoSelector = @selector(selectVideoButtonPressed:);
 UIBarButtonItem *selectVideoButton =
 [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemCamera
 target:self

action:selectVideoSelector];

 [[self navigationItem] setRightBarButtonItem:selectVideoButton];

 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMoviePlayerPlaybackStateDidChangeNotification
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 MPMoviePlayerController *moviePlayerController = [note
object];

 if ([moviePlayerController playbackState] ==
MPMoviePlaybackStatePlaying) {
 [[self playPauseButton] setTitle:@"Pause"
 forState:UIControlStateNormal];
 }
 else {
 [[self playPauseButton] setTitle:@"Play"
 forState:UIControlStateNormal];
 }
 }];

 [[NSNotificationCenter defaultCenter]
 addObserverForName:MPMoviePlayerDidExitFullscreenNotification
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 MPMoviePlayerController *moviePlayerController = [note
object];

 [moviePlayerController
setControlStyle:MPMovieControlStyleNone];
 }];
 }

 return self;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Media in Your App: Playing Audio and Video 349

In this code, we respond to two notifications,
MPMoviePlayerPlaybackStateDidChangeNotification and
MPMoviePlayerDidExitFullscreenNotification. For the former, we modify the
title of the Play/Pause button; if our movie is playing, we set it to Pause, and if
not, we set it to Play. For the latter, once the movie player isn’t playing full-
screen anymore, we set the movie player control style back to None. Since
we’ve registered to receive these notifications, we need to remember to tell the
notification center when we no longer need these notifications. To do that, add a
dealloc method after initWithNibName:bundle: by adding the lines in bold:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self name:nil
object:nil];
}

With that, we’re done! Any video you select or take using the image picker
controller will play in the view controller we’ve created using our own custom
controls. If you have an AirPlay-compatible device, go ahead and test sending
the video to it from the full-screen view, too. Using this technique, you can
incorporate videos into your app with your own custom UI, so you aren’t limited
to the built-in style for your app.

Summary
This chapter has been all about media, both audio and video. After reading it,
you should be able to play audio and video in your app. For audio, you’ve
learned three different ways to get sound from a file on a disk to your user’s
ears, and for video, you’ve learned how to display videos in your own UI or
using built-in controls. Using these techniques, you’ll be able to make rich apps
that use media to gain your users’ attention.

www.it-ebooks.info

http://www.it-ebooks.info/

12
Chapter

Localization and
Internationalizion
As we near the end of this book, it’s only appropriate that we discuss the
process of internationalizing and localizing your app. As you develop the app,
you’re more than likely developing it in your native tongue. You may already
have been thinking about supporting multiple languages in your apps, but in
truth that’s only part of the story. These processes include thinking about your
users’ desired language, currency, number formats, date formats, and culture
when developing your app. In this chapter, we’ll cover the different ways you
can localize and internationalize your app, as well as some key considerations to
make when doing so. First, though, let’s talk about a more important question:
why?

Many developers create their app in English and then release it worldwide on
the App Store. For most of them, this works fairly well; English is spoken enough
in countries other than the United States that they’ll see sales in those countries,
but the majority of their sales will come from English-speaking countries. As of
this writing, the App Store is available in more than 120 countries, and iOS
supports more than 50 languages. Making the decision to ignore 49 languages
and have lackluster sales in 119 countries saves you time, but in the end it will
probably cost you money. Localizing your app has an immediate impact, even
before your app is downloaded, because you can localize the App Store
description of your app. A user is more likely to download your app if she is able
to read its description in the App Store. Following this chapter’s guidelines,
then, can lead to more sales and a much happier user base around the world.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 352

Internationalization
The first thing we’ll cover in this chapter is internationalization. You’re probably
already familiar w ith the concept o f l ocalization-----translating an app into a
different l anguage-----but internationalization is a bit more intricate than that. It
covers the little things in your app: the way you represent numbers, dates, and
currency, for instance. iOS supports your internationalization efforts using
locales, which encapsulate regional conventions in the NSLocale class. Rather
than the user selecting a locale a t runtime-----or worse, your app trying to
determine i t automatically-----the system keeps track of the locale the user has
selected. You can use the currentLocale class method to retrieve the NSLocale
for the user. For testing purposes, you can change the selected locale on either
an iOS device or the iOS Simulator. Note that this will not affect currently
running apps; to test changing the locale in your apps, be sure to quit them
before changing the locale. Open the Settings app, select General and then
International. You’ll see a screen similar to Figure 12-1. The locale can be
changed by tapping the Region Format row, here set to United States. Changing
the region format does not automatically change the device’s language, which is
done by tapping the Language row. We’ll discuss changing the language later
when we discuss localization.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 353

Figure 12-1. The International section of the General settings section

Now that we’ve seen how to change the region format, we can look at how to
use the user’s selection when presenting data.

Using Numbers
Different areas represent numbers in different ways. A number represented as
1,000.42 in the United States is represented as 1 000,42 in France. The same
number will be represented entirely differently in countries that don’t use Arabic
digits for numbers. Rather than having to write your own code to handle this and
then accidentally getting it completely wrong for some countries, thereby
angering those users, you can use the NSNumberFormatter class to automatically

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 354

take the user’s selected locale into account when displaying numbers and
number strings (for example, one hundred twenty three) to the user.

Let’s take a look at how to use NSNumberFormatter. If you look at the
documentation, there are dozens of instance methods; you can customize the
output of a number formatter to your heart’s content if you like, but here we’re
more interested in getting the default behavior for a locale than defining a
custom number format. To use the built-in formatting, simply call the
setNumberStyle: method on your NSNumberFormatter object. The possible
values include NSNumberFormatterDecimalStyle,
NSNumberFormatterCurrencyStyle, NSNumberFormatterPercentStyle,
NSNumberFormatterScientificStyle, NSNumberFormatterNoStyle, and
NSNumberFormatterSpellOutStyle. To use the decimal style, create a number
formatter as follows:

NSNumber *number = [NSNumber numberWithDouble:1000.42];
NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterDecimalStyle];

NSString *formattedString = [numberFormatter stringFromNumber:number];

With your locale set to United States, formattedString will be ‘‘1,000.42.’’ With
a locale set to French  France, it’s 1 000,42, and it’s 1.000,42 for German 
Germany. You should use a number formatter any time you’re going to display a
number to the user in an internationalized app. By using the number formatters,
your users will be able to tell that you’ve put thought into international versions
of your app, which they’ll appreciate.

Displaying numbers in the appropriate format isn’t enough. If your app uses
units of measure, such as for weight, length, or volume, you should use the unit
system your user is used to. To support this, you can query the NSLocale object
to see whether the locale uses the metric system:

NSLocale *locale = [NSLocale currentLocale];
NSNumber *usesMetricNumber = [locale objectForKey:NSLocaleUsesMetricSystem];
BOOL usesMetric = [usesMetricNumber boolValue];

Once you can determine whether you should use the metric system, you should
(if necessary) convert the value to the user’s measurement system. It’s a small
step but one that will make your users like your app better. To demonstrate this,
let’s make a sample app that uses the locale.

Example: LocaleNumbers
In this sample app, we’ll use the current locale to write numbers appropriately
for the user. Open Xcode and select File  New  Project…, or press

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 355

�+Shift+N. Select Application in the leftmost column under the iOS section, and
then select Single View Application on the right. Click Next, and then enter
LocaleNumbers as the name for the project. Enter your company identifier and
class prefix (I’ll use com.learncocoatouch and LCT), select iPhone for Device
Family, and ensure that Use Automatic Reference Counting is checked and both
Use Storyboards and Include Unit Tests are unchecked. Click Next, and then
click Create to save the project to disk.

The UI of this project will be fairly simple: just a handful of labels. Open the main
view controller’s user interface file (LCTViewController.xib) in Xcode. Open the
Object Library by selecting View  Utilities  Show Object Library or by
pressing Control+Option+�+3. Once it’s open, we’ll add two labels for each of
the six built-in NSNumberFormatter styles, making it 12 in total. Arrange them in
six rows with two columns each. To make it easier, you can place two labels
next to each other, hold Option, and drag to create duplicate labels, allowing
you to create two at a time instead of one at a time. Double-click the labels in
the left column to change their text; from top to bottom, set the labels to
NoStyle, DecimalStyle, CurrencyStyle, PercentStyle, ScientificStyle, and
SpellOutStyle. Let’s make these labels bold. To make it easier, you can select
them all at once; click underneath them in the view, and then drag to make a
rectangle, selecting each view contained inside. Alternatively, you can hold Shift
or � while clicking the labels to select more than one. Once you have all six
labels selected, open the Attributes Inspector by selecting View  Utilities 
Show Attribute Inspector or by pressing Option+�+4. Click the icon with a T in it
at the right of the Font text box to adjust the labels’ font; in the pop-up menu
that appears, change System to System Bold. Note that when you do so, the
size of the text increases. The labels had automatically sized themselves when
you entered text into them. To automatically resize them to accommodate their
new size, press �+= with one or more label selected. For the other six labels,
let’s do two things: first, select them all and open the Attributes Inspector. Next
to Alignment, select the rightmost section of the alignment button to set the
labels’ text to be right-aligned. Second, open the Size Inspector by selecting
View  Utilities  Show Size Inspector or by pressing Option+�+5. Above
Origin, there is a square with nine dots in it. Click the dot in the upper-right
corner, which will anchor the labels to that corner of their frame as you change
their size. Change the value of the text field above Width to 75, which will
expand the labels to be 75 points wide. This will give them enough room to
display their content, except for the last one, which corresponds to the ‘‘spell
out’’ style. For this label, drag it down below the label to its left and expand it to
fill the view horizontally; this should give it enough room. When you’re done, the
view should look like Figure 12-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 356

Figure 12-2. Our sample project’s user interface

Let’s define some outlets for these labels. We’re going to be changing the labels
only on the right, so we’ll need only six outlets. Open the view controller’s
header file (LCTViewController.h), and add the lines in bold:

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController

@property (weak, nonatomic) IBOutlet UILabel *noStyleLabel;
@property (weak, nonatomic) IBOutlet UILabel *decimalStyleLabel;
@property (weak, nonatomic) IBOutlet UILabel *currencyStyleLabel;
@property (weak, nonatomic) IBOutlet UILabel *percentStyleLabel;
@property (weak, nonatomic) IBOutlet UILabel *scientificStyleLabel;
@property (weak, nonatomic) IBOutlet UILabel *spellOutStyleLabel;

@end

Next, switch back to the user interface (LCTViewController.xib) and connect
the outlets by holding Control and dragging from the File’s Owner object to the
left of Xcode’s editor pane to each of the labels on the right in turn, selecting the
outlet that matches the label to the left for each one. If you make a mistake, it’s
easy to remove the outlet connection. Click the label you made a mistake with,
and open the Connections Inspector by selecting View  Utilities  Show

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 357

Connections Inspector or by pressing Option+�+6. In the Utilities pane at the
right of Xcode’s window, you’ll see a list of all the connected outlets for the
selected object. Click the X in an outlet to disconnect it. Once your labels are all
hooked up properly, let’s switch to the implementation file
(LCTViewController.m). Add the lines in bold after the @implementation directive
to synthesize accessors for our properties:

@implementation LCTViewController

@synthesize noStyleLabel;
@synthesize decimalStyleLabel;
@synthesize currencyStyleLabel;
@synthesize percentStyleLabel;
@synthesize scientificStyleLabel;
@synthesize spellOutStyleLabel;

Next, we’ll modify the viewDidLoad method to fill in these labels. Add the
following lines in bold to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSNumber *number = [NSNumber numberWithDouble:1000.42];

 NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];

 [numberFormatter setNumberStyle:NSNumberFormatterNoStyle];
 [[self noStyleLabel] setText:[numberFormatter
stringFromNumber:number]];

 [numberFormatter setNumberStyle:NSNumberFormatterDecimalStyle];
 [[self decimalStyleLabel] setText:[numberFormatter
stringFromNumber:number]];

 [numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
 [[self currencyStyleLabel] setText:[numberFormatter
stringFromNumber:number]];

 [numberFormatter setNumberStyle:NSNumberFormatterPercentStyle];
 [[self percentStyleLabel] setText:[numberFormatter
stringFromNumber:number]];

 [numberFormatter setNumberStyle:NSNumberFormatterScientificStyle];
 [[self scientificStyleLabel] setText:[numberFormatter
stringFromNumber:number]];

 [numberFormatter setNumberStyle:NSNumberFormatterSpellOutStyle];
 [[self spellOutStyleLabel] setText:[numberFormatter

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 358

stringFromNumber:number]];
}

As you can see, for each label, we set a number formatter’s style to the
appropriate style constant and the value of the label to the same number,
formatted with the appropriate style. Build and run the app. You should see the
numbers formatted for your locale. Quit the app by clicking the Stop button in
Xcode, and then switch back to the iOS Simulator, open Settings, select General
 International  Region Format, and select a different locale. Build and run the
app again, and you’ll see the numbers formatted for the locale you chose. For
the United States, French  France, and Chinese  China locales, the app
should look like Figure 12-3.

Figure 12-3. Our example app running in the United States locale (left), French  France locale
(center), and Chinese  China (right)

As you can see, the different number formatter styles have different effects on
the numbers displayed in this app. With no region-specific code, however, you
can use these styles to display numbers in your users’ native format. Next, we’ll
discuss a similar problem with a similar solution: displaying dates.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 359

Using Dates
Just as we use NSNumberFormatter to present strings from NSNumber objects that
represent numbers, we use the NSDateFormatter object to present strings from
NSDate objects that represent dates. Using an NSDateFormatter is similar to an
NSNumberFormatter:

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterFullStyle];

NSString *formattedDate = [dateFormatter stringFromDate:[NSDate date]];

In the U.S. locale, formattedDate is equal to ‘‘Wednesday, April 4, 2012’’ based
on today’s date being April 4, 2012. Since the NSDate object also represents
time as well as date, we can use the setTimeStyle: instance method of
NSDateFormatter to define how the time should be displayed:

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterFullStyle];
[dateFormatter setTimeStyle:NSDateFormatterFullStyle];

NSString *formattedDate = [dateFormatter stringFromDate:[NSDate date]];

In the U.S. locale, formattedDate will now be equal to ‘‘Monday, April 16, 2012
12:24:50 AM Eastern Daylight Time,’’ with values for the current date and time,
of course, including daylight saving time based on the time zone. This same
code, in the France locale, will set formattedDate to ‘‘lundi 16 avril 2012
00:24:50 heure avancée de l’Est.’’ In the locale for Irish (Ireland), formattedDate
is ‘‘Dé Luain 16 Aibreán 2012 00:26:23 GMT-04:00.’’ Now, I don’t speak the
language nor have I ever been to Ireland, but I can say with confidence that if I
need to build an app that displays dates to my users, I can do so no matter
where in the world they are (so long as the device supports their locale).

There are a wide variety of date formatter styles you can use for formatting
dates. You can set the date and time styles independently to get the format you
need. Table 12-1 displays the most commonly used styles, along with U.S.
locale examples of their results.

Table 12-1. Date and Time Formatter Styles Available Using NSDateFormatter

Date Formatter Style Formatted Date and Time

NSDateFormatterShortStyle 4/4/12 11:55 PM

NSDateFormatterMediumStyle Apr 4, 2012 11:55:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 360

Date Formatter Style Formatted Date and Time

NSDateFormatterLongStyle April 4, 2012 11:56:10 PM EDT

NSDateFormatterFullStyle Wednesday, April 4, 2012 11:56:46 PM
Eastern Daylight Time

You can also use NSDateFormatterNoStyle for either the date or time style to
omit that portion of the date. You can also mix and match styles; if you want a
long date but a short time, you can set the styles accordingly, resulting in a
formatted date of ‘‘April 4, 2012 11:55 PM.’’

Using date formatters is much easier than trying to write your own parser for
dates. Like number formatters, they allow you to support any locale supported
by the device. As iOS devices become available in more countries, Apple’s
internationalizing and localization teams add more locales and languages to the
OS, allowing your apps to take advantage of them automatically.

Calendars, Date Components, and Time Zones
One potential issue you’ll run into with the NSDate object is that it represents a
single moment in time. It has a day, month, and year, but also a time of day.
This can be an issue if you’re trying to represent a specific calendar day;
midnight in one time zone is the day before in another. To work around this, you
can use the NSCalendar class to extract components from a date or create a
date from components. If you wanted to represent the current day without
including the current time, you could extract the month, day, and year from the
date with the following code:

NSDate *currentDate = [NSDate date];
NSCalendar *currentCalendar = [NSCalendar currentCalendar];

NSDateComponents *dateComponents =
 [currentCalendar components:(NSYearCalendarUnit |
 NSMonthCalendarUnit |
 NSDayCalendarUnit)
 fromDate:currentDate];

In this example, the dateComponents object will be created by the
currentCalendar object, which will set its year, month, and day values from
currentDate. Once you have date components from a date, you can modify

q
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 361

these individual values to create a new date. For instance, to create an NSDate
five years after currentDate, you could do the following:

NSDateComponents *nextDateComponents = [dateComponents copy];
[nextDateComponents setYear:[dateComponents year] + 5];

NSDate *nextDate = [currentCalendar dateFromComponents:nextDateComponents];

Again, it’s the currentCalendar object that turns the numerical representation of
the date specified by the month, day, and year values of the date components
into an NSDate object. One thing to note about this example is that it does not
preserve the current date’s time; the new date will be created at midnight. For
most of your users, the currentCalendar class method of NSCalendar will be the
Gregorian calendar, but iOS also supports other calendars. As of iOS 5.1, the
Japanese and Buddhist calendars can be used as the system calendar,
although other calendars can be created as NSCalendar objects and used for
date calculations. By using the currentCalendar method, you can ensure that
calendar calculations, such as adding a month to the current date, will behave
as your users expect. You could calculate a new date by adding the proper
number of seconds to an existing date using the NSDate method
dateByAddingTimeInterval:, but if you’re making assumptions about the user’s
calendar, you can quickly confuse them.

Dealing with numbers, dates, and the like all attempt to help you display
information to the user that’s relevant to them based on where they live. Just as
critical, however, is to consider the data you’re getting from the user.

Processing User Input
Although it may seem obvious, iOS users usually want to write in the same
language they read. One of the key advantages to iOS devices’ software
keyboard is that it can support any written language, even languages composed
of complex Asian characters. Figure 12-4 displays several different keyboards
available to your users.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 362

Figure 12-4. Three different keyboards (from left to right): English, French, and Traditional Chinese in
Handwriting mode

As you can see, the English and French keyboards are very similar, but the
Chinese keyboard is in handwriting mode, which allows the user to use their
finger to draw characters. When the user has more than one keyboard available,
a globe icon appears in the bottom row; tapping this icon will switch between
keyboards.

How you react to text provided by the user is up to you, but a general rule is to
use UTF encoding for any web services you use rather than ASCII. UTF is
designed to accept multilingual input. Even though this may seem like a trivial
consideration, if your user has special Unicode characters in their name, they
won’t appreciate it being garbled by your app.

You should also take special care when dealing with text displayed to the user.
Wherever possible, your app should display its content in the user’s native
language.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 363

Localization
The key difference between internationalization and localization is that
internationalization makes the app more generic, able to support whatever
locale the user’s phone is set to, while localization is about providing alternate
content for the user’s chosen language. You can provide content for as many or
as few languages as you’d l ike. Any app resource-----images, video, text, audio,
and more-----can be localized. If you localize one resource, however, that doesn’t
mean you need to localize them all, so if you have a company logo that is the
same across all languages, you don’t need to do anything to keep it the same.

When any file in your app’s bundle is localized, the system moves it to a
subfolder of its current location named after the development language of your
app. For this chapter, let’s assume that’s English. To mark a file as localizable,
select it in Xcode’s Project Navigator, and then open the File Inspector by
selecting View  Utilities  Show File Inspector or by pressing ⌘+Option+1.
Scrolling if needed, find the Localization group in the File Inspector on the right.
By default, it will either be empty or have one language listed, depending on the
application template you use. Figure 12-5 shows a sample image with two
localizations: English and French. To mark a file as localizable, click the plus
underneath the list of localizations; this will move it to a subfolder of the current
folder (for English, that folder will be named en.lproj) automatically. You won’t
see this folder in Xcode’s list of files in the Project Navigator, but it’s there,
created as a subfolder of the folder that contained the now-localized file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 364

Figure 12-5. The File Inspector (on the right of the Xcode window) displaying the Localizations group

To see how Xcode has rearranged things for you, you can right-click the file in
Xcode’s file browser and select Reveal in Finder. You should notice a folder with
a name ending in .lproj that contains your file. To add more languages, click
the plus button again; you’ll see a list of supported languages appear. Select the
language for which you’d like to provide another version of this file, and Xcode
will copy the current version to an appropriate folder. Simply modify or replace
the copied file to provide a separate resource for that language.

So, how does all this work? For every language and locale setting, iOS builds a
list of preferred languages. Let’s consider a hypothetical country with two official
languages: French and Chinese. Let’s also consider an app that supports
French and English. For a user whose device is set to French, iOS will
automatically load resources from the fr.lproj directory rather than the
en.lproj directory. Since our hypothetical country’s list of preferred languages
includes both French and Chinese, a user whose device is set to Chinese will, if
no Chinese resource is found, use the French resource. To get this built-in
cultural sensitivity, you don’t need to do anything more than provide resources
in multiple languages, so long as support for the country is included in iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 365

One of the biggest benefits of using the built-in localization tools in iOS is that
you can release one app for your worldwide audience. Instead of releasing an
English version, a French version, a Spanish version, a Chinese version, and a
German version of your app, you release one version with all of these languages
included as localizations. This has a number of advantages: first, if a user
switches between languages on their device, perhaps to help learn a second
language, your app will switch with them. Second, when it comes time to update
the app, you won’t be stuck trying to update multiple versions of the app and
then waiting for Apple to approve each one. Third, it’s much easier to track
download figures, use analytics, and troubleshoot problems if you have one
app.

When you use Apple’s built-in controls, you get some localization for free. Any
system buttons that you use, such as the Done button, are automatically
translated into the user’s language: Done in English is OK in French and Fertig in
German, at least according to the Done button. Similarly, specifying different
values for the Return key on the on-screen keyboard will result in Apple’s
translated values being used. While this is great and Apple’s translations are, as
far as I can tell, top-notch, there is a slight danger here: if you need to translate
done somewhere else in your app, your translation may not match Apple’s,
which could confuse users. It’s important to have people who speak the
language test the app and let you know if translations are off. Also, system
buttons won’t translate automatically unless you have some localized resources
in your application for the target language. An English-only app will display
English-only buttons, but if you provide localized text, then the buttons will be
localized as well.

Let’s look in detail first at the easiest thing to localize: text.

Localizing Text
Localizing text is done through what’s known as a strings file. This is a special
resource you can add to your file that allows your app to load text based on the
user’s preferred language. To add a strings file to your app in Xcode, select File
 New  File… or press ⌘+N, select Resource under iOS in the left column,
and then select Strings File from the list on the right. The conventional name for
this file is Localizable.strings. In this file, you’ll provide a series of strings
assigned to keys, which are also strings. In code, you’ll refer to these keys,
loading the associated string as needed. Consider the following example of
creating a button with the title Submit:

UIButton *submitButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[submitButton setTitle:@"Submit"
 forState:UIControlStateNormal];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 366

Notice that the word Submit is hard-coded in English. In the localization
process, you’d extract this line and place it in the Strings file, perhaps with the
title SubmitButtonTitle:

"SubmitButtonTitle" = "Submit";

Now, when we reference the SubmitButtonTitle key in code, we’ll get ‘‘Submit’’
back for English. By adding localized versions of the Localized.strings file,
we’ll get the different languages’ text instead if the language is selected. To use
this in code, you can use the NSLocalizedString macro as follows:

UIButton *submitButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[submitButton setTitle:NSLocalizedString(@"SubmitButtonTitle", NULL)
 forState:UIControlStateNormal];

The first argument for the macro is the key to use as an NSString object, and the
second, here omitted in favor of NULL, is an optional comment. The return value
will be the string you’ve put in the strings file, localized for the appropriate
language.

The advantage of the strings file is that, most likely, you won’t be providing all of
the translations yourself. By placing all of your content that needs localization
into the same file, you can just give that file to whoever is doing the translation
and be reasonably sure that they’ll be able to understand what to do. Even
more, Apple provides the genstrings tool to automatically create these strings
files based on the comment you use. With this tool available, the best workflow
is to always use NSLocalizedString in your own code and then use genstrings
to generate a strings file before localization.

One final consideration when using text of multiple languages is font support. If
you provide your own custom fonts for use in your app, be sure that it supports
all of the languages your app does.

Example: HelloLocalization
Let’s look at how we might localize an app by localizing a simple Hello, World!
application. Open Xcode, and select File  New  Project… or press �+Shift+N. Select Application in the leftmost column under the iOS section, and
then select Single View Application on the right. Click Next, and then enter
HelloLocalization as the name for the project. Enter your company identifier
and class prefix (I’ll use com.learncocoatouch and LCT), select iPhone for
Device Family, and ensure that Use Automatic Reference Counting is checked
and both Use Storyboards and Include Unit Tests are unchecked. Click Next,
and then click Create to save the project to disk.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 367

The UI of this project will be very simple: a single label. Open the main view
controller’s user interface file (LCTViewController.xib) in Xcode. Open the
Object Library by selecting View  Utilities  Show Object Library or by
pressing Control+Option+�+3. Once it’s open, drag a label into the view and
center it. Expand the label to fill the width of the view. Next, add an outlet for
this label by opening the view controller’s header file (LCTViewController.h) and
adding the line in bold:

#import <UIKit/UIKit.h>

@interface LCTViewController : UIViewController

@property (weak, nonatomic) IBOutlet UILabel *helloLabel;

@end

Go back to the user interface (LCTViewController.xib) and connect the outlet
by holding Control, dragging from the File’s Owner object to the label, and then
selecting helloLabel from the list of outlets that appears. Open the view
controller’s implementation file (LCTViewController.m) and add an @synthesize
directive for the label by adding the line in bold:

@implementation LCTViewController

@synthesize helloLabel;

Next, set the text of the label by adding the line in bold to the viewDidLoad
method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 [[self helloLabel] setText:NSLocalizedString(@"helloWorld", NULL)];
}

If you were to run the app now, the label would read ‘‘helloWorld,’’ because we
haven’t provided any text for this key. We’ll use the genstrings command-line
utility to create a strings file for the project. Open Terminal and navigate to the
directory that contains this project’s code files (for me, the command is cd
/Users/jeff/Projects/HelloLocalization/HelloLocalization). Next, enter this
command:

genstrings –o en.lproj *.m

This will create a subfolder of the current location named en.lproj if it does not
already exist and create a file named Localizable.strings inside this folder. As

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 368

of now, the file’s contents should be as follows (it’s just a text file, so you can
open it in your favorite text editor):

/* No comment provided by engineer. */
"helloWorld" = "helloWorld";

Open this directory in Finder and drag Localizable.strings into your Xcode
project under the Supporting Files group. Click Finish, and the strings file
appears, already having an English localization. Open this file in Xcode and
modify the contents by removing the struck-out line and adding the line in bold:

/* No comment provided by engineer. */
"helloWorld" = "helloWorld";
"helloWorld" = "Hello, World!";

Build and run the app. The label will now read ‘‘Hello, World!’’ for all languages.
To add another language, select Localizable.strings in Xcode’s Project
Navigator, and open the File Inspector by selecting View  Utilities  Show File
Inspector or by pressing Option+�+1. Under Localization, click the plus button
to add a new localization. Let’s do French. You may find that if the file doesn’t
currently have any translations, clicking the plus causes Xcode to select another
file; if this happens, simply reselect Localizable.strings and click the Plus
button again to add a second language. An arrow appears next to
Localizable.strings in the Project Navigator; click it to expand the file,
revealing its translations. Select Localizable.strings (French) from the list and
modify if by removing the struck-out line and adding the line in bold:

/* No comment provided by engineer. */
"helloWorld" = "Hello, World!";
"helloWorld" = "Bonjour, Monde!";

Build and run the app. If your language is set to French or French is before
English in iOS’s list of preferred languages for your region, you’ll see ‘‘Bonjour,
Monde!’’ appear, but otherwise you’ll see the English version. To test this, you
can change the language of your device or simulator using the Settings app, but
be careful-----once you change the language, the Settings app will itself be
translated, so you may not be able to read the text to see where to change the
language back. If you change it to French and get stuck, know that ‘‘Settings’’ in
English is ‘‘Réglages’’ in French and that the path to change the language is
Général  International  Langue. Also, once you change the language, any
currently running apps are terminated, so you’ll need to relaunch your app to
continue testing.

As you can see, the genstrings command makes generating strings files easy.
In general, any text that’s going to be displayed to your users should come from
NSLocalizedString(), allowing you to easily localize your app. Next, let’s look at
localizing the nontext parts of your app.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 369

Localizing Resources
As we saw earlier, localizing resources is as easy as clicking the plus button. It’s
easy to get carried away, however. Keep in mind that the App Store has a 50MB
limit on downloads over cell networks; if you have full-sized images for each
language, your app’s size is going to grow quickly, especially if you’re providing
2048 x 1536 graphics for the third-generation iPad’s Retina display. If you have
a large image but only a small part of it, such as a styled title, needs to change,
consider splitting it into two images and localizing only the title. The file size
savings can be enormous. If your app has bundled video with it, consider
removing all text that would need to be localized from the video or hosting the
localized video online; users won’t want to download several gigabytes of video
for languages they don’t use.

Another way to limit your download size in the App Store is to avoid providing
multiple versions of resources. Wherever possible, render text as text instead of
loading it in as an image; your designer will be grateful that she doesn’t need to
provide 30 different versions of a title image for 30 different languages.

Localizing Nibs
Like any other resource, nibs can be localized. This is especially useful for
languages such as German, where words tend to be long. In the event that
longer words require you to rearrange your user interface, you can do so for an
individual language by changing just its nib and not the others. To localize a nib,
simply create another language version using the File Inspector as before, and
then replace the English text in it with the text in the appropriate language. Move
things around as necessary, save, and you’re done.

Localizing nibs can be fraught with peril, however. You should try to do it as late
as possible in your development cycle and even consider using localized strings
instead. Consider the following scenario: you develop an app and decide to
release it in five languages. The app does well, and you begin updating it to fix
bugs. In the bug-fixing process, you need to change a property of a view inside
a nib. Since you’ve localized the nib, however, you now have two choices: make
the change in each and every nib or delete the others and re-create them using
the newly updated nib. Either way, you could be in for a lot of work and should
perhaps consider avoiding this altogether in favor of localized strings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: Localization and Internationalizion 370

Summary
Localization and internationalization are about more than replacing English text
in your app with text in your user’s native tongue. It’s about being culturally
sensitive and recognizing that your users want the app to feel as if someone in
their country created it. If you use an idiomatic expression in your app like ‘‘her
face rang a bell,’’ don’t just translate this to another language-----and certainly
don’t use an online translation tool to do it. Similarly, be culturally sensitive
about colors, images, and audio played in your app. Red is a sign of good luck
in China, so your app might detect a Chinese locale and change how it displays
color accordingly.

After reading this chapter, you should be able to take your app from supporting
one language and locale to supporting every language and locale that iOS
supports. This is a key skill that can take your app from a single-market release
to a worldwide phenomenon. It’s easy to omit, but it might be the most
important feature you add to your app.

www.it-ebooks.info

http://www.it-ebooks.info/

A
Appendix

Running Code on
an iOS Device
Developing for iOS is many things: challenging, fun, rewarding, and exciting.
One thing it is not is free. To begin, doing any legitimate iOS development
requires using Mac OS X, which requires a Mac to be compliant with Apple’s
license agreement. Once you have a Mac, you can download Xcode for free
from the Mac App Store. Using the free version of Xcode, you can write iOS
apps to your heart’s content and run them in the iOS Simulator. To run your
apps on an iOS device, however, you need to be a member of the iOS
Developer Program.

The iOS Developer Program
Available at http://developer.apple.com/programs/ios, the iOS Developer
Program encompasses several aspects of your interaction with Apple as a iOS
developer. Not only does enrollment provide you with access to code-level
technical support and prerelease versions of the iOS SDK and iOS itself, but it
also allows you to test your code on iOS devices. It’s also required to submit
apps (free or paid) to the App Store. Membership in the iOS Developer Program
will set you back $99 USD annually. There’s also the iOS Developer Enterprise
Program, available at http://developer.apple.com/programs/ios/enterprise/,
which costs $299 USD annually. The difference between the two programs is
that the iOS Developer Program allows you to run code on up to 100 devices,
while the iOS Developer Enterprise Program allows you to run code on an
unlimited number of devices. If you’re planning on submitting an app to the App
Store, you’ll need the non-Enterprise version, though you can purchase both.

www.it-ebooks.info

http://developer.apple.com/programs/ios
http://developer.apple.com/programs/ios/enterprise/
http://www.it-ebooks.info/

APPENDIX A: Running Code on an iOS Device 372

Why do you need to be a member of the iOS Developer Program to run code on
a device? Some might say that this is Apple trying to nickel-and-dime
developers, but in the opinion of yours truly, this argument is flawed. Given the
number of developers, the $99 annual fee generates so little income for Apple
relative to its other ventures that it becomes statistically insignificant. Instead, I
view the $99 fee as a deterrent; people who aren’t serious enough about
developing iOS apps won’t purchase the membership and therefore won’t make
bad apps for the platform. Requiring membership in the iOS Developer Program
also allows Apple to enforce much stronger security standards. To understand
why you need to jump through these hoops in the course of your development,
let’s look at the security model of iOS and how that applies to us.

iOS Application Security
Every app on an iOS device must have a valid cryptographic signature to run.
This book won’t get into the specifics of the cryptography involved, but rest
assured that it’s industry-standard. This cryptographic signature has two very
important features. First, it contains a signature for files in the app bundle; if a
nefarious user were somehow able to modify your app’s executable code, this
would invalidate the signature, and the device would refuse to run the app.
Second, the certificate used to create the cryptographic signature, though
specific to the individual developer who created the app, is issued by Apple. If a
rogue app were to wreak havoc on the iOS user community, Apple could shut it
down by revoking the certificate, also resulting in iOS refusing to run the app.

Obtaining a Certificate
So, how do you get your hands on a certificate? In the early days of iOS
development, this was a long process involving the iOS Provisioning Portal
section of the Developer Program web site. With Xcode 4.3, this process is
entirely automated. Open Xcode and open the Organizer window by selecting
Window ➤ Organizer or Command+Shift+2. The top band of the organizer
window acts as a tab bar; select the Devices section. At the left of the screen
underneath the Library heading, select Provisioning Profiles. Click the Refresh
button at the bottom of the screen. You’ll be prompted to log in to your iOS
Developer Program account. If you don’t yet have a certificate, Xcode will offer
to create one for you. As easy as that, you’ve created a certificate.

www.it-ebooks.info

http://www.it-ebooks.info/

 APPENDIX A: Running Code on an iOS Device 373

iOS Application Provisioning
The second part to an app running on a device is its provisioning profile. The
provisioning profile contains two pieces of information needed to determine
whether the app can be launched: a list of certificates that are allowed to sign
the application and a list of devices allowed to run the app, listed using a unique
identifier to the device. If you’re provisioning an App Store or Enterprise app,
you don’t need to specify individual devices, because you won’t be limited to
the devices your app will run on.

To create a provisioning profile, first you’ll need to specify at least one iOS
device it can run on. This is another area where Xcode has automated what
used to be a tedious process. Connect the iOS device to your Mac with a USB
cable. In Xcode’s Organizer window, it should appear on the left sidebar under
Devices. Select the device by clicking it. If there’s a green circle next to it at the
right of the sidebar, then it’s already configured for development. Otherwise,
click the Use for Development button. When you do, Xcode will create a
provisioning profile for you to use for generic development and install the
provisioning profile on the device. At this point, you should be able to run code
on your device! In Xcode with your project open, click the button above Scheme
on the toolbar. This opens the Scheme pop-up. If you see the name of your
target with a triangle to its right, move your mouse cursor over it to expand the
menu. Select the name of your device from the list, hit Run, and your code is
compiled for your device and runs! Now that you can run code on your device,
you can better test code that takes advantage of hardware APIs such as the
camera, GPS chip, and accelerometer.

For more information on further tasks, such as submitting apps to the App
Store, refer to Apple’s documentation titled ‘‘Tools Workflow Guide for iOS,’’
available at the iOS Dev Center at http://developer.apple.com/ios.

www.it-ebooks.info

http://developer.apple.com/ios
http://www.it-ebooks.info/

Index

A, B
Blocks

arrays
comparison selectors, 199
NSComparator, 200–201
sort descriptors, 199–200

asynchronous callbacks, 193–194
block-based methods, 192
code, 201–203
encapsulated functions, 182
enumeration

fast enumeration, 196
for loops, 194–195
Mac OS X and iOS 4, 197–198
NSEnumerator, 195–196
selectors, 197

meaning, 181–182
memory management, 184–185
objects, 185–186
parameters to methods, 189–190
retain objects, 188–189
scope, 186
storage qualifier, 187
TwitterExample code

activity indicators, 206–208
completion handler, 203–206

Typedefs, 183
UIView animations, 190–192

C, D, E, F
Camera

types, 278
UIImagePickerController

allowsEditing property, 283
cameraFlashMode, 284
custom overlay view, 279
mediaTypes property, 282
MyStuff, 278–279
photos, 278–281
rear-facing and front-facing

camera, 280–281
UIVIew subclass, 280
videoQuality, 284
videos, 282–284

UIVideoEditorController, 284–285

G
Grand central dispatch

code dispatch, 231–233
dispatch_async() function, 231
dispatch_sync_f(), 231
framework, 230
object-oriented framework, 236
queues, 233–237
semaphores, 237–240
time, 240–241

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 376

H
Handling user touches, 109

custom views, 111–112
direct manipulation, 109
graphical user interfaces, 109
responder chain, 109–111
scroll views, 118–119
UI changes, 120

action sheet, 134
drop-down list, 130
editing mode, 136, 138
images set, product, 131
nib, 124
possessions, 120–132
table view reordering, 137–

139
table views, 135–137
UIActionSheet, 132–135
UIImagePNGRepresentation(),

121
viewDidLoad method, 126
viewWillAppear, 125

UIGestureRecognizer, 112
built-in gesture recognizers,

113–115
custom, 115–118
gesture recognizer life cycle,

113
target-action methods, 113

Hardware APIs. See also Camera
accelerometer

CMMotionManager class, 290
Core Motion, 288–293
device motion, 292
device orientation

notifications, 287–288
events, 285–287
gyroscope data, 291
magnetometer, 292
MotionDot, 289
real-time data, 285
viewDidLoad method, 290

viewDidUnload method, 289
coreLocation, 293–295
iOS devices, 307
iPhone, iPod and iPad, 277
location data, 293
magnetometer device, 307–308
MapKit

CLGeocoder object, 297–298
CoreLocation headers, 296–

297
framework, 295
LCTTweet, 298–301
LCTTweetMapViewController,

301, 304
LCTTwitterController, 295–296
text field, 302–303
triggers, 305
tweet map, 306
TWRequest object, 298
viewDidUnload method, 304

web apps vs. native apps, 277

I
Integrating networking and web

services. See also Twitter
asynchronous operation

networking, 152
NSURLConnection, 148–149
URL connection delegate

methods, 149–152
data, 141
download

Caches directory, 164–165
files, 162–164
images, 165

JSON
foundation/model objects,

159–162
JavaScript language, 157–158
representations, 158

loading data
interpretation, 143–145

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 377

loSimpleWeather app, 146
NSURLConnection class, 142
received data, 145–148
URL connection, 142–143
URL request, 142
Xcode editor window, 148

parsing JSON and XML, 153–154
sending data, 165
XML parsers, 154–157

Internationalizion
App Store, 351
calendars, date components and

time zones, 360–361
dates, 359–360
general section, 352–353
LocaleNumbers

app running, 358
LCTViewController, 357
user interface, 354–356
viewDidLoad method, 356–358

NSLocale class, 352
numbers, 353–354
processing user input, 361–362

iOS device, 371
application security, 372
certificate, 372
developer program, 371–372
provisioning profile, 373

J
JSON

foundation/model objects, 159–
162

JavaScript language, 157–158
representations, 159
web service, 153–154

K
Key-Value Observing (KVO)

action, 84–88
manual implementations, 83–84
NSObject class, 80

usage, 81–82
working, 82

L
Localization

built-in tools, 365
file inspector, 363–364
HelloLocalization, 366–368
key difference, 363
languages, 364
nibs, 369
resources, 369
strings file, 365–366
text, 365–366

M, N
Media, 309. See also Playing audio,

Playing Music, Playing video
Model-View-Controller (MVC), 38–39
Multithreaded code

long-running task, 225–226
processors, 222
thread safety, 223–225
twitter profile images, 226–230
UIApplicationMain(), 222–223

O
Objective-C

address book creation, 16
categories, 34–35
class extensions, 35–36
code, 28
data, 24–27
forward declaration, 37
function, 18
header and implementation file,

21–22
hyphen (-), 19
implementation, 19
information, 20–21
inherit variables and methods, 16

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 378

Objective-C (cont.)
init method, 22
instance variables, 17
memory management

ARC and properties, 33
automatic reference counting,

32–33
autorelease pools, 31
garbage collection, 30
heap memory, 30
iOS devices, 29
reference counting, 30
stack memory, 29

method declaration, 18
Model-View-Controller, 38–39
new file, 19–20
object, 16
parameters, 23
pointer, 17
properties, 27–28
protocols, 36–38
sayHelloButtonPressed, 24
square brackets, 18
tried-and-true methods, 15
variables, 17

P, Q
Parent and child view controllers

gesture recognizers, 59
modal view controllers, 57
Navigation controllers, 57–58
page view controllers, 59
setRootViewController, 57
split view controllers, 59
tab bar controllers, 58

Playing audio
APIs, 317
Audio Queue Services, 317
AVAudioPlayer

advantage, 315–316
afconvert, 314
callback functions, 316

delegate method, 316
categories, 309
SoundBoard project

adding buttons, 318–319
AVFoundation and

AudioToolbox frameworks,
319

IBOutlet and IBAction, 319–
321

identification and class, 317
System Sound Services

alert sounds, 313–314
AudioServicesCreateSystemSo

undID() function, 310
AudioServicesPlayAlertSound()

function, 313–314
CFURLRef, 310
limitations, 310
MySystemSoundCallback

function, 312
system sounds, 310–313
trigger vibration, 314

Playing music
media queries, 326–327
MPMediaPickerController

delegate method, 324
initialization method, 323
MPMediaItem class, 322
protocols, 324

MPMusicPlayerController, 324–
326

TitularSongs project
delegate method, 332–333
iTunes, 327–328
MediaPlayer framework, 328–

329
MPMediaItemArtwork object,

331–332
protocols, 328
songsQuery method, 330–331
user interface, 327–328
viewDidLoad method, 329–330

Playing video

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 379

AirPlay, 338
CustomPlayer

initWithNibName bundle
method, 342

LCTViewController, 340
MediaPlayer, 341
MobileCoreServices

frameworks, 341
notifications, 349
NSNotificationCenter, 347–348
outlets and actions, 340–341
selectVideoButtonPressed,

346
showImagePickerForSourceTy

pe, 344, 346
UIAlertView, 344
UIImagePickerController, 338,

345–346
video player UI, 338–340
view controller methods, 342–

344
MPMoviePlayerController, 333–

334
MPMoviePlayerController’s View,

335
MPMoviePlayerViewController,

334–335
network video, 335–336
thumbnails, 337–338

R
Run loops

convenience methods, 220
cycle, 220
event-driven application, 219
main (), 221–222
runUntilDate, 221
UIApplicationMain function, 222

S
Saving content

file locations, iOS

app bundle, 106
caches directory, 107
documents directory, 106–107

moving data
delegate chains, 80
Key-Value Observing, 80–88
MyStuff, 79
notifications, 88–90
singletons, 90–92

notifications
common system, 90
dealloc method, 89
post, 89–90
register, 88–89

NSCoding
initWithCoder, 101
modification,

loadPossessionsFromDisk,
102

NSKeyedArchiver, 104
possessionsArchivePath

method, 102–103
savePossesionsToDisk

method, 101–102
serialization, 104

NSUserDefaults
class implementation, 98
defaults command, 92
files, 96–97
loadPossessionsFromDisk

method, 99
modification, 98
mutable array, 94
possession value, 95–96
PossessionListViewController.

m, 94
property list, 93
savePossessionsToUserDefault

s, 94
synchronize method, 95
Xcode property lists, 99

persisting data
core data, 107–108

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 380

Saving content, persisting data
(cont.)

disadvantage, 92
file locations, iOS, 106–107
manual file handling, 104–105
NSCoding, 100–104
NSUserDefaults, 92–100
SQLite databases, 105

prototypical singleton, 91
Selectors

background thread, 211
hood messages, 210
performSelector, 212
sending messages, 209
target-action paradigm, 211
TwitterExample, 213–215

T
Timer

dictionary, 216
LCTTimelineViewController, 216
NSDictionary, 215
schedule code, 215
scheduledTimerWithTimeInterval,

215
scheduleTweetRefresh, 217
viewWillDisappear, 218

Twitter
accounts, 169–170
authorization, 167
configuration options, 168
controller object, 170
frameworks, 168–169, 179
function, 166
implementation file, 171–173
initWithStyle, 178, 179
LCTAppDelegate, 177–178
LCTTwitterController, 174
OAuth service, 167–168
pointer, 173
reloadButtonPressed, 178
sharedInstance method, 171

table view, 174–176
timeline retrieval method, 174
tweets, 171
viewWillAppear, 176

U
User interface design, 243

animation, 266–268
coloring interface elements

didFinishLaunchingWithOption
s method, 244

navigation controller, 245
parameter, 246–247
tableView, 247–248
tintColor, 245
twitter client, 249
UIColor class, 244

fonts and text size
cellForRowAtIndexPath, 253–

254
custom fonts, 252
images, 255–257
initWithStyle method, 250
key methods, 254
label font, 250
LCTTimelineViewController,

250
table view cells, 254–255
tableView, 251–252
UIFont class method, 249

reddit photo browser
@synthesize image, 269
JSON, 268
LCTViewController, 271
loadNextImageInSlideshow

method, 274–275
parseJSONData method, 270–

273
subreddits, 268
viewDidLoad method, 268–272

UIKit framework, 243
view layout

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 381

autosizing values, 261–262
content modes, 262–263
coordinate system, 258–260
display properties, 260
hierarchy, 258
iPad, 265–266
retina display devices, 264–

265
superview and subviews, 258
UIView subclasses, 263–264

V, W
View controllers. See also parent and

child view controllers
application implementation

Apple’s controls, 47
clickedButtonAtIndex method,

49
didTapButton, 47
iOS applications, 46
sliderValueChanged method,

48
UIAlertView class, 48–49
UIButton class, 47
UISegmentedControl, 47

function, 41
iOS applications, 41
life cycle, 42

didReceiveMemoryWarning
methods, 46

IBAction, 44
IBOutlets, 45
Interface Builder, 42–43
long-winded method, 46
setTitleLabel, 43–44
stand-alone application, 42
viewDidLoad method, 45

nib loading
.xib file, 54–55
iPhone and iPad, 56
table view cell, 55–56

passing data

application, 63–64
connections inspector, 66–67
delegate protocol, 74–78
header, 62
implementation file, 68
init method, 63
modal view Controller, 71–74
MyStuff, 60
page layout, 65–66
parent to child view

controller, 70–71
possession class, 61–62
PossessionDetailViewControlle

r, 67
possessions, 64–65
reduce coupling, 60–61

table view
cell, 50–51
customized cells, 53–54
data storage, 52–53
delegate methods, 52
delete/insert cell, 53
editing mode, 53
header and footer text, 52
protocol method, 50
section, 52
UITableView class, 49–50

UIViewController, 41–42

X, Y, Z
Xcode

Cocoa, 1
developer tools, 2–3
Hello, World

application, 9–10
Connections, 12
header file, 10
implementation file, 12–13
initial project layout, 7
iOS app running, 7–8
method creation, 11

www.it-ebooks.info

http://www.it-ebooks.info/

 i

Learn Cocoa Touch
for iOS

■ ■ ■

Jeff Kelley

www.it-ebooks.info

http://www.it-ebooks.info/

Learn Cocoa Touch for iOS

Copyright © 2012 by Jeff Kelley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-4269-7

ISBN-13 (electronic): 978-1-4302-4270-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Scott Gardner
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editors: Jennifer L. Blackwell and Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.
apress.com/source-code.

 www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.it-ebooks.info/

To my wife, Amanda. I love you.

www.it-ebooks.info

http://www.it-ebooks.info/

 v

Contents

■ About the Author .. x
■ About the Technical Reviewer... xi
■ Acknowledgments.. xii

■ Introduction... xiii
■ Chapter 1: Getting Started .. 1

Summary ..13
■ Chapter 2: Objective-C in a Nutshell ... 15

Object-Oriented Programming..15
Getting and Setting Data ..24
Properties ...27
Writing Your Code for You ..28
Memory Management...29

Garbage Collection ..30
Reference Counting ...30
Autorelease Pools..31
Automatic Reference Counting..32
ARC and Properties..33

Categories ..34
Class Extensions...35
Protocols...36

Conforming to Protocols ..37
Model-View-Controller Programming: Well-Designed Code...38
Summary ..40

■ Chapter 3: Managing On-Screen Content with View Controllers........ 41
View Controller Life Cycle...42
Implementing Application Logic with Controls ...46
Providing Lists of Content with Table Views...49

Providing Data to Your Table View ..52
Providing Custom Table View Cells ...53

Nib Loading In Depth ..54
Loading Table View Cells from Nibs ..55
iPhone and iPad Nibs...56

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

vi

Parent and Child View Controllers ..57
Modal View Controllers..57
Navigation Controllers ...57
Tab Bar Controllers..58
Split View Controllers ..59
Page View Controllers..59

Passing Data Between View Controllers...60
Passing Data from a Parent View Controller to a Child View Controller ..70
Passing Data to and from a Modal View Controller ...71
Passing Data Between View Controllers with a Delegate Protocol ...74

Summary ..78
■ Chapter 4: Saving Content in Your App... 79

Moving Data Around Your App..79
Delegate Chains...80
Key-Value Observing ...80
Notifications ..88
Singletons..90

Persisting Data to a File..92
NSUserDefaults..92
NSCoding ...100
Manual File Handling...104
SQLite Databases ..105
File Locations on iOS ...106
Core Data...107

Summary ..108
■ Chapter 5: Handling User Touches.. 109

The Responder Chain..109
Custom Views...111
UIGestureRecognizer ..112

More Target-Action Methods...113
Gesture Recognizer Life Cycle...113
Built-in Gesture Recognizers ...113
Custom UIGestureRecognizers ..115

Scroll Views..118
Implementing UI Changes...120

Adding Pictures to Possessions...120
Using UIActionSheet ..132
Implementing “Edit” for Table Views ..135
Implementing Table View Reordering..137

Summary ..139
■ Chapter 6: Integrating Networking and Web Services...................... 141

Loading Data from the Network ...142
Creating a URL Request...142
Creating a URL Connection ..142
Interpreting the Response ...143
Using Received Data..145

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

 vii

Asynchronous Operation ..148
URL Connection Delegate Methods ...149
Asynchronous Networking Concerns...152

Parsing JSON and XML from Web Services..153
Parsing XML...154
Parsing JSON...157
Creating JSON Representations ..158
Parsing Foundation Objects into Model Objects ..159

Downloading Files ..162
When to Cache Files ..164
Downloading Images ...165

Sending Data Across the Network..165
Creating a Twitter Client...166
Summary ..180

■ Chapter 7: Writing Modern Code with Blocks................................... 181
What Are Blocks? ...181

Blocks Are Encapsulated Functions ..182
Readable Block Declarations with Typedefs ...183
Block Memory Management..184
Blocks Are Objects...185
Blocks Capture Scope ...186
Blocks Retain Objects..188
Using Blocks as Parameters to Methods...189

Why Should We Use Blocks? ..190
UIView Animations...190
Using Blocks for Asynchronous Callbacks...193
Using Blocks for Enumeration ...194
Using Blocks to Sort Arrays ...199

Using Blocks in Your Code..201
Updating TwitterExample with Blocks..203

Adding a Completion Handler ..203
Adding Activity Indicators..206

Summary ..208
■ Chapter 8: Managing What Happens When....................................... 209

Sending Messages ...209
Messages Under the Hood...210
Performing Selectors Manually ...211

Scheduling Code with Timers...215
Run Loops...219
Multithreaded Code ..222

Running Code on Another Thread..222
Thread Safety ..223

Grand Central Dispatch...230
Dispatching Code...231
Using Global Dispatch Queues...233
Dispatch Objects..236

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

viii

Summary ..242
■ Chapter 9: User Interface Design .. 243

Coloring Interface Elements with UIColor ...244
Fonts and Text Size ..249
Using Images ..255
View Layout ..257

View Hierarchy ..258
View Coordinate Systems..258
View Display Properties...260
View Layout in UIView Subclasses ..263
View Layout on Retina Display Devices...264
View Layout on iPad ..265

View Animation...266
Example: Reddit Photo Browser ...268
Summary ..276

■ Chapter 10: Hardware APIs... 277
Using the Camera ...278

Using UIImagePickerController for Photos...278
Using UIImagePickerController for Videos ...282
Using UIVideoEditorController for Video ..284

Using the Accelerometer ..285
Accelerometer Events..285
Device Orientation Notifications ..287
Using Raw Accelerometer, Gyroscope, and Magnetometer Data with Core Motion......................................288

Using Location Data..293
Using CoreLocation..293
Using MapKit ...295

Bring Your Own Device...307
Requiring Devices in Your App ...307
Summary ..308

■ Chapter 11: Media in Your App: Playing Audio and Video 309
Playing Audio..309

System Sound Services...310
AVAudioPlayer ...314
Other Sound APIs...317
Example: SoundBoard ...317
Playing Music ..322
Example: TitularSongs...327

Playing Video ..333
Using MPMoviePlayerController ..333
Example: CustomPlayer...338

Summary ..349
■ Chapter 12: Localization and Internationalizion............................... 351

Internationalization...352
Using Numbers ..353

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

 ix

Example: LocaleNumbers ..354
Using Dates ...359
Processing User Input..361

Localization ..363
Localizing Text...365
Example: HelloLocalization..366
Localizing Resources...369
Localizing Nibs ..369

Summary ..370
■ Appendix A: Running Code on an iOS Device.................................... 371

The iOS Developer Program..371
iOS Application Security ...372
Obtaining a Certificate..372
iOS Application Provisioning...373

■ Index... 349

www.it-ebooks.info

http://www.it-ebooks.info/

x

About the Author

 Jeff Kelley started programming for the iPhone with iPhone OS 2 and has seen it evolve into
the iOS we know and love today. Jeff has developed dozens of apps for clients both large and
small in a wide variety of industries, as well as several apps for his own use. He’s been
programming since using BASIC in grade school, with his professional start coming in the Mac IT
world in education. Today he does iOS programming full-time, as well as speaking engagements
at conferences and the local chapter of CocoaHeads.

www.it-ebooks.info

http://www.it-ebooks.info/

 xi

About the Technical Reviewer

 Scott Gardner is an Apple technology evangelist, consultant, and
developer. He combines insight gained from the field and continuous
study of iOS to develop apps that are beneficial and intuitive. Scott
resides in the Midwest with his wife and daughter.

www.it-ebooks.info

http://www.it-ebooks.info/

xii

Acknowledgments

I’d like to thank everyone at Apress for their hard work on this book—specifically, Scott Gardner
as my technical reviewer, who made a number of suggestions that improved the quality of the
work, as well as keeping me honest with providing top-tier content. Douglas Pudnick, my
development editor, also did a great job guiding the direction of the content, and the other
editors, Michelle Lowman, Jennifer Blackwell, Kelly Moritz, and Jill Balzano, were all a great help
with this book. I’d also like to thank the Detroit Labs crew, specifically cofounders Paul Glomski,
Henry Balanon, Nathan Hughes, and Dan Ward, for being understanding with the challenges of
writing apps by day and a book by night, as well as for giving me an awesome place to work. At
home, a great deal of thanks goes to my wife, Amanda, who put up with me writing this book
while also pregnant with our first child, something she deserves endless credit for. Finally, I’d like
to thank my parents for helping me get my start in programming; my mom would copy BASIC
programs from a book when I was in kindergarten so that I could mess with them when I got
home, and later in grade school my dad bought me a copy of Visual Studio—the first app I ever
wrote for someone else was a retirement calculator he could keep on his screen at work to count
down the seconds until retirement. I’ve had a lot of help along the way in getting this book
published, so to everyone, mentioned here or not, thank you.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 382

Xcode, Hello, World (cont.)
modification, 12
object library visible, 8–9
project creation, 5–6
templates selection, 4–5
welcome screen, 3

installation, 1–2
simulator and emulator, 3

XML parsers

array, 156
connectionDidFinishLoading, 155
errors, 154–155
foundation/model objects, 159–

162
NSXMLParserDelegate, 154
output, 156–157
sequential parsers, 154
web service, 153–154

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Contents at a Glance

	Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Introduction

	Getting Started
	Installing Xcode
	The Developer Tools
	Hello, World!
	Summary

	Objective-C in a Nutshell
	Object-Oriented Programming
	Getting and Setting Data
	Properties
	Writing Your Code for You
	Memory Management
	Garbage Collection
	Reference Counting
	Autorelease Pools
	Automatic Reference Counting
	ARC and Properties

	Categories
	Class Extensions
	Protocols
	Conforming to Protocols

	Model-View-Controller Programming: Well-Designed Code
	Summary

	Managing On-Screen Content with View Controllers
	View Controller Life Cycle
	Implementing Application Logic with Controls
	Providing Lists of Content with Table Views
	Providing Data to Your Table View
	Providing Custom Table View Cells

	Nib Loading In Depth
	Loading Table View Cells from Nibs
	iPhone and iPad Nibs

	Parent and Child View Controllers
	Modal View Controllers
	Navigation Controllers
	Tab Bar Controllers
	Split View Controllers
	Page View Controllers

	Passing Data Between View Controllers
	Passing Data from a Parent View Controller to a Child View Controller
	Passing Data to and from a Modal View Controller
	Passing Data Between View Controllers with a Delegate Protocol

	Summary

	Saving Content in Your App
	Moving Data Around Your App
	Delegate Chains
	Key-Value Observing
	Notifications
	Singletons

	Persisting Data to a File
	NSUserDefaults
	NSCoding
	Manual File Handling
	SQLite Databases
	File Locations on iOS
	Core Data

	Summary

	Handling User Touches
	The Responder Chain
	Custom Views
	UIGestureRecognizer
	More Target-Action Methods
	Gesture Recognizer Life Cycle
	Built-in Gesture Recognizers
	Custom UIGestureRecognizers

	Scroll Views
	Implementing UI Changes
	Adding Pictures to Possessions
	Using UIActionSheet
	Implementing “Edit” for Table Views
	Implementing Table View Reordering

	Summary

	Integrating Networking and Web Services
	Loading Data from the Network
	Creating a URL Request
	Creating a URL Connection
	Interpreting the Response
	Using Received Data

	Asynchronous Operation
	URL Connection Delegate Methods
	Asynchronous Networking Concerns

	Parsing JSON and XML from Web Services
	Parsing XML
	Parsing JSON
	Creating JSON Representations
	Parsing Foundation Objects into Model Objects

	Downloading Files
	When to Cache Files
	Downloading Images

	Sending Data Across the Network
	Creating a Twitter Client
	Summary

	Writing Modern Code with Blocks
	What Are Blocks?
	Blocks Are Encapsulated Functions
	Readable Block Declarations with Typedefs
	Block Memory Management
	Blocks Are Objects
	Blocks Capture Scope
	Blocks Retain Objects
	Using Blocks as Parameters to Methods

	Why Should We Use Blocks?
	UIView Animations
	Using Blocks for Asynchronous Callbacks
	Using Blocks for Enumeration
	Using Blocks to Sort Arrays

	Using Blocks in Your Code
	Updating TwitterExample with Blocks
	Adding a Completion Handler
	Adding Activity Indicators

	Summary

	Managing What Happens When
	Sending Messages
	Messages Under the Hood
	Performing Selectors Manually

	Scheduling Code with Timers
	Run Loops
	Multithreaded Code
	Running Code on Another Thread
	Thread Safety

	Grand Central Dispatch
	Dispatching Code
	Using Global Dispatch Queues
	Dispatch Objects

	Summary

	User Interface Design
	Coloring Interface Elements with UIColor
	Fonts and Text Size
	Using Images
	View Layout
	View Hierarchy
	View Coordinate Systems
	View Display Properties
	View Layout in UIView Subclasses
	View Layout on Retina Display Devices
	View Layout on iPad

	View Animation
	Example: Reddit Photo Browser
	Summary

	Hardware APIs
	Using the Camera
	Using UIImagePickerController for Photos
	Using UIImagePickerController for Videos
	Using UIVideoEditorController for Video

	Using the Accelerometer
	Accelerometer Events
	Device Orientation Notifications
	Using Raw Accelerometer, Gyroscope, and Magnetometer Data with Core Motion

	Using Location Data
	Using CoreLocation
	Using MapKit

	Bring Your Own Device
	Requiring Devices in Your App
	Summary

	Media in Your App: Playing Audio and Video
	Playing Audio
	System Sound Services
	AVAudioPlayer
	Other Sound APIs
	Example: SoundBoard
	Playing Music
	Example: TitularSongs

	Playing Video
	Using MPMoviePlayerController
	Example: CustomPlayer

	Summary

	Localization and Internationalizion
	Internationalization
	Using Numbers
	Example: LocaleNumbers
	Using Dates
	Processing User Input

	Localization
	Localizing Text
	Example: HelloLocalization
	Localizing Resources
	Localizing Nibs

	Summary

	Running Code on an iOS Device
	The iOS Developer Program
	iOS Application Security
	Obtaining a Certificate
	iOS Application Provisioning

	Index
	A, B

	C, D, E, F

	G
	H
	I
	J
	K
	L
	M, N
	O
	P, Q
	R
	S
	T
	U
	V, W
	X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

